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Abstract
Recent results of machine learning for automatic vulnerability
detection (ML4VD) have been very promising. Given only the
source code of a function f , ML4VD techniques can decide if
f contains a security flaw with up to 70% accuracy. However,
as evident in our own experiments, the same top-performing
models are unable to distinguish between functions that con-
tain a vulnerability and functions where the vulnerability is
patched. So, how can we explain this contradiction and how
can we improve the way we evaluate ML4VD techniques to
get a better picture of their actual capabilities?

In this paper, we identify overfitting to unrelated features
and out-of-distribution generalization as two problems, which
are not captured by the traditional approach of evaluating
ML4VD techniques. As a remedy, we propose a novel bench-
marking methodology to help researchers better evaluate the
true capabilities and limits of ML4VD techniques. Specifi-
cally, we propose (i) to augment the training and validation
dataset according to our cross-validation algorithm, where
a semantic preserving transformation is applied during the
augmentation of either the training set or the testing set, and
(ii) to augment the testing set with code snippets where the
vulnerabilities are patched.

Using six ML4VD techniques and two datasets, we find
(a) that state-of-the-art models severely overfit to unrelated
features for predicting the vulnerabilities in the testing data,
(b) that the performance gained by data augmentation does not
generalize beyond the specific augmentations applied during
training, and (c) that state-of-the-art ML4VD techniques are
unable to distinguish vulnerable functions from their patches.

1 Introduction

Recently several different publications have reported high
scores on vulnerability detection benchmarks using machine
learning (ML) techniques [1,12–15,28]. The resulting models
seem to outperform traditional program analysis methods, e.g.
static analysis, even without requiring any hard-coded knowl-
edge of program semantics or computational models. So, does

this mean that the problem of detecting security vulnerabil-
ities in software is solved? Are these models actually able
to detect security vulnerabilities, or do the reported scores
provide a false sense of security?

Even though ML4VD techniques achieve high scores on
vulnerability detection benchmark datasets, there are still situ-
ations in which they fail to meet expectations when presented
with new data. For example, it is possible to apply small se-
mantic preserving changes to augment the testing dataset of a
state-of-the-art model and then measure whether the model
changes its predictions. If it does, it would indicate a depen-
dence of the prediction on unrelated features. Examples of
such transformations are identifier renaming [18,38,39,41,42],
insertion of unexecuted statements [18, 35, 39, 41] or re-
placement of code elements with equivalent elements [2, 21].
The impact of augmenting testing data using these trans-
formations has been explored for many different software-
related tasks and the results seem to be clear: Learning-
based models fail to perform well when testing data gets
augmented using semantic preserving transformations of
code [2, 5, 18, 30, 35, 38, 39, 41, 42].

In our own experiments, we were able to reproduce the
findings of the literature and made additional observations:
ML4VD techniques that were trained on typical training data
for vulnerability detection are also unable to distinguish be-
tween vulnerable functions and their patched counterparts. If a
patched function is also predicted as vulnerable, this indicates
that the prediction critically depends on features unrelated to
the presence of a security vulnerability.

It has previously been proposed to reduce the dependence
on unrelated features by augmenting not just the testing data
but also the training data [5,18,35,38,39,41,42]. Indeed, this
seems to restore the lost performance back to previous levels,
but does it really reduce the dependence on unrelated features,
or are the models just overfitting to different unrelated features
of the data?

In this paper, we propose a novel benchmarking methodol-
ogy that can be used to evaluate the capabilities of ML4VD
techniques by using data augmentation. First, we propose



Algorithm 1, in which a selected semantic preserving trans-
formation is applied to the training dataset of a model, and a
different transformation is applied to the testing dataset. When
repeated for all possible pairs out of a set of transformations,
the resulting scores provide a better measure of overfitting
to the unrelated features that are introduced by the semantic
preserving transformations during training data augmentation.
Second, we propose Algorithm 2, in which a trained model is
evaluated on a testing dataset that contains both vulnerable
programs and their respective patches. The results provide
a measure of the model’s ability to generalize to a modified
vulnerability detection setting.

In order to validate Algorithm 1 and Algorithm 2 empir-
ically, we selected six state-of-the-art ML4VD techniques.
All evaluated ML4VD techniques happen to be token-based
large language models (LLMs). As our selection criterion,
we defined the top-performing ML4VD techniques on the
most widely known ML vulnerability detection benchmark
CodeXGLUE [24, 25] that are available as open source. This
gave us ranks 1, 2, 6, 10, and 12 of the leaderboard, all of
which are token-based LLMs. In fact, 9 of the Top-10 solu-
tions on the leaderboard are token-based LLMs. By applying
Algorithm 1 and Algorithm 2 in our empirical study of six
state-of-the-art ML4VD techniques and three datasets, we
confirmed that ML4VD techniques continue to leverage unre-
lated features when deciding whether a function contains a
vulnerability.

For Algorithm 1, we implemented 11 different semantic pre-
serving transformations for data augmentation and evaluated
the trained models using two popular vulnerability detection
datasets. As expected, we find a strong benefit of training
data augmentation (69.0% and 66.2% average restoration of
accuracy/f1-score for the two datasets) when the transforma-
tions applied to training and testing datasets are the same.
However, we find no improvement in performance when the
transformations applied to training and testing datasets are
different. In fact, we even find an additional 30.2% and 77.5%
average decrease in accuracy/f1-score for the two datasets.
In other words, ML4VD techniques still severely overfit to
the specific label-unrelated features introduced by training
data augmentation. The improvement in performance gained
by data augmentation only applies to the specific type of
transformations used during training.

For Algorithm 2, we introduce a new dataset, VulnPatch-
Pairs, which contains 26.2k C functions and is derived from
the CodeXGLUE/Devign vulnerability detection dataset [43].
Exactly half of the functions in VulnPatchPairs contain se-
curity vulnerabilities. The other half are patched versions of
the first half.1 We investigated six ML4VD techniques using
VulnPatchPairs and evaluated their ability to generalize from
their typical training data to VulnPatchPairs, and vice versa.
To our surprise, all six ML4VD techniques that were trained

1See Section 4.4 for details.

on a typical training dataset were unable to distinguish be-
tween the vulnerable functions and their patched counterparts
in VulnPatchPairs. On average, the accuracy turned out to be
worse than random guessing. The trained models are unable
to generalize from a standard vulnerability detection dataset
to the modified setting.
In summary, this paper contributes two novel algorithms that
can be used to uncover major problems of ML4VD tech-
niques that are not detected using the standard evaluation
setup: Overfitting to semantic preserving code changes and
the inability to generalize between related vulnerability detec-
tion settings. Additionally, we provide an empirical evaluation
of six state-of-the-art ML4VD techniques using the proposed
methodology.

⋆ We present a general methodology consisting of two algo-
rithms, that can be used to evaluate ML4VD techniques.

⋆ We show empirically, that state-of-the-art ML4VD tech-
niques overfit to the unrelated features introduced by se-
mantic preserving transformations during data augmenta-
tion.

⋆ We introduce VulnPatchPairs, a new dataset that contains
vulnerable C function and the corresponding patched ver-
sions of the same functions. It is available at
https://github.com/niklasrisse/VPP.

⋆ We demonstrate, that six state-of-the-art ML4VD tech-
niques are not able to distinguish between the vulnerable
and patched functions in VulnPatchPairs.

⋆ We publish all of our code and results for reproducibility.
They are available at
https://github.com/niklasrisse/USENIX_2024.

2 Related Work

One of the main tools to study the limits of ML4VD tech-
niques are semantic preserving transformations of code. Pre-
vious work [2, 5, 18, 21, 22, 30, 35, 38, 39, 41, 42] proposed
methods to generate semantic preserving transformations for
source code datasets and investigated their impact when used
to augment testing data of learned models.

Many of the works that reported the failures of learned
models when testing data was augmented also investigated
training data augmentation using their respective methods
[5,18,35,38,39,41,42]. A common finding in all of these pub-
lications is that training data augmentation using a specific
type of semantic preserving transformation leads to improved
performance on testing sets that have been augmented the
same way. But does the performance gained by data augmen-
tation generalize beyond the specific augmentations applied
during training?

Some of the publications that propose methods for data
augmentation [5, 18, 35, 38, 41] take it a step further; they

https://github.com/niklasrisse/VPP
https://github.com/niklasrisse/USENIX_2024


1 static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor , int
qoffset)

2 {
3 int coeff = dirac_get_se_golomb(gb);
4 const int sign = FFSIGN(coeff);
5 const unsigned sign = FFSIGN(coeff);
6 if (coeff)
7 coeff = sign*((sign * coeff * qfactor + qoffset) >> 2);
8 return coeff;
9 }

(a) Code Snippet

1 static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor , int
qoffset)

2 {
3 int coeff = dirac_get_se_golomb(gb);
4 const int sign = FFSIGN(coeff);
5 const unsigned sign = FFSIGN(coeff);
6 if (coeff)
7 coeff = sign*((sign * coeff * qfactor + qoffset) >> 2);
8 if (0)
9 coeff = 666;

10 return coeff;
11 }

(b) Transformed Code Snippet

Figure 1: Example of a simple semantic preserving transformation. The change (orange) has no effect on the vulnerability label.
Both code snippets contain a security vulnerability (integer overflow in line 4). The code was taken from the Ffmpeg GitHub
repository (URL: https://github.com/FFmpeg/FFmpeg/commit/92da2309) and is part of the CodeXGLUE/Devign dataset.

augment the training data using a slightly different but related
type of transformation than for the testing data. For example,
Henkel et al. [18] apply their gradient-based approach for
identifier renaming to the training data and a random renam-
ing strategy to the testing data. Similarly, Yang et al. [38]
apply their method for variable renaming to a training dataset
and the method proposed by Zhang et al. [42] to a testing
dataset. All of these works find an improved performance
when the training dataset is augmented in a similar way than
the testing dataset. However, the transformations used for
augmenting the training and testing data in these publications
are all similar in type, e.g. they both rename identifiers. But
does the performance also improve when training data is aug-
mented in a different way than the testing data? Our work
aims to fill this gap in the literature by carrying out a thorough
empirical study that considers a diverse set of 11 different
transformations, six state-of-the-art ML4VD techniques, and
two high-quality datasets.

Similar to other related publications listed above [18, 35,
38], Rahman et al. [31] investigate overfitting of ML4VD
techniques to variable and API names by transforming them
in the testing data. Additionally, they propose a new method
to address the overfitting based on causal learning, which aims
to disable models from using superficial features (e.g. variable
names) entirely. While their approach seems to be effective
to avoid overfitting for concrete and simple transformations
(e.g. changing variable names), the authors do not investigate
how their method performs when faced with unseen semantic
preserving transformations, that were not specifically trained
for. Our proposed methodology can be used as a tool to do
this, which allows to draw conclusions about overfitting to
unrelated features fundamentally, irrespective of the type of
transformation applied to training- and testing data.

In order to evaluate the general capabilities of ML4VD
techniques, we collected a new dataset (VulnPatchPairs),
which contains both vulnerable functions and their respec-
tive patches. The collection of a pairwise vulnerability-patch
dataset has been proposed by previous work [4,8,29], e.g. for
the research field of automated fixing. However, to the best

of our knowledge, we are the first to utilize such a dataset to
evaluate the general capabilities of ML4VD techniques.

Two recently published papers [10, 36] report poor gener-
alization capabilities of different ML-based techniques (e.g.
LLMs and GNNs) when evaluated on functions from unseen
git projects. Our Algorithm 2 also investigates the generaliza-
tion capabilities of ML4VD techniques, but using a different
setup, in which functions in the evaluation data belong to a
modified vulnerability detection setting (e.g. vulnerable func-
tions and their patches), but can be from the same projects.

3 Methodology

We propose a novel benchmarking methodology to help re-
searchers better evaluate advances in ML4VD techniques.
The methodology consists of two parts, Algorithm 1 (A1) and
Algorithm 2 (A2).

3.1 Data Augmentation
A central component of our methodology is data augmenta-
tion, and the expectations for vulnerability detection models
that emerge from using code transformations for data aug-
mentation.

We define data augmentation as the application of one
or multiple code transformations onto all code snippets of
a given code snippet dataset CD ⊂ C , where C is a space
that represents all possible code snippets c ∈ C in a given
programming language.

A code transformation t : C → C is a function that maps
from and to C . Let’s assume we have an oracle function g :
C →{0,1}, which maps from the space of code snippets C to
either 0 or 1. The oracle function g represents the ground truth,
i.e. it shows whether a code snippet c does (1) or does not
(0) contain a security vulnerability. For a given code snippet
dataset CD ⊂ C , a code transformation t can be characterized
by its effect on g(t(c)) ∀ c ∈CD:

Semantic Preserving Transformation. We call a trans-
formation tp semantic preserving w.r.t. CD, if the changes

https://github.com/FFmpeg/FFmpeg/commit/92da2309


Algorithm 1 Detecting Overfitting to Code Changes
Input: Semantic Preserving Transformations T := {t1, ..., tN}

Training Dataset Tr
Testing Dataset Te
ML Training Method train_model
ML Evaluation Method evaluate_model
Performance Metric M

1: MLM[Tr] = train_model(Tr)
2: score[MLM[Tr],Te] = evaluate_model(MLM[Tr],Te,M)
3: for each tk ∈ T do
4: Tek = tk(Te) // testing data augmentation
5: score[MLM[Tr],Tek ] = evaluate_model(MLM[Tr],Tek ,M)
6: e f f ect[Tr,Tek ] = score[MLM[Tr],Tek ]− score[MLM[Tr],Te]
7: Trk = tk(Tr) // training data augmentation
8: MLM[Trk ] = train_model(Trk)
9: score[MLM[Trk ],Tek ] = evaluate_model(MLM[Trk ],Tek ,M)

10: MLM[Trk ,Tek ] = score[MLM[Trk ],Tek ]− score[MLM[Tr],Te]
11: for each t j ̸=k ∈ T do
12: Te j = t j(Te) // testing data augmentation
13: score[MLM[Trk ],Te j ] = evaluate_model(MLM[Trk ],Te j ,M)
14: e f f ect[Trk ,Te j ] = score[MLM[Trk ],Te j ]− score[MLM[Tr],Te]
15: end for
16: end for

Output: out putA1.1 = (∑k e f f ect[Tr,Tek ])/N
out putA1.2 = (∑k e f f ect[Trk ,Tek ])/N
out putA1.3 = (∑k ∑ j ̸=k e f f ect[Trk ,Te j ])/(N(N −1))

introduced by applying it do not affect the ground truth vul-
nerability label, g(c) = g(tp(c)) ∀ c ∈ CD. Figure 1 shows
an example of a simple semantic preserving transformation
applied to a real-world code snippet.

Label Inverting Transformation. We call a transforma-
tion td label inverting w.r.t. CD, if the changes introduced
by applying it change the ground truth vulnerability label,
g(c) ̸= g(td(c)) ∀ c ∈ CD. In other words, a label inverting
transformation either adds or removes a vulnerability from a
code snippet.

In general, we expect a vulnerability detection model to
correctly predict, whether a given code snippet contains a
security vulnerability, independent of any semantic preserving
or label inverting transformations that have been previously
applied to the code snippet. Specifically, we can formulate
the following expectations:

1. If we change a code snippet without affecting the vulner-
ability label (semantic preserving transformation), we
expect a vulnerability detection tool to compute the same
correct prediction as before applying the change.

2. If we add or remove a vulnerability from a code snippet
(label inverting transformation), we expect a vulnerabil-
ity detection tool to still deliver a correct prediction, or
i.e. we expect it to change its prediction with the ground
truth label of the code snippet.

In the following sections, we present two algorithms, which al-
low to evaluate ML4VD techniques using the two formulated
expectations.

3.2 A1: Detecting Overfitting to Code Changes
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Figure 2: Visualization of Algorithm 1, which we created to
detect overfitting of ML4VD techniques to unrelated features
introduced by data augmentation. Colors represent that either
only testing data is augmented (blue), training- and testing
data are augmented using the same (orange), or different aug-
mentation methods (green).

The goal of Algorithm 1 is to measure, whether ML4VD
techniques overfit to augmentations of their training data that
are unrelated to the respective vulnerability labels and whether
the performance gained by data augmentation generalizes
beyond the specific augmentations applied during training.
We provide a simple visualization of the idea behind the
algorithm in Figure 2, the algorithm itself in Algorithm 1,
and a description of the most important parts in the following
paragraphs. We use the colors blue, orange, and green, to
connect the basic ideas of the algorithm with the experimental
results across the paper2.

What are the inputs? The inputs of Algorithm 1 are a
set of different semantic preserving transformations T :=
{t1, ..., tN}, a training dataset Tr, a testing dataset Te, a ML
training method train_model, a ML evaluation method eval-
uate_model, and a performance metric M. The training and
testing datasets Tr and Te consist of code-label pairs (ci,vi),
with ci ∈ C representing code snippets and vi ∈ {0,1} repre-
senting labels that indicate the absence (0) or presence (1) of
security vulnerabilities in the respective code snippets. The
method train_model can utilize the training dataset Tr to train
a machine learning model MLM : C → {0,1}, which maps
from the space of code snippets C to either 1 (vulnerability)
or 0 (no vulnerability). The method evaluate_model can use
the performance metric M to quantify and aggregate the per-
formance of a trained model MLM on a testing dataset Te into
a single number between 0 (bad) and 1 (perfect).

2See Figure 2, Algorithm 1, Figure 5, Figure 7, Figure 7c and Table 2.
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Figure 3: Visualization of Algorithm 2, which we created
to test whether ML4VD techniques are able to generalize
to a modified setting, which requires to distinguish between
vulnerabilities and patches.

What is computed? Algorithm 1 computes the average
effects of (a) augmenting the testing data of the selected ML
technique using transformations tk ∈ T (out putA1.1), (b) using
the same transformations to also augment the training data
(out putA1.2), and (c) using different transformations to also
augment the training data (out putA1.3).

In lines 4-6, Algorithm 1 computes the effect of augment-
ing the testing dataset Te with the transformation tk on the
performance of the trained model MLM[Tr]. The result is
e f f ect[Tr,Tek], the absolute difference between the scores of
MLM[Tr] on the clean testing dataset Te and the augmented
testing dataset Tek. In other words, e f f ect[Tr,Tek] quantifies
how many points in score are lost if we augment the test-
ing dataset with transformation tk. out putA1.1 aggregates this
intermediate result over all transformations tk ∈ T .

In lines 7-10, Algorithm 1 goes a step further and com-
putes the effect of both augmenting the training dataset Tr
and the testing dataset Te using the same transformation
tk. The result is e f f ect[Trk,Tek], the absolute difference be-
tween scores of MLM[Trk] on the augmented testing dataset
Tek and MLM[Tr] on the testing dataset Te. In other words,
e f f ect[Trk,Tek] quantifies how many points in score are lost
if we augment both the training and the testing dataset with
transformation tk. out putA1.2 aggregates this intermediate re-
sult over all transformations tk ∈ T .

In lines 12-14, the algorithm computes the effect of aug-
menting the testing dataset using a different transformation
t j than for the training dataset. The result is e f f ect[Trk,Te j],
the absolute difference between scores of MLM[Tr] on the
testing dataset Te and MLM[Trk] on the augmented testing
Te j. In other words, e f f ect[Trk,Te j] quantifies how many
points in score are lost if we augment the training and the test-
ing dataset with different transformations tk and t j. out putA1.3
aggregates this intermediate result over all transformations
tk ∈ T, t j ̸=k ∈ T .

How can the results be used? Using this algorithm, re-
searchers can effectively evaluate new ML4VD techniques.
Specifically, for a selected technique researchers can answer

Algorithm 2 Distinguish between Vulnerability and Patch
Input: Standard Training Dataset Tr

Standard Testing Dataset Te
Vulnerability-Patch Training Dataset VPTr
Vulnerability-Patch Testing Dataset VPTe
ML Training Method train_model
ML Evaluation Method evaluate_model
Performance Metric M

1: MLM[Tr] = train_model(Tr)
2: MLM[V PTr] = train_model(V PTr)
3: score[MLM[Tr],Te] = evaluate_model(MLM[Tr],Te,M)
4: score[MLM[Tr],V PTe] = evaluate_model(MLM[Tr],V PTe,M)
5: score[MLM[V PTr],V PTe] = evaluate_model(MLM[V PTr],V PTe,M)
6: score[MLM[V PTr],Te] = evaluate_model(MLM[V PTr],Te,M)

Output: out putA2.1 = score[MLM[Tr],Te]
out putA2.2 = score[MLM[Tr],V PTe]
out putA2.3 = score[MLM[V PTr],V PTe]
out putA2.4 = score[MLM[V PTr],Te]

the following questions:

1. How much does the performance of the selected ML
technique decrease if we augment the code snippets
for testing without affecting the vulnerability labels?
Answer: On average, the performance does change by
out putA1.1 points.

2. How much performance of the selected ML technique
can be restored, if we augment the training code snippets
in a similar way than the testing code snippets? An-
swer: On average, out putA1.2 −out putA1.1 of the initial
decrease can be restored.

3. How much performance of the selected ML technique
can be restored, if we augment the training code snippets
in a different way than the testing code snippets? An-
swer: On average, out putA1.3 −out putA1.1 of the initial
decrease can be restored.

4. Does the selected ML technique overfit to specific aug-
mentations of the training data that are unrelated to the re-
spective vulnerability labels? Answer: If out putA1.2 >>
out putA1.3: Yes, otherwise No.

3.3 A2: Distinguish between Vulnerability and
Patch

The main goal of Algorithm 2 is to evaluate, whether ML4VD
techniques are able to generalize from their typical training
data to a modified setting, which requires to distinguish se-
curity vulnerabilities from their patches. Additionally, the
algorithm also aims to evaluate the reverse, or i.e. whether
ML4VD techniques that were trained to distinguish between
vulnerabilities and their patches are able to perform well on
standard testing data. We provide a simple visualization of
the idea behind the algorithm in Figure 3, the algorithm itself
in Algorithm 2, and a description of the most important parts
in the following paragraphs. We use the colors purple and



yellow to connect the basic ideas of the algorithm with the
experimental results across the paper 3.

What are the inputs? In addition to the inputs of Algo-
rithm 1, Algorithm 2 requires a special vulnerability-patch
testing dataset V PTe and a vulnerability-patch training dataset
V PTr. V PTe and V PTr also consist of code snippets ci ∈ C
and vulnerability labels vi ∈ {0,1}, but for every code snip-
pet c j with label v j = 0, they also contain a snippet cl ̸= j
with vl = 1 which represents the patched version of c j. The
relationship between a code snippet and its patched ver-
sion can be characterized as a label inverting transformation
tPATCH : C → C , which maps code snippets c j to their patched
versions cl .

What is computed? The purpose of Algorithm 2 is to
quantify the ability of the selected ML technique to general-
ize between two related vulnerability detection settings. The
first setting, represented by the standard training and testing
datasets Tr and Te, consists of code snippets, which either
contain or do not contain a vulnerability. This setting is most
frequently used in the related literature [1, 12–15, 28]. The
second setting, represented by the vulnerability-patch training
and testing datasets V PTr and V PTe, consists of vulnerable
code snippets and their respective patches. As formulated in
Section 3.1, a perfect vulnerability detection model should
be able to perform well in both settings, irrespective of the
setting on which it was trained. In other words, a vulnerability
detection model should be able to generalize between the
settings.

In total, Algorithm 2 computes four scores. In line 3, Al-
gorithm 2 computes the score of a model MLM[Tr], which
was trained on the standard training dataset Tr, on the stan-
dard testing dataset Te. This score represents the standard
evaluation and serves as a baseline for the other scores.

In line 4, Algorithm 2 computes the score of a model
MLM[Tr], which was trained on the standard training dataset
Tr, on the vulnerability-patch testing dataset V PTe. When
compared to the first score, this result serves as a measure of
MLM[Tr]s ability to generalize to the modified setting, which
requires to distinguish vulnerabilities from their patches.

In line 5, Algorithm 2 computes the score of a model
MLM[V PTr], which was trained on the vulnerability-patch
training dataset V PTr, on the vulnerability-patch testing
dataset V PTe. Again, this score serves as a baseline for the
other scores.

In line 6, Algorithm 2 computes the score of a model
MLM[V PTr], which was trained on the vulnerability-patch
training dataset V PTr, on the standard testing dataset Te.
When compared to the third score, this result serves as a
measure of MLM[V PTr]s ability to generalize back to the
standard vulnerability detection setting.

The four computed scores are returned as the outputs of the
algorithm (out putA2.1, out putA2.2, out putA2.3 and out putA2.4).

3See Figure 3, Algorithm 2, and Table 3.

How can the results be used? Using Algorithm 2, re-
searchers can effectively evaluate whether the high scores
of ML4VD techniques are specific to the testing datasets
on which they were computed. Specifically, for a selected
technique researchers can answer the following questions:

1. Does the performance of the selected ML technique gen-
eralize from a standard vulnerability detection dataset to
a modified setting, which requires to distinguish vulner-
abilities from their patches? Answer: The selected ML
technique can distinguish between vulnerabilities and
their patches with performance out putA2.2, compared to
a score of out putA2.1 on the standard testing dataset.

2. Does the performance of the selected ML technique
generalize back to the standard vulnerability detection
setting when it is explicitly trained to distinguish vulner-
abilities from their patches? Answer: The selected ML
technique achieves a score of out putA2.4 on the standard
testing dataset, compared to a score of out putA2.3 in the
modified setting.

4 Experimental Setup

4.1 Research Questions

Our objective is to validate empirically, whether the two pro-
posed algorithms can be used to evaluate state-of-the-art
ML4VD techniques. Specifically, we aim to answer the fol-
lowing research questions.
RQ.1 How is the performance of ML4VD techniques af-

fected, if we augment the input code snippets without
affecting the vulnerability labels? (a) Can we measure
a decrease in performance, if we augment the testing
data of ML4VD techniques using semantic preserving
transformations? (b) Does training data augmentation
using the same transformations restore the initial perfor-
mance? (c) Are there differences between the individual
transformations?

RQ.2 Do ML4VD techniques overfit to specific augmen-
tations of their training data that do not affect the
respective vulnerability labels? Can we still restore the
performance, if we augment the training dataset with a
different semantic preserving transformation than the
testing dataset?

RQ.3 Are the high scores of ML4VD techniques specific to
benchmark datasets or do they generalize to a modi-
fied vulnerability detection setting? (a) Are state-of-
the-art ML4VD techniques able to distinguish between
vulnerable functions and their patches? (b) Does training
to distinguish between vulnerable functions and their
patches improve the performance on standard testing
data?



Table 1: The semantic preserving transformations that we
used in our experiments.

Identifier Type Description

t1 Identifier Renaming Rename all function parameters to a ran-
dom token.

t2 Statement Reordering Reorder all function parameters.
t3 Identifier Renaming Rename the function.
t4 Statement Insertion Insert unexecuted code.
t5 Statement Insertion Insert comment.
t6 Statement Reordering Move the code of the function into a sep-

arate function.
t7 Statement Insertion Insert white space.
t8 Statement Insertion Define additional void function and call

it from the function.
t9 Statement Removal Remove all comments.
t10 Statement Insertion Add code from training set as comment.
t11 Random Transformation One transformation sampled from

{t1, . . . , t10} is applied to each function.

4.2 Semantic Preserving Transformations

One of the central components of algorithms 1 and 2 are se-
mantic preserving transformations of code. The most common
semantic preserving transformations that are used in the litera-
ture to investigate the limits of learned models for source code
related tasks are identifier renaming [18, 35, 38, 39, 41, 42], in-
sertion of unexecuted statements [18, 35, 39, 41], replacement
of statements with equivalent statements [21], reordering of
unrelated statements [27], deletion of unexecuted statements
(e.g. comments) [21], or combinations of the before men-
tioned [18, 35, 41].

Table 1 shows the 11 semantic preserving transformations
that we implemented for the experiments presented in this pa-
per. We tried to cover all types of transformations commonly
used in the literature. The table lists all transformations, cate-
gorizes them by type, and provides short descriptions for each
of them.

Since ML4VD techniques are ultimately aimed at detecting
security vulnerabilities in real-world code, augmenting code
using our semantic preserving transformations should also
result in code that looks natural, or i.e. looks like it could occur
in real-world software. To address this, we experimentally
confirmed that our semantic preserving transformations do not
decrease the naturalness (measured by cross entropy) of the
code. We provide more information on this as supplementary
material in Appendix A.

4.3 Vulnerability Detection Datasets

We use two publicly available vulnerability detection datasets
for our experiments.

CodeXGLUE/Devign. CodeXGLUE is a machine learn-
ing benchmark for code understanding and generation [24].
It consists of several datasets for different source code re-
lated tasks. In our experiments, we only use the dataset
for vulnerability detection, which is based on the Devign
dataset [43]. Throughout this paper, we refer to this dataset as

the CodeXGLUE/Devign dataset or just as the CodeXGLUE
dataset. The CodeXGLUE dataset contains 26.4k C functions,
from which 45.6% contain vulnerabilities, i.e. the dataset is
fairly balanced. The types of vulnerabilities were not formally
classified, but based on the collection process the authors
found most vulnerabilities in the dataset to be memory-related,
e.g. memory leaks, buffer overflows, memory corruption, or
crashes. The authors of the CodeXGLUE benchmark also
maintain a leaderboard [25], which tracks the performance of
popular learning-based techniques on the different datasets of
the benchmark.

VulDeePecker. The other vulnerability detection dataset
that we use in this paper is the Code Gadget Database, which
was introduced with the VulDeePecker bug detector [23]. We
refer to this dataset as the VulDeePecker dataset. The original
dataset contains 61.6k C/C++ code samples derived from the
NVD [7] and the SARD [6], from which 17.7k contain vulner-
abilities, mainly buffer (CWE-119) and resource management
errors (CWE-399).

4.4 New Dataset: VulnPatchPairs
In order to investigate the ability of ML4VD techniques to
distinguish between vulnerabilities and their patches (RQ3),
we collected a new dataset, which we call VulnPatchPairs. We
provide a simple visualization of the collection process for
VulnPatchPairs in Figure 4.

VulnPatchPairs is an extension of the CodeXGLUE/Devign
vulnerability detection dataset [43], which consists of C func-
tions from two popular open source repositories, FFmpeg4

and Qemu5. The creators of the dataset describe the collec-
tion process in their original publication [43]. As a first step,
they filtered the selected repositories for security-related com-
mits using a list of keywords. Then, they invested 600 work
hours of a four-person team of security researchers to classify
the security-related commits into vulnerability-fix commits
(VFCs) and non vulnerability-fix commits (non-VFCs) and
extracted the respective functions before the commits were
applied as vulnerable (before VFCs) and non-vulnerable (be-
fore non VFCs) functions. The actual patched versions of the
functions (after the VFCs were applied) are not part of their
original dataset. However, for each function of their dataset,
the authors released the respective commit ID from the two
open-source repositories as additional information. We used
this information to extract the actual patched versions of the
vulnerable functions in the CodeXGLUE dataset from the
FFmpeg and Qemu repositories and created a new dataset:
VulnPatchPairs.

We manually verified 100 randomly chosen functions from
the CodeXGLUE dataset that were labelled as vulnerable. We
found 68 out of these 100 functions to actually contain a secu-
rity vulnerability, 23 to contain no security vulnerability, and 9

4FFmpeg repository: https://github.com/FFmpeg/FFmpeg
5Qemu repository: https://github.com/qemu/qemu

https://github.com/FFmpeg/FFmpeg
https://github.com/qemu/qemu
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Figure 4: Visualization of the collection process for our new
dataset VulnPatchPairs.

with no decision after 10 minutes of manual effort. The results
are available at https://github.com/niklasrisse/VPP_
label_accuracy. Even though these results show that there
are inaccurate labels in the CodeXGLUE dataset, we do not
expect any changes to our main findings. While the absolute
performance might change if we used perfectly labeled data,
we expect the relative performance (e.g., augmented vs non-
augmented) to remain comparable for all of our individual
evaluations.

In total, VulnPatchPairs consists of 26.2k C functions from
the two open source repositories FFmpeg and Qemu. Exactly
half (13.1k) of the 26.2k functions contain security vulnerabil-
ities and were copied from the CodeXGLUE/Devign vulner-
ability detection dataset. The other 13.1k are the respective
patches of the vulnerable functions, which we extracted from
the open-source repositories. We published VulnPatchPairs
as supplementary material in an open GitHub repository6.

4.5 Machine Learning Techniques
We selected six state-of-the-art ML4VD techniques for our
experiments.

Selection Criteria. In order to select techniques that rep-
resent the state-of-the-art of ML4VD, we chose the top tech-
niques from the CodeXGLUE leaderboard [25] for which the
authors provide open-source implementations. Measured by
citations7 (496) and GitHub Stars8 (1.2k), CodeXGLUE is the
most well-known benchmark for source code related machine
learning techniques. The vulnerability detection dataset of
the benchmark [43] is also highly cited (407 citations9) and
widely used to evaluate ML4VD techniques for automatic
vulnerability detection.

Selected Techniques. Based on the described criteria,
we selected UniXcoder [13], CoTexT [28], VulBERTa [15],
PLBart [1], and CodeBERT [12] for our experiments. At
submission time of this paper, the six techniques hold rank
1 (UniXcoder), rank 2 (CoTexT), rank 6 (VulBERTa), rank
10 (PLBart), and rank 12 (CodeBERT) on the CodeXGLUE
leaderboard for vulnerability detection [25]. In addition to
the five techniques from the CodeXGLUE leaderboard, we

6VulnPatchPairs: https://github.com/niklasrisse/VPP
7https://api.semanticscholar.org/CorpusID:231855531
8https://github.com/microsoft/CodeXGLUE
9https://api.semanticscholar.org/CorpusID:202539112

selected GraphCodeBERT (abbreviated as GraphCB in Ta-
ble 3) [14], a technique related to CodeBERT, which utilizes
graph representations of source code during the training pro-
cess.

Model Details. Since the selected techniques belong to the
same family of techniques, they also share the same basic
architecture:

1. Tokenization: A given code function is split into tokens
(small sequence of characters that forms a semantic en-
tity), based on a given strategy.

2. Embedding: Tokens are transformed into numbers, usu-
ally by indexing via a learned vocabulary and the addi-
tion of positional information.

3. Transformer Network: Several steps of parametrized
computation are applied, resulting in a final embedding.

4. Prediction Layer: The final layer of the model is a
parametrized prediction layer, which computes an output
number between 0 and 1 based on the final embedding
of the previous step. The output number represents the
predicted probability that the input function contains a
security vulnerability.

During model training, the parametrized computational lay-
ers of steps 3. and 4. are optimized to compute the correct
predictions for given training data. The six selected tech-
niques mainly differ in tokenization strategy, training data,
optimization objective, and the specific transformer network
architecture used. We provide additional information on the
specific models in Appendix C.

The authors of all six techniques provide publicly available
implementations of their techniques [1, 12–15, 28].

4.6 Model Training Pipeline

We used a similar training setup for all model instances that
we trained for our experiments.

Pre-training. All models that we train in our experiments
have been pre-trained by the authors of the respective publi-
cations using various source code datasets. The size of the
pre-training datasets spans from 2.3 million (VulBERTa) to
680 million code snippets (PLBart). The original publica-
tions provide more information on the pre-training datasets
[1, 13, 15, 28]. We use the pre-trained models released by the
authors of the respective techniques as starting points for our
pipeline and finetune the models on our selected datasets.

Data split. For the CodeXGLUE/Devign dataset, we used
the train-/validation-/testing dataset split provided by the au-
thors of the benchmark [24], which resulted in a training
dataset with 21k functions, a validation dataset with 2.7k
functions, and a testing dataset with 2.7k functions. For the
VulDeePecker dataset, we used the split provided by Hanif et

https://github.com/niklasrisse/VPP_label_accuracy
https://github.com/niklasrisse/VPP_label_accuracy
https://github.com/niklasrisse/VPP
https://api.semanticscholar.org/CorpusID:231855531
https://github.com/microsoft/CodeXGLUE
https://api.semanticscholar.org/CorpusID:202539112


al. [15], which resulted in a training dataset with 128.1k func-
tions, a validation dataset with 16k functions, and a testing
dataset with 16k functions. The split for VulnPatchPairs is
derived from the split of CodeXGLUE, such that all and only
vulnerable functions in training, validation, and testing sets,
respectively, of CodeXGLUE were taken as training, valida-
tion, and testing sets of VulnPatchPairs, augmented by their
corresponding patches.

Pre-processing. For the VulDeePecker dataset, we re-
moved all duplicate functions and also replaced all label-
revealing tokens (e.g. comment with token "bad" above a vul-
nerable function) that we found by manual inspection of the
dataset with randomly selected tokens. For the CodeXGLUE
and VulnPatchPairs datasets, we applied no additional pre-
processing steps.

Hyperparameters. For all six ML4VD techniques, we
used the pre-trained models and tokenizers provided by the re-
spective authors as starting points for our experiments. Similar
to Hanif et al. [15], we noticed a relatively quick convergence
of our performance metrics in our initial experiments on the
validation dataset (after 2-7 epochs), which is why we trained
each model instance for 10 epochs. For all model-specific
hyperparameters, we used the values that were reported in the
original papers [1, 12–15, 28]. Consult our published training
scripts10 for the complete list of hyperparameter values that
we used.

Performance metrics. We tracked and quantified the per-
formance of our trained models on the selected testing datasets
using several commonly used performance metrics. We report
six metrics in this paper: Accuracy, f1-score, precision, recall,
false positive rate (FPR), and false negative rate (FNR).

For CodeXGLUE/Devign as a balanced dataset (45.6% vul-
nerable functions), we use accuracy as the main performance
metric, since it is also used exclusively in the CodeXGLUE
benchmark [24] and on the leaderboard [25].

For VulDeePecker as a relatively imbalanced dataset
(28.7% vulnerable functions) we use the f1-score as the main
performance metric. The f1-score is defined as the harmonic
mean of precision and recall and is most suitable when the
positive class (in our case vulnerable functions) is the minority
class in an imbalanced dataset.

Hardware. We used a setup of five Nvidia A100 GPUs,
each equipped with 40 GB RAM. One run of all our experi-
ments takes approximately 60 days on a single A100 GPU.

5 Experimental Results

RQ.1 Testing- and Training Data Augmentation

We investigate, whether (a) testing data augmentation using se-
mantic preserving transformation decreases the performance
of state-of-the-art ML4VD techniques, whether (b) training

10GitHub: https://github.com/niklasrisse/USENIX_2024

data augmentation using the same transformations restores the
performance towards previous levels, and whether (c) there
are differences between the individual transformations.

Methodology. We used Algorithm 1 to investigate all three
questions. We ran the algorithm for each ML technique and
dataset separately and measured the outcomes using the re-
spective preferred performance metrics (see Section 4.6). We
did not only record the outcomes after completing the full
training of the respective models but also after each train-
ing epoch in order to observe the progression of the learning
process.

Results. Figure 5a shows the test set accuracy of different
VulBERTa models measured after each of the ten training
epochs. We can observe, that augmenting the testing dataset
Te with transformation t10 leads to a substantial drop in accu-
racy, represented by the gap between the dotted gray and blue
graphs in the figure. We can also observe, that augmenting
the training dataset Tr with the same transformation t10 as the
testing dataset, restores the accuracy back to previous levels
(orange graph).

Figure 5b extends the results of Figure 5a to all seman-
tic preserving transformations tk ∈ T , and to all six ML4VD
techniques. Instead of showing the accuracy for each training
epoch, we only use the maximum accuracy across the full
training. Across all six ML4VD techniques, we can observe,
that augmenting the testing dataset Te with transformations
tk ∈ T (represented by the blue boxplots), on average, leads
to a drop in accuracy compared to evaluations on the standard
testing dataset Te (represented by the horizontal lines with
stars). In parallel to Figure 5a we can also observe that, on
average, training data augmentation using the same transfor-
mation as for testing data augmentation leads to a restoration
of the observed drops in accuracy (represented by the orange
boxplots).

Table 2 summarizes the outputs of Algorithm 1 for all
six ML4VD techniques and both datasets. Specifically, it
shows the average recorded changes in the respective metrics,
when only the testing dataset was augmented (blue columns,
out putA1.1), when the training and testing datasets were aug-
mented using the same transformation (orange columns,
out putA1.2), and when the training and testing datasets were
augmented using a different transformation (green columns,
out putA1.3). We observe that, on average, augmenting the test-
ing dataset leads to a drop in accuracy/f1-score (−0.025 for
CodeXGLUE, −0.043 for VulDeePecker), and augmenting
the training dataset using the same transformation restores
that decrease towards previous levels. On average, approxi-
mately 69.0% (CodeXGLUE) and 66.2% (VulDeePecker) of
the lost accuracy/f1-score is restored.

Figure 6 shows the impact on accuracy caused by aug-
menting only the testing data using the individual trans-
formations tk ∈ T (impact(tk) := accuracy[MLM[Tr],Tek]−
accuracy[MLM[Tr],Te]) for all six ML4VD techniques. In
other words, Figure 6 displays the severity of the performance

https://github.com/niklasrisse/USENIX_2024
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(a) Test set accuracy over ten training epochs of different models trained
with VulBERTa on the CodeXGLUE/Devign dataset. Augmenting the testing
set Te with transformation t10 (blue) decreases the accuracy, but applying
the same transformation also to the training dataset Tr (orange) restores the
accuracy back to previous levels.
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(b) Extension of the results in Figure 5a, for all transformations tk ∈ T , and
for all six ML4VD techniques. The boxplots represent distributions of the
resulting accuracies. Augmenting the testing set Te with transformations
tk ∈ T (blue boxplots) decreases the accuracy, but applying the same trans-
formation also to the training dataset Tr (orange boxplots) partially restores
the accuracy, although not always to its previous levels.

Figure 5: Effects of augmenting the testing data and the training data using the same semantic preserving transformations.
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Figure 6: Impact on accuracy caused by augmenting the testing data using the individual transformations tk ∈ T (impact(tk) :=
accuracy[MLM[Tr],Tek]−accuracy[MLM[Tr],Te]). The most impactful transformations for each ML technique are marked by
red stars.

decline of the techniques when only applying semantic pre-
serving transformations on the testing set. The most impactful
transformations for each ML technique are marked by red
stars.

If a specific semantic preserving transformation has a high
negative impact on the accuracy of an ML technique, we
can assume that either (a) the ML technique partly relied
on unrelated features that were removed or modified by the
transformation (e.g. removal of comments) to achieve its
original high accuracy, or (b) that the ML technique relied
on unrelated features introduced by the transformation (e.g.
addition of comments) to achieve the decreased accuracy after
applying the transformation.

From the results presented in Figure 6 we can observe, that
there are clear differences both between transformations and
ML4VD techniques. As one might expect, a trivial transfor-
mation such as adding whitespace (t7) has little to no impact
on the accuracy of all six ML4VD techniques. The severity of
this impact is, on average, below 1% accuracy, which means
that below 1% of predictions are changed from correct to
incorrect by applying this transformation. The ML4VD tech-
niques also seem to be robust against identifier renaming (t1

and t3) and removal of comments (t9), for which the severity
of impact is also below or close to 1%. The most impactful
transformations are changing the order of the function param-
eters (t2), defining an additional void function (t8), and adding
code snippets from the training set as comments (t10). For
these transformations, a substantial part of the predictions is
changed from correct to incorrect: Between 2.3% and 10.6%
for t2, between 1.8% and 18.1% for t8, and between 2.1% and
11.5% for t10. Overall, transformations that insert statements
(e.g. t4, t5, t8, and t10) or reorder statements (e.g. t2 and t6)
seem to have a higher impact than the other types.

Additionally, there are also differences between the six
ML4VD techniques. For example, moving the code into a
separate function (t6) only seems to have a high impact on
CodeBERT, and inserting a simple comment (t5) seems to
have a much higher impact on UniXcoder than on the other
ML4VD techniques. Future work is required to determine
why the ML4VD techniques are more or less robust against
specific transformations.

We also investigated the impact of each individual trans-
formation when not only the testing data but also the training
data is augmented using a different transformation than for
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(a) Test set accuracy over ten training epochs of different models trained with
VulBERTa on the CodeXGLUE/Devign dataset. Augmenting the training set
Tr with different transformations t j ̸=10 than the testing dataset (green lines)
does not restore the accuracy back to previous levels.
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(b) Extension of the results in Figure 7a, for all transformations tk ∈ T and for
all six ML4VD techniques. The boxplots represent distributions of the result-
ing accuracies. Augmenting the training set Tr with different transformations
tk ̸= j than the testing dataset (green boxplots) does not restore the accuracy
back to previous levels. Instead of restoring, the accuracy sometimes even
drops further compared to using standard training data (green below blue).
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(c) Same setup as for Figure 7b, but using the VulDeePecker dataset. The
boxplots represent distributions of the resulting f1-scores. Augmenting the
training set Tr with different transformations tk ̸= j than the testing dataset
(green boxplots) does not restore the f1-score back to previous levels.
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(d) Same setup as for Figure 7b, but the green boxplots represent the accura-
cies achieved by augmenting the training data using the meta transformation
t11, in this case sampled from {t1, . . . , t10}\{t j}, and the testing data using a
single left-out transformation t j . Augmenting the training dataset Tr with t11
partially restores the accuracy, although not to its previous levels.

Figure 7: Effects of augmenting the training data with different semantic preserving transformations than the testing data.

the testing data. However, due to the results being very sim-
ilar to Figure 6, we decided to omit this from the paper and
provide it as supplementary material in Appendix B.

Across two datasets, six ML4VD techniques, and 11 trans-
formations, on average, (a) testing data augmentation us-
ing semantic preserving transformations leads to a drop in
accuracy/f1-score (CodeXGLUE: −0.025, VulDeePecker:
−0.043), (b) training data augmentation using the same
transformations restores 69.0% (CodeXGLUE) and 66.2%
(VulDeePecker) of the lost accuracy/f1-score, and (c) trans-
formations that insert or reorder statements seem to be
more impactful than other types of transformations.

RQ.1 has already been studied in the literature, for many
different techniques, datasets, and tasks [5, 18, 22, 35, 38, 39,
41, 42]. Based on our evidence, we can approve the findings
of the literature.

RQ.2 Overfitting to Specific Transformations
We investigate, whether the performance of ML4VD tech-
niques can still be restored if we augment the training dataset
with a different semantic preserving transformation than the
testing dataset. We use Algorithm 1 to investigate RQ.2, with
the same setup as for RQ.1.

Results. Figure 7a is similar to Figure 5a, it also shows the
test set accuracies of different VulBERTa models measured
after each of the ten training epochs. In addition to the re-
sults displayed in Figure 5a, Figure 7a shows the accuracies
(green lines) of VulBERTa models trained on data that was
augmented using all transformations except t10, which was
used to augment the testing dataset. We observe, that aug-
menting the training dataset Tr with different transformations
t j ̸=10 as the testing dataset does not restore the accuracy back
to previous levels.

Figure 7b visualizes the same extended results for all
semantic preserving transformations tk ∈ T and for all six



Table 2: Algorithm 1: Average changes when augmenting
only the testing data (out putA1.1), training and testing data
using the same (out putA1.2), or a different transformation
(out putA1.3).

CodeXGLUE VulDeePecker
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ri
c outA1.1 outA1.2 outA1.3 outA1.1 outA1.2 outA1.3

Tr Tr Trk Trk Tr Tr Trk Trk
Technique Te Tek Tek Te j ̸=k Te Tek Tek Te j ̸=k

ac
cu

ra
cy

UniXcoder 0.693 -0.043 -0.011 -0.050 0.975 -0.005 -0.002 -0.010
CoTexT 0.673 -0.022 -0.014 -0.030 0.973 -0.001 -0.001 -0.003
GraphCB 0.655 -0.015 -0.006 -0.021 0.973 -0.014 -0.002 -0.015
CodeBERT 0.651 -0.034 -0.000 -0.040 0.974 -0.007 -0.002 -0.012
VulBERTa 0.639 -0.017 -0.004 -0.025 0.973 -0.011 -0.002 -0.012
PLBart 0.633 -0.021 -0.007 -0.026 0.972 -0.003 -0.002 -0.008

-0.025 -0.007 -0.032 -0.007 -0.002 -0.010

f1
-s

co
re

UniXcoder 0.680 -0.037 -0.007 -0.041 0.880 -0.028 -0.012 -0.054
CoTexT 0.635 0.001 0.006 0.006 0.872 -0.006 -0.006 -0.020
GraphCB 0.629 -0.024 -0.013 -0.033 0.869 -0.093 -0.006 -0.091
CodeBERT 0.596 -0.005 0.012 0.001 0.873 -0.045 -0.007 -0.082
VulBERTa 0.652 -0.050 -0.014 -0.048 0.873 -0.082 -0.009 -0.073
PLBart 0.618 -0.009 -0.006 -0.016 0.865 -0.014 -0.007 -0.035

-0.021 -0.004 -0.022 -0.045 -0.008 -0.059
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ll

UniXcoder 0.787 -0.025 -0.016 -0.009 0.893 -0.034 -0.011 -0.041
CoTexT 0.851 0.066 0.074 0.105 0.900 -0.004 -0.015 -0.029
GraphCB 0.661 -0.023 -0.029 -0.031 0.895 -0.153 -0.005 -0.101
CodeBERT 0.572 0.079 0.031 0.106 0.890 -0.090 -0.004 -0.103
VulBERTa 0.759 -0.097 -0.029 -0.056 0.898 -0.094 -0.000 -0.073
PLBart 0.658 0.025 0.003 0.024 0.884 -0.008 -0.003 -0.015

0.004 0.006 0.023 -0.064 -0.006 -0.060
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n

UniXcoder 0.717 -0.033 0.020 -0.033 0.939 -0.008 0.030 -0.045
CoTexT 0.684 -0.029 -0.027 -0.044 0.955 -0.015 0.013 -0.012
GraphCB 0.734 -0.026 -0.019 -0.035 0.995 -0.016 -0.005 -0.040
CodeBERT 0.847 -0.115 -0.009 -0.107 1.000 -0.000 -0.007 -0.031
VulBERTa 0.643 -0.004 -0.019 -0.034 0.850 0.023 -0.012 -0.010
PLBart 0.675 -0.031 -0.015 -0.049 0.971 -0.048 0.008 -0.068

-0.040 -0.012 -0.051 -0.011 0.005 -0.034
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R

UniXcoder 0.142 0.033 -0.018 0.049 0.006 0.001 -0.003 0.006
CoTexT 0.211 0.018 0.028 0.034 0.004 0.001 -0.001 0.001
GraphCB 0.079 0.040 -0.003 0.027 0.000 0.002 0.000 0.003
CodeBERT 0.026 0.140 0.005 0.145 0.000 0.000 0.001 0.003
VulBERTa 0.194 -0.036 0.028 0.040 0.018 -0.004 0.002 -0.001
PLBart 0.137 0.016 0.020 0.026 0.003 0.004 -0.001 0.007

0.035 0.010 0.053 0.001 -0.000 0.003

FN
R

UniXcoder 0.213 0.025 0.016 0.009 0.107 0.034 0.011 0.041
CoTexT 0.149 -0.066 -0.074 -0.105 0.100 0.004 0.015 0.029
GraphCB 0.339 0.023 0.029 0.031 0.105 0.153 0.005 0.101
CodeBERT 0.428 -0.079 -0.031 -0.106 0.110 0.090 0.004 0.103
VulBERTa 0.241 0.097 0.029 0.056 0.102 0.094 0.000 0.073
PLBart 0.342 -0.025 -0.003 -0.024 0.116 0.008 0.003 0.015

-0.004 -0.006 -0.023 0.064 0.006 0.060

ML4VD techniques. Again, the blue and the orange boxplots
represent the distributions of accuracies, when either only the
testing dataset (blue) or training and testing datasets were aug-
mented using the same transformation (orange). The green
boxplots represent the distribution of accuracies achieved by
models that were trained on data, which was augmented using
a different transformation than for the testing data. Across
all six ML4VD techniques, we observe that, on average, aug-
menting the training dataset Tr with a different transformation
tk ̸= j than the testing dataset does not restore the accuracy back
to previous levels.

Figure 7c visualizes the same results as Figure 7b, but
using the VulDeePecker dataset. In this figure, the y-axis
measures the f1-score, since it is the preferred evaluation
metric for the VulDeePecker dataset. Again, we observe that,

on average, augmenting the training dataset Tr with a different
transformation tk ̸= j as the testing dataset does not restore the
accuracy back to previous levels.

In Figure 7d the green boxplots represent the distribution of
accuracies achieved by augmenting the training data using our
meta transformation t11. Slightly different to the definition of
t11 in Table 1, each function in the training set is transformed
using a random transformation tk with k ∈ [1,10] \ j, with
one left-out transformation t j which is applied to the testing
data. Since our set of implemented transformations contains
groups of similar transformations (e.g. adding different types
of comments), we would expect the accuracies to be higher
compared to applying only a single different transformation
to the training set (green boxplots of Figure 7d), but lower
compared to applying exactly the same transformation to the
training set (orange boxplots). Based on Figure 7d, we observe
that is the case across all six ML4VD techniques. Augmenting
the training dataset Tr with the meta transformation t11 does
not fully restore the accuracy, but moves it closer towards the
accuracy on unaugmented data compared to applying only a
single different transformation to the training set.

In addition to the results for RQ.1, Table 2 also shows the
average recorded changes in the respective metrics, when the
training and testing datasets were augmented using different
transformations (green columns, out putA1.3). We observe that,
on average, the score drops by 0.032 accuracy (CodeXGLUE)
and 0.059 f1-score (VulDeePecker). Across the six techniques,
the decrease is on average 30.2% (CodeXGLUE) and 77.5%
(VulDeePecker) stronger than for training on unaugmented
data. In other words, augmenting the training dataset using a
different transformation than for the testing dataset did not re-
store the score towards previous levels, but instead decreased
it even further.

For the other metrics (recall, precision, FPR and FNR),
we generally observe similar patterns than for accuracy and
f1-score. However, there are also slight deviations, e.g. for
CodeXGLUE recall improves on average by 0.023 when train-
ing data is augmented using a different transformation than
the testing data instead of decreasing as expected. These devi-
ations can be explained by innate tradeoffs between recall/-
precision and FPR/FNR, and can only be intepreted in context
of the other metrics. Accuracy and f1-score provide a better
summary of the performance, which is why they are used as
the preferred metrics for the two datasets.

Across two datasets, six ML4VD techniques, and 11 trans-
formations, augmenting the training dataset using a dif-
ferent transformation than for the testing dataset does
not restore the performance back to previous levels. In
other words, the ML4VD techniques overfit to the label-
unrelated features introduced by semantic preserving
transformations during training data augmentation.

In summary, we can observe that across the tested ML4VD



Table 3: Algorithm 2: Performance of six ML4VD tech-
niques evaluated on the standard CodeXGLUE/Devign testing
dataset Te or the vulnerability-patch testing dataset V PTe.

M
et

ri
c outA2.1 outA2.2 outA2.3 outA2.4

Tr Tr V PTr V PTr
Technique Te V PTe Test: V PTe Te

ac
cu

ra
cy

UniXcoder 0.693 0.414 0.616 0.546
CoTexT 0.673 0.503 0.607 0.575
GraphCB 0.655 0.342 0.596 0.546
CodeBERT 0.651 0.294 0.571 0.548
VulBERTa 0.639 0.527 0.602 0.564
PLBart 0.633 0.524 0.598 0.572

0.657 0.434 0.598 0.559

f1
-s

co
re

UniXcoder 0.680 0.582 0.662 0.613
CoTexT 0.635 0.667 0.665 0.616
GraphCB 0.629 0.508 0.654 0.603
CodeBERT 0.596 0.455 0.629 0.613
VulBERTa 0.652 0.610 0.651 0.615
PLBart 0.618 0.583 0.633 0.575

0.635 0.567 0.649 0.606

re
ca

ll

UniXcoder 0.787 0.819 0.870 0.896
CoTexT 0.851 1.000 0.975 0.941
GraphCB 0.661 0.680 0.835 0.873
CodeBERT 0.572 0.589 0.770 0.883
VulBERTa 0.759 0.758 0.909 0.928
PLBart 0.658 0.680 0.741 0.738

0.715 0.754 0.850 0.876

pr
ec

is
io

n

UniXcoder 0.717 0.452 0.668 0.518
CoTexT 0.684 0.502 0.724 0.702
GraphCB 0.734 0.406 0.622 0.509
CodeBERT 0.847 0.371 0.656 0.516
VulBERTa 0.643 0.531 0.781 0.647
PLBart 0.675 0.535 0.663 0.547

0.717 0.466 0.686 0.573

FP
R

UniXcoder 0.142 0.816 0.107 0.172
CoTexT 0.211 0.823 0.060 0.041
GraphCB 0.079 0.840 0.091 0.177
CodeBERT 0.026 0.849 0.102 0.233
VulBERTa 0.194 0.312 0.034 0.061
PLBart 0.137 0.251 0.138 0.213

0.131 0.649 0.089 0.149

FN
R

UniXcoder 0.213 0.181 0.130 0.104
CoTexT 0.149 0.000 0.025 0.059
GraphCB 0.339 0.320 0.165 0.127
CodeBERT 0.428 0.411 0.230 0.117
VulBERTa 0.241 0.242 0.091 0.072
PLBart 0.342 0.320 0.259 0.262

0.285 0.246 0.150 0.124

techniques, transformations, and datasets, training data aug-
mentation only restores the performance to previous levels
when the testing dataset is augmented in a similar way than
the training dataset.

The performance gained by data augmentation only ap-
plies to the specific transformations used during the train-
ing of the model. ML4VD techniques continue to leverage
unrelated features when deciding whether a function con-
tains a security vulnerability.

RQ.3 Generalization to VulnPatchPairs
We investigate, whether (a) ML4VD techniques are able
to generalize from typical vulnerability detection training
datasets to a modified setting, in which they are required to
distinguish between vulnerabilities and their patches, and (b)

whether training to distinguish between vulnerabilities and
patches improves the performance on standard testing data.

Methodology. We used Algorithm 2 to investigate both
questions. As inputs to the algorithm, we selected the training
and testing subsets of the CodeXGLUE/Devign dataset as the
standard training and testing datasets Tr and Te, and the train-
ing and testing subsets of VulnPatchPairs as the vulnerability-
patch training and testing datasets V PTr and V PTe. We ran
the algorithm for all six ML4VD techniques separately.

Results. Table 3 shows the results of running Algorithm 2.
Specifically, it shows the performance of different mod-
els evaluated on the standard CodeXGLUE/Devign testing
dataset Te or the vulnerability-patch testing dataset V PTe. We
focus our analysis on the results measured in accuracy since
it is the preferred performance metric for balanced datasets
such as CodeXGLUE and VulnPatchPairs.

We observe, that the accuracy of all six ML4VD techniques
is highest (between 0.633 and 0.693) when trained and eval-
uated on standard training and testing data (second column,
out putA2.1). This is expected and consistent with the findings
in the literature [1,12–15,28]. When trained and evaluated on
VulnPatchPairs (fourth column, out putA2.3) the accuracy is
consistently lower than in the standard setting (between 0.558
and 0.617), but still significantly higher than the expected
accuracy of a random guesser11. However, when trained on
standard training data and evaluated on the VulnPatchPairs
testing dataset (third column, out putA2.2), the accuracy drops
dramatically (between 0.294 and 0.527). Even the best model
(VulBERTa) is only 0.027 points better than a random guesser.
On average, the accuracy is worse than random guessing. In
other words, all six ML4VD techniques that we evaluated are
unable to distinguish between vulnerabilities and their patches
when trained on a typical vulnerability detection dataset.

When trained on VulnPatchPairs and evaluated on standard
testing data (fifth column, out putA2.4), we get a similar picture.
The performance is significantly worse (between 0.546 and
0.575) compared to models trained on standard training data
(second column). However, the performance in this case is
notably better than random guessing.

(a) All six ML4VD techniques are not able to distinguish
between vulnerabilities and their patches when trained
on standard training data. On average, the accuracy is
lower than the expected accuracy of a random guesser. (b)
When trained to distinguish between vulnerabilities and
their patches, the ML4VD techniques are able to predict
standard testing data better than a random guesser, but
still significantly worse than when trained on standard
training data. In other words, the ML4VD techniques are
unable to generalize from their training data to a slightly
modified vulnerability detection setting.

11Since V PTe is perfectly class balanced (50% vulnerable, 50% clean), a
random guesser (coin flip) would be expected to achieve an accuracy of 0.5.



6 Threats to Validity

As for any empirical study, there are various threats to the
validity of our results and conclusions.

Internal validity. A common source of systematic error in
empirical studies on ML4VD techniques is hyperparameter se-
lection. Given a particular desired outcome, hyperparameters
can be optimized to move the result in the desired direction.
We tried to minimize this risk by taking the values for hyper-
parameters provided by the authors of the chosen ML4VD
techniques.

Another potential source of systematic error is the training-
/testing dataset split. Similar to hyperparameter selection,
dataset split can also be varied to change a result in a desired
direction. We tried to avoid this risk by taking the provided
splits of the CodeXGLUE benchmark [24] and by Hanif et
al. [26].

External validity. The degree to which our results gen-
eralize to other learning-based techniques, datasets, seman-
tic preserving transformations, and performance metrics, are
concerns of external validity. We tried to minimize the risk
attached to these concerns by evaluating a wide set of six state-
of-the-art techniques, two datasets, six performance metrics,
and 11 semantic preserving transformations. For RQ.3, we
only investigate the generalization between CodeXGLUE/De-
vign and VulnPatchPairs. To maximize generality, we tried
to keep both Algorithm 1 and Algorithm 2 as general as pos-
sible, so that they can easily be adapted to other techniques,
datasets, transformations, and metrics.

Simplicity of Transformations. Some of the semantic
preserving transformations that we used (see Table 1) could
be easily addressed by adding additional data pre-processing
(e.g. mapping identifiers to standardized names). However,
the specific transformations that we implemented are merely
a tool to demonstrate, that the performance gained by training
data augmentation only applies to the specific transformations
used for training and that the techniques that we investigated
overfit to the label-unrelated features introduced by these
transformations. For a new technique, they could be replaced
by a different set of transformations.

Class balance. Multiple works have shown that learning-
based vulnerability detection techniques trained on fairly bal-
anced datasets (such as CodeXGLUE) often fail to generalize
to real-world code repositories [3,9,16], which usually contain
a much smaller ratio of security vulnerabilities [20]. However,
measured by citations, class-balanced datasets are still by far
the most popular datasets to evaluate learning-based tech-
niques for vulnerability detection. To our current knowledge,
there is no vulnerability detection dataset with sufficient size
(more than 10k code snippets), high-quality labels (manually
provided by security experts), and a realistic distribution of
vulnerable to non-vulnerable code snippets that is widely used
in the research community (at least 50 citations). This is why
we decided to focus our experiments on the CodeXGLUE

and VulDeePecker datasets, even though they do not reflect a
realistic class distribution.

7 Discussion and Future Work

Overfitting of learned models is a well-known problem in
the machine learning research field [11, 40]. However, as
shown in our experiments, the traditional approach to evalu-
ating ML4VD techniques often fails to detect overfitting to
label-unrelated features in the training data. Our proposed
Algorithm 1 is a novel way to measure overfitting of ML4VD
techniques, that goes beyond the traditional approach, and can
even detect overfitting if there is no gap in the standard setup
at all. There are several common strategies to reduce over-
fitting in the standard evaluation setup, e.g. early-stopping,
dropout, or large pre-training datasets [40], which are already
integrated in the ML4VD techniques that we used in our ex-
periments. However, our experiments demonstrate that the
techniques are still severely overfitting to label-unrelated fea-
tures introduced by semantic preserving transformations dur-
ing training data augmentation. Finding ways to robustify
ML4VD techniques without or with minimal overfitting will
be a central challenge of the ML4VD research area.

Generalization. The results for RQ.3 (see Section 5) re-
veal, that state-of-the-art ML4VD techniques lack the ability
to generalize from their training data to a modified setting,
which requires to distinguish between vulnerabilities and their
patches. Since we can not assume that real-world software
systems would be similar to the training data of these tech-
niques, the ability to generalize to modified settings would be
required for these techniques to be safely integrated into real
software engineering environments.

The ability of a ML technique to generalize to testing data
that is differently distributed than the training data is also
called out-of-distribution generalization, and the lack of it for
learning-based techniques has been recently identified (e.g.
in the computer vision domain [17, 34]). Our proposed Algo-
rithm 2 can be seen as a tool to measure out-of-distribution
generalization for the domain of automatic vulnerability detec-
tion. It would be interesting to try approaches that have been
used to address out-of-distribution generalization in other do-
mains (e.g. causal representation learning [32]) on the task
of automatic vulnerability detection and measure the success
using our Algorithm 2.
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Figure 8: Naturalness of the semantic preserving transforma-
tions, that we used in our experiments. Lower cross entropy
means higher naturalness. All transformations except t1 (iden-
tifier renaming) lead to lower or equal cross entropy than no
transformation (None).
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A Naturalness

Since vulnerability detection techniques are ultimately de-
signed to be applied to real-world code, we also need to en-
sure that our transformations lead to code snippets that could
occur in the real world, or i.e., lead to natural code. We mea-
sured the naturalness of our transformations using the method
introduced by Hindle et al. [19] (implemented as a 2-gram
markov model) and present the results in Figure 8. Using
the method introduced by Hindle et al., we can compute the
cross entropy of a given code snippet, which represents how
surprising or unnatural the code snippet is relative to the code
snippets observed in the training dataset (for a detailed ex-
planation consult the work of Hindle et al. [19]). Using this
approach, we computed the cross entropy for all code snippets
in the CodeXGLUE testing dataset (dark gray boxplot), and
for transformed versions of the CodeXGLUE testing dataset
(light gray boxplots). The horizontal black line represents the
average cross entropy for all code snippets in the untrans-
formed CodeXGLUE testing dataset. We can observe, that for
all transformations except t1 (identifier renaming), the cross
entropy is similar or lower than for the untransformed dataset.
In other words, all transformations except t1 (identifier re-
naming) lead to code snippets that are similar in naturalness
compared to the real-world code of the CodeXGLUE testing
dataset.

B Impact of Individual Transformations

Figure 9 shows the impact on accuracy caused
by augmenting the testing data with a dif-
ferent transformation than the training data
(impact(tk) := 1

(N−1) ∑t j∈T accuracy[MLM[Tr j],Te] −
accuracy[LLM[Tr j],Tek]). The most impactful transforma-
tions for each LLM are marked by red stars. The results are
very similar to Figure 6, which is why we chose to omit
Figure 9 from the main paper and provide it as supplementary
material.

C Model Architecture Details

All selected ML4VD techniques happen to be token-based
large language models (LLMs), specialized for the task of
vulnerability detection. LLMs are based on the transformer
architecture, which is a neural network model architecture
for sequence-to-sequence tasks based on the attention mecha-
nism [37]. The attention mechanism is essentially a weighted
dot product that allows models to focus on specific parts of
the input data that are most relevant to the task at hand, im-
proving their ability to capture dependencies and context. In
a transformer model, the attention mechanism is combined
with parametrized feed-forward layers and repeated multiple
times, resulting in a complex multi-layer network. A detailed
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Figure 9: Impact on accuracy caused by augmenting the testing data with a different transformation than the training data
(impact(tk) := 1

(N−1) ∑t j∈T accuracy[MLM[Tr j],Te]−accuracy[MLM[Tr j],Tek]). The most impactful transformations for each
ML technique are marked by red stars.
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Figure 10: Additional metrics for RQ.2 using the CodeXGLUE/Devign dataset. The results support the conclusions that we
generated based on the main metric (accuracy).
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Figure 11: Additional metrics for RQ.2 using the VulDeePecker dataset. The results support the conclusions that we generated
based on the main metric (f1-score).

description of the transformer architecture can be found in the
original paper [37]. While the base architecture is the same for
all of the six techniques, there are some notable differences
in the pre-training setup, size, or specific parts of the model
training:

VulBERTa. VulBERTa leverages a custom tokenization
strategy, which is based on the byte pair encoding algorithm
[33] combined with a set of pre-defined code tokens (stan-
dard C/C++ keywords, punctuation, and library API calls)
to achieve better code encodings through maintaining the
syntactical structure of source code.

CoTexT. CoTexT uses multi-task learning for pre-training,
which means that the model is trained to perform multiple
code-related tasks (e.g. vulnerability detection, code summa-
rization, and code generation) in parallel. The model architec-
ture also contains significantly more trainable parameters than
the other techniques (222M parameters), because it contains
more more multi-head attention layers. CoTexT also uses a
different tokenizer than the other techniques.

UniXcoder. UniXcoder introduces a new pre-training
setup, which includes tokenization of the abstract syntax trees
(ASTs) of the code, and three different ’training modes’ that
leverage different self-attention masks.

PLBart. PLBart uses a special pre-training procedure
called ’denoising autoencoding’, which is a combination of
token masking, token deletion, and token infilling, that has to

be reversed by the model.
CodeBERT. CodeBERT uses a pre-training setup in which

natural language (e.g. documentation) and code are combined
to produce a more semantically stable representation of the
input.

GraphCodeBERT. GraphCodeBERT uses a pre-training
task, where in addition to natural language and the code, a
graph-based representation of the data flow of the function is
provided.

D Additional Metrics for RQ.2

Figure 10 and Figure 11 show additional results for RQ.2 us-
ing all of our available metrics (accuracy, f1-score, precision,
recall, FPR, and FNR). Generally, the results support the con-
clusions that we generated based on the respective preferred
metrics on the two datasets (accuracy for CodeXGLUE/De-
vign and f1-score for VulDeePecker). While the observed
patterns deviate for some of the metrics (e.g. precision, re-
call, FPR, or FNR), these deviations can be explained by the
relationships between them. For example, a model can have
a really high precision, but low recall. Similarly, a model
can have really low false-negative-rate, but the corresponding
false-positive-rate is really high. Accuracy and f1-score pro-
vide a better summary of the performance, which is why they
are used as the preferred metrics for the two datasets.
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