Human-In-The-Loop Automatic Program Repair
Charaka Geethal, Marcel B6hme, Van-Thuan Pham

Abstract—LEARNZ2FIX is a human-in-the-loop interactive program repair technique, which can be applied when no bug oracle—except
the user who is reporting the bug—is available. This approach incrementally learns the condition under which the bug is observed by
systematic negotiation with the user. In this process, LEARN2FIX generates alternative test inputs and sends some of those to the user
for obtaining their labels. A limited query budget is assigned to the user for this task. A query is a Yes/No question: “When executing
this alternative test input, the program under test produces the following output; is the bug observed?”. Using the labelled test inputs,
LEARNZ2FIX incrementally learns an automatic bug oracle to predict the user’s response. A classification algorithm in machine learning
is used for this task. Our key challenge is to maximise the oracle’s accuracy in predicting the tests that expose the bug given a
practical, small budget of queries. After learning the automatic oracle, an existing program repair tool attempts to repair the bug using
the alternative tests that the user has labelled. Our experiments demonstrate that LEARN2FIX trains a sufficiently accurate automatic
oracle with a reasonably low labelling effort (It. 20 queries), and the oracles represented by interpolation-based classifiers produce
more accurate predictions than those represented by approximation-based classifiers. Given the user-labelled test inputs, generated
using the interpolation-based approach, the GenProg and Angelix automatic program repair tools produce patches that pass a much

larger proportion of validation tests than the manually constructed test suites provided by the repair benchmark.

Index Terms—Automated Test Oracles, Semi-automatic Program Repair, Classification Algorithms, Active Machine Learning

1 INTRODUCTION

Finding and fixing software bugs is a significant concern in
software development. The growing complexity of software
systems has made this task challenging. Therefore, test-
driven Automated Program Repair (APR) [1][2] has become
an emerging research area. Recent advancements in APR
technologies have been able to repair large software systems
cost-effectively. However, the surveys of Gazzola et al. [1]
and Le Goues et al. [2] indicate that there are some chal-
lenges to be addressed in APR. Among these challenges,
finding a test suite from a single bug-revealing input for test-
driven APR to produce an accurate patch is an important
one.

Test-driven automated program repair techniques re-
quire a test suite (i.e. repair test suite): one or more failing
tests exposing the bug that should be fixed and passing tests
indicating the behaviour that should not be changed. Given
a repair test suite, APR changes the buggy program to pass
all the tests. Thus, the repair test suite has a significant
impact on the quality of the repair. Obtaining a repair test
suite that leads to high-quality repair is an interesting research
problem in APR. The works of Yu et al. [3], Yang et al. [4]
and Xiong et al. [5] have focused on this problem. All
these approaches assume that a repair test suite is given in
advance. Next, some test generation techniques are applied
to augment the repair test suite in a manner improving the
correctness of the patch. However, in most scenarios, the
user reports a bug only with a single input exposing it (i.e., a
single failing test case). These approaches cannot be directly

o C. Geethal (charaka.kapugamawasangamagedon@monash.edu) is with
Monash University, Australia

e M. Bohme is with the Max Planck Institute for Security and Privacy,
Germany and Monash University, Australia.

o V.-T. Pham is with The University of Melbourne, Australia.

Manuscript received August 14, 2023

used in such cases. Therefore, it is important to explore
methods to obtain high-quality repair test suites beginning
from a single input exposing a bug.

To address the problem mentioned above, we envision a
semi-automatic approach that generates a repair test suite
by systematically learning, refining, and confirming the
condition under which the bug is exposed from the hu-
man (user or developer). Our human-in-the-loop approach
strategically asks the user: “For the input i, the program
produces the output o; is the bug observed?”. Even a user
who has no experience with programming can answer this
kind of question if they know the expected behaviour of
the program. Based on the user’s answers, our approach
incrementally trains an automatic bug oracle that can predict
the user’s responses. The trained oracle can be used to ask
the user more strategically. The key challenge in this setup
is to maximise the oracle’s accuracy under a limited number
of queries to the user. The user-labelled test inputs are used
to develop the repair test suite for the bug.

In this paper, we introduce LEARN2FIX, a technique that
implements our approach for programs taking numeric
inputs. LEARN2FIX begins with one failing test case of the
buggy program. It uses mutational fuzzing [6] to generate
alternative test cases, active learning [7] with a classification
algorithm to train a classifier, and automatic program repair to
fix the bug, using the human-labelled tests as the repair test
suite. We expect that the test cases are sufficient to train a
classifier as the oracle and repair the bug.

LEARNZ2FIX uses mutational fuzzing to generate new test
cases in the “neighbourhood” of the given failing test. By
exploring the neighbourhood, we can identify the “bound-
aries” of the bug and generate more failing tests in the
“vicinity” of the given failing test. In mutational fuzzing,
a test case is modelled as a sequence of numbers (i.e., bytes
or integers), and new test inputs are generated by applying
mutation operators at random positions in the sequence.

mailto:charaka.kapugamawasangamagedon@monash.edu

The test cases generated by mutational fuzzing should
be human-labelled to be used in oracle learning. However,
there are two main issues associated with this setup. Firstly,
sending every generated input to the human would be
impractical. Secondly, bugs are rarely exposed; hence, pass-
ing test cases are generated more frequently than failing
test cases rendering the oracle learning subject to the class
imbalance problem [8]: Given insufficient evidence about the
bug (i.e. a relatively small number of failing test cases),
the trained oracle might classify failing test cases with
low accuracy. To address these issues, the most reasonable
strategy would be to present to the human test cases having
a higher probability of being labelled as failing.

As an automatic oracle is a binary classifier, a test case
is classified either as “passing” or “failing”. Thus, finding
test cases with a higher probability of being “failing” is
meaningless with respect to a single binary classifier whose
prediction ability is unknown. Therefore, inspired by the
approach of Holub et al. [9], LEARN2FIX creates an unbiased
committee of oracles by applying slight changes to the training
dataset that was used to train the original oracle. Given the
test case t, LEARN2FIX asks each member of the committee
to predict the label of ¢, and estimates the probability that
t is failing as the proportion of members that classify ¢
as “failing”. If this probability is greater than a threshold
0 = 0.5, then t is presented to the human. LEARN2FIX trains
the automatic oracle applying a classification algorithm to
the human-labelled test cases. Human labelling and oracle
training happen incrementally in this process. Through this
process, we expect to maximise human-labelling of failing
tests and train highly accurate test oracles under a limited
query budget.

In this paper, we extend our previous approach and
results presented at ICST’20 [10] to investigate (i) the impact
of choice of classifier to represent the automatic oracle,
(ii) the impact of the choice of APR approach (search-based
vs constrained-based), and (iii) the impact of mislabelling
on the oracle quality and on the labelling effort. We also
investigate (iv) the utility of LEARN2FIX in a pilot user study.

In terms of the choice of classifier, we distinguish
interpolation-based and approximation-based approaches,
where interpolation-based approaches must classify the
training samples according to the given labels while
approximation-based approaches are allowed to classify
those differently to prevent overfitting. Previously, we used
the Incremental SMT Constraint Learner (INCAL) [11] as the
classification algorithm of LEARN2FIX and conducted exper-
iments using only GenProg [12] as the automated program
repair tool. In this extension, we evaluated which cate-
gory of classifier representation from interpolation-based and
approximation-based is most suitable for semantic bug auto-
matic oracles. Interpolation and approximation are the two
main classifier representations used in supervised machine
learning. [13], [14].

In terms of APR approach, we evaluate a constraint-
based based approach Angelix [15] in addition to the search-
based, generate-and-validate approach GenProg [12] under
each classification algorithm. This is to analyse whether
LEARN2FIX auto-generated test suites can be applied to
constraint-based repair. We chose Angelix [15], as it is a scal-
able multi-line APR technique that follows core principles

of constraint-based repair.

Previously, we assumed that the user always provides
the correct label for a test input generated by LEARN2FIX.
However, in real situations, the user can incorrectly label test
cases in oracle learning. Hence, we also analyse the impact
of such noisy labels on oracle learning and automated
program repair. Moreover, we conducted a pilot user study
to study the applicability of LEARN2FIX in an actual human-
in-the-loop environment.

Our experimental results demonstrate that

I. LEARN2FIX can train a sufficiently accurate automatic
test oracle that can distinguish between passing and
failing test under a reasonably low labelling effort. For
the majority of subjects, the automatic oracles show
more than 89% accuracy. LEARN2FIX uses a maximum
of 20 queries to the user to train oracles with this much
accuracy. Also, the user would mostly label failing
tests, even though failing tests are rarely generated in
the learning process (i.e., the probability of labelling a
failing test is greater than the probability of generating
a failing test). Thus, LEARN2FIX significantly reduces
the effort of finding the failing tests of a bug.

II. LEARN2FIX shows better performance in terms of oracle
quality and human labelling effort with interpolating
binary classifiers than approximating binary classifiers.
Firstly, LEARN2FIX can train more accurate automatic
oracles with interpolation-based approaches than with
approximation-based approaches. Secondly, interpola-
tion based approaches reduce the effort of explor-
ing failing tests than approximation-based approaches.
LEARN2FIX can send most of generated failing tests to
the human with interpolation-based approaches. Com-
pared to our previous results [10], in which INCAL [11]
was used as the classification algorithm, we find signifi-
cant improvements in the oracle quality and probability
of labelling failing tests when the decision tree represen-
tation is used. We believe that decision trees are able to
more accurately capture the condition under which the
bug is exposed than the other representations.

III. Both generate-and-validate and constraint-based pro-
gram repair approaches produce more accurate patches
with LEARN2FIX auto-generated repair test suites than
with the manual repair test suites given by Code-
flaws. LEARN2FIX auto-generated test suites through
interpolation-based approaches show better perfor-
mance in both APR approaches. In most repairable
subjects, these test suites lead to producing patches that
pass all the repair validation tests.

IV. Incorrectly labelled tests negatively affect the quality
of the automatic oracles. Also, LEARN2FIX becomes
unable to send failing tests to the user more frequently.
Incorrectly labelled tests significantly affect the repair
quality of the auto-generated test suites. The reason is
that test-driven APR assumes that the test cases in the
repair test suite contains correctly labelled test cases.
In addition, the lack of failing tests in repair test suites
further reduces the repair quality. Our pilot user study
demonstrates that LEARN2FIX would work in a real
human-in-the-loop environment.

In summary, the main contributions are as follows.

1) Active Oracle Learning. We introduce an active learn-
ing approach to derive an automatic oracle for a seman-
tic bug by systematically interacting with the human. In
this approach, we address the class imbalance problem by
maximising human labelling of failing tests.

2) Semi-Automatic Repair. We introduce the first human-
in-the-loop program repair technique, which system-
atically learns the condition under which the bug is
exposed from the user before attempting to repair the
program.

3) Minimise Repair Overfitting. Repair over-fitting is a
key problem in automated program repair [2]. In this
work, we propose a systematic approach to generate
repair test suites that can mitigate repair overfitting.

4) Evaluation and ablation. We evaluate the quality of
the automatic oracles and the patches generated by
LEARN2FIX under approximation- and interpolation-
based classifiers as automatic oracle, under different
query budgets, and under APR tools implementing the
search-based and constrained-based approach.

5) Evaluation under mislabeling. Generally, in automatic
program repair as well as specifically in our human-in-
the-loop approach to APR, we assume that the gener-
ated test inputs are correctly labelled. We analyze what
happens if this assumption does not hold and how such
incorrectly labelled test cases affect the active oracle
learning process, oracle quality and semi-automatic
automated program repair.

Reproducibility. To facilitate the reproduciblilty, we make
our implementation of LEARN2FIX, our collection data, and
scripts available at: https://github.com/charakageethal/le
arn2fix-journal-ext/.

2 MOTIVATING EXAMPLE

We demonstrate the existing challenges of automatic pro-
gram repair using an example C program in Listing 1.
This example is taken from an experiment conducted by
Russ Williams [16]. In this experiment, 12 participants were
asked to write programs to the Triangle Classification Problem,
i.e., classifying triangles as equilateral, isosceles, scalene, and
invalid given the lengths of the sides.

1 |int f_steve_classify(int a,int b,int c) {
2 if(a<=0 || b<=0 || c<=0)

3 return 4; //Invalid

4 if (a<=c-b || b<=a-c || c<=b-a)
5 return 4; //Invalid

6 if (a==b==c) //BUG !

7 return 1; //Equilateral
8 if(a==b || b==c || c==a)

9 return 2; //Isosceles

10 return 3;

1 |}

Listing 1: Buggy triangle classification program

f_steve_classify function takes 3 inputs that
represent the lengths of the sides of a triangle and
returns an integer where the return value

e 1 means it is equilateral (all sides equal in
length)

e 2 means it is isosceles (exactly 2 equal sides)

o 3 means it is scalene (no equal sides)

e 4 means it is an invalid triangle

Functional bug. The C program in Listing 1 is Steve’s
implementation of triangle classification, which has a bug
in Line 6. The programmer uses the C statement a==b==c
(Line 6) instead of a==b && b==c to check whether the
triangle is equilateral. Thus, given the input t = (2,2,2),
Line 6 evaluates it as follows.

(2==2==2) — ((2==2)==2) — ((1)==2) =0

The reason is that C represents boolean values True as
1 and False as 0, and thus 2==2 — 1 and 1==2 — 0.
Therefore, Listing 1 is incorrect for all equilateral triangles,
except (1, 1,1), and for all isosceles triangles where c=1. For
test input ¢, Listing 1 returns 2 (isosceles), while we expect it
to return 1 (equilateral). This is a Functional bug or Semantic
bug. Due to the difference between the actual and expected
output, we identify ¢ as a failing test case.

To identify t as a failing test case, we need to know the
expected, correct output that Listing 1 should produce for
t. Similarly, it is essential to know the expected, correct
program behaviour of the Program Under Test (PUT) to detect
functional bugs. Because of this reason, only the human
(the developer or the user) can detect this category of bugs.
However, bug detection through human involvement has
many limitations. Therefore, developing techniques to learn
automatic test oracles for functional bugs has a significant
importance.

Automatic oracle. The program in Listing 1 fails for all
inputs satisfying the following linear arithmetic constraint.

[([a=b)A(b=c)A(a#£1)A(0o=2)]
Vila=bdA(c=1)A(a#1)A(0o=1)]

where 0 = f_steve_classify(a,b,c) is the pro-
gram output. We call this an automatic oracle for Steve’s
bug, as it identifies whether the given test case exposes
Steve’s bug.

Automatic Repair. Under a repair test suite containing
a sufficient number of passing and failing test cases, an
automated program repair tool [1] such as GenProg [12]
or Semfix [17] would first identify Line 6 as the faulty
statement. The reason is that most failing and least passing
test cases actually execute this line (Spectrum Based Fault
Localization [1]). Next, the repair tool would repair Line 6
such that all test cases are passing. However, we assume that
there exists only one failing test case. Although Line 6 was
detected as the faulty statement, the produce patch may be
plausible but incorrect [18]. As an example, substituting “if”
statement in Line 6 with i f (a==2) would turn the test case
(2,2,2) into a passing one. However, this patch is overfitting
and actually introduces a different bug.

Automatic oracle. If there was an automatic oracle, more
failing test cases could be explored to generate a high-
quality repair test suite. However, due to the necessity of

M

https://github.com/charakageethal/learn2fix-journal-ext/
https://github.com/charakageethal/learn2fix-journal-ext/

expected program behaviour, only the user reporting the
bug or the developers are the only oracles for functional
bugs. Considering these limitations, we present an active
learning approach to automatically derive automatic oracles
similar to the one in Equation 1 for functional bugs.

3 LEARN2FIX METHODOLOGY

Given a buggy program (P), we assume that there are one
failing test case (f) and the human (#) to answer whether a
test is passing or failing. A test case ¢ is of the form ¢t = (;, 0),
where 7 is a vector of input variable values, and o = P(Z)
is the output of P for i. Also, we assume that i has a fixed
length, and the human can answer at most L queries.

Algorithm 1 shows an overview of LEARN2FIX. The
algorithm maintains two sets of test cases: 1" for all human
labelled test cases and Tx for human labelled failing test
cases (Ix C T). Firstly, using the given failing input (f),
LEARNZ2FIX trains an automatic oracle (O) by a classification
algorithm. As trained with a single failing input, O predicts
everything as failing at this point.

More training data is required to improve the accuracy
of the automatic oracle (O). Hence, LEARN2FIX randomly
selects a failing test case (f l) from Tx and applies arithmetic
mutations to generate a new test case (¢) (Line 6 - Algo-
rithm 1). ¢ is presented to the human oracle (H) for labelling
if DECIDE2LABEL returns true (Line 7 - Algorithm 1). Next,
t is added to T, and the automatic oracle (O) is retrained
with T (Line 13). if ¢ is a failing test case, it is added to Tx
(Line 9). This process continues until the maximum number
of labelling queries (L) is reached, or a timeout occurs.

Algorithm 1 LEARN2FIX Active Oracle Learning

Input: Buggy program (P), Failing test case (f = (7, 0))
Input: Human oracle (#), Maximum labelling queries (L)

1: Failing test cases Ty < {f}

2: Labelled test cases T' + {f}

3: Automatic Oracle O < TRAIN_CLASSIFIER(T)

4: while (|T'| < L) and not timed out do

5. Failing test case f < RANDOM_SELECT(T)

6: Generate test case ¢ < MUTATE_FUZZ([)

7. if DECIDE2LABEL(t, O) = true then

8: Human label h = H(t)

9 if h = fail then

10: Failing test cases Tx <— Tx U {t}

11: end if

12: Labelled test cases T < T'U {t}

13: Automatic Oracle O < TRAIN_CLASSIFIER(T)
14: end if

15: end while

3.1 Generating More Failing Test Cases

A set of human labelled passing and failing test cases
are required to train a classifier as an automatic test
oracle. LEARN2FIX uses mutational fuzzing [6] for this
task. Because of numeric inputs, LEARN2FIX applies arith-
metic mutations [19] to f to generate new test cases.
RANDOM_SELECT(T") in Algorithm 1 (Line 5) first randomly
selects a seed failing test case f' € Tx. Then MUTATE_FUZZ

Algorithm 2 DECIDE2LABEL

Input: Unlabelled test case t7, Automatic Oracle O
Input: Committee Size S
1: Let T" be training test cases that O has been trained
: Predicted label Lo + O(t7)
. if Lo = Failing then
return true
else
votes = 0
fori < 1to S do
Generated test case t’, = MUTATE_FUZZ(t-)
t/, + Assume that t; label as Passing
ty < Assume that - label as Failing
Hypothetical Oracle O, < TRAIN_CLASSIFIER(T U
()
Hypothetical Oracle Ox < TRAIN_CLASSIFIER(T" U
(1))
13: if O/(t?) = Failing or Ox(t-) = Failing then
14: votes <— votes + 1
15: end if
16: end for

3 __ votes
17 0= 333

O XN DN

_ o=
= O

—
»

18: if § > 0.5 then
19: return true
20: else

21: return false
22: end if

23: end if

applies arithmetic mutation operations (e.g. add one, sub-
tract one, multiply by ten etc.) to f', which results in a
new test case t. t = (i’,0') where 7 is the input vector
and o/ = P(i’). This process generates new test cases in
the “vicinity” of f.

The ability of mutational fuzzing to generate more test
cases in the neighbourhood of a failing helps to collect more
evidence of the location and behaviour of the bug. This
approach has been proven to be successful in the coverage-
based, mutational fuzzer American Fuzzy Lop (AFL) [20],
which generates more crashing inputs by mutating a seed
crashing input. The neighbourhood test cases generated
given by mutations demonstrate how the program’s be-
haviour changes from buggy to correct and vice versa,
under small changes to the input. Also, mutational fuzzing
has a higher probability of generating failing test cases
compared to generational fuzzing [21].

Example: tx = ((2,2,2),2) is a failing test case of the
motivating example in Listing 1. For illustration, assume
that for each position a in i, we employ one of the three mu-
tation operators uniformly chosen at random: #'[a] = i[a],
i'[a) = ila] + 1, or 7/[a] = i[a] — 1. The following test cases
are generated when actually running the mutational fuzzer
on ty.

Three out of ten cases generated above expose Steve’s
error (if labelled by #), i.e., ((2,2,1),1), ((3,3,1),1), and
((3,3,3),2).

In contrast to mutational fuzzing, generational fuzzing
generates random inputs that adhere to the input format of
the system under test [21]. The inputs (a,b and c¢) in Listing 1
can take any integer values specified by C programming
language. Assume that we randomly generate three integers
in the range [—263, 263 — 1]. In this approach, the probability
of finding a test case representing an isosceles triangle with
¢ = 1 or an equilateral triangle with ¢ # 1 is extremely
low. Thus, mutational fuzzing has a higher probability of
generating failing test cases than generational fuzzing.

3.2 Training a Classifier as a Test Oracle

To compute the automatic oracle, LEARN2FIX trains a bi-
nary classifier based on a human labelled training data set.
The function TRAIN_CLASSIFIER uses the same classification
algorithm in both Algorithm 1 and Algorithm 2. We con-
sider the input (i) and the corresponding program output
values (0) of a test case as the features for the classification
algorithm. We consider the labels Passing and Failing as the
two classes to be predicted. The function TRAIN_CLASSIFIER
uses test cases labelled by the human (7) to train a binary
classifier as the automatic oracle (O). Given a test case, an
automatic oracle (O) predicts the label based on the input
(1) and corresponding buggy program output (0).

Usually, a classification algorithm requires at least one
data point from each class. However, human-labelled test
suites (training test suites) containing only failing tests
can be generated in oracle learning. If so, we assume that
TRAIN_CLASSIFIER returns a classifier that predicts every
test case as failing.

There are many binary classification algorithms in ma-
chine learning to work with numeric data. Based on the
classifier representation, classification algorithms can be di-
vided into two categories: interpolating [13] and approxima-
tion [14].

Interpolation-based classification algorithms explore a
model that exactly fits the training data. Some classification
algorithms under this category infer a set of constraints
fitting the given data points. AdaBoost and Decision Tree are
examples of such algorithms. The work of Braga et al. [22]
uses AdaBoost algorithm to develop test oracles. Also, the
survey paper of Briand et al. [23] suggests that decision trees
are effective in modelling the failure condition of a bug. Due
to these reasons, we evaluated the performance of AdaBoost
and Decision Tree classification algorithms with LEARN2FIX.
In addition, we selected Incremental SMT Constraint Learner
(INCAL) [11], which generates interpolation binary classi-
fiers as Satisfiability Modulo Theory (SMT) [24] formula.
Symbolic Execution [25] uses SMT constraints to group the
inputs that exercise a particular path. Thus, SMT formula
can be used to group the failing and passing inputs of a bug.
For this reason, we selected INCAL [11] as a classification
algorithm for our experiments.

Approximation-based classification algorithms approxi-
mate a model for the training data as minimizing the empir-
ical error. Thus, the model does not exactly fit the training
data. Artificial Neural Networks belong to this category. The

5

work of Jin et al. [26] uses two artificial neural network
setups to generate automatic test oracles. One setup has
two hidden layer with 20 and 5 neurons (MLP(20,5)). The
other setup has only one hidden layer with 20 neurons
(MLP(20)). We selected these neural network configurations
for our experiments. In addition, we chose Support Vector
Machine and Naive Bayes under approximation-based clas-
sification algorithms. Support Vector Machine is an algorithm
that can be used in high-dimensional or infinite-dimensional
space [27]. Naive Bayes is based on the Bayes theorem and
able to learn an accurate classifier with relatively less train-
ing data [27]. These two algorithms have been applied in
different domains; however, their applicability to test oracle
automation has not been explored.

The selected set of classification algorithms is as follows.

i. Incremental SMT Constraint Learner (INCAL)
i. Decision Tree (DT)
iii. AdaBoost (ADB)
iv. Support Vector Machine (SVM)
v. Naive Bayes (NB)
vi. Neural Networks / Multi-Layer perceptrons (MLP)

—-

We experimentally evaluate the performance of these
algorithms to know which category of classifier represen-
tation (interpolation or approximation) is most suitable for
LEARNZ2FIX. Moreover, we explore the best-performing clas-
sifier representation with LEARN2FIX.

3.3 Maximising the Probability of Labelling Failing Test
Cases

As the minority class is failing, LEARN2FIX improves the clas-
sifier’s ability to identify failing test cases, using the limited
human queries. For this purpose, LEARN2FIX maximises the
probability of labelling failing test cases in oracle learning.
This strategy helps to address the class imbalance problem.
To maximise the probability of labelling failing test cases,
LEARNZ2FIX selects test cases with higher failure likelihood.
Algorithm 2 (DECIDE2LABEL) describes this process. This
method has been influenced by the work of Holub et al. [9].
Following Holub’s method, DECIDE2LABEL estimates the
failure likelihood based on the current status of the auto-
matic oracle (O).

The key concept in Holub’s method is to select the Most
Informative Unlabelled Point (MIUP) for labelling based on
the current status of the classifier. Holub’s method con-
siders the data point with the Minimum Expected Entropy
(MEE) [9] as the MIUP. In finding the data point with MEE,
Holub’s method estimates the look-ahead probability of each
class based on a committee of classifiers with hypothesized
labels [9].

The DECIDE2LABEL-algorithm sends test cases predicted
as failing by the automatic oracle being trained (O) for
human labelling. If the given test case (¢7) is actually failing,
human labelling of - allows O to learn more about the
failure. If t; is actually a passing test case, it implies that
O has not been trained correctly. In this case, LEARN2FIX
rectifies O by human labelling of ¢» and using it in training.

If O predicts t7 as passing, the DECIDE2LABEL-algorithm
calculates the probability that O predicts ¢ as failing. In-
tuitively, there is an equal probability of classifying a test
case into either class. LEARN2FIX estimates the probability

that O predicts ¢» as failing one-step ahead. Following
Holub’s look-ahead probability estimation method [9], the
DECIDE2LABEL-algorithm constructs a committee of auto-
matic oracles (Line 7-16) for this task.

In creating the oracle committee, first, the DE-
CIDE2LABEL-algorithm generates a new test case (t) by
applying mutational fuzzing to t,. The new test input ¢}
is hypothetically labelled as passing (t,,) (Line 9). Then, a
new hypothetical oracle (O,) is trained with the training
set T'U {t/,} (Line 11, T The initial training set of O). The
same test case is hypothetically labelled as failing (ty)(Line
10). Another hypothetical oracle (Oy) is trained with the
training set TU{t}} (Line 12). The DECIDE2LABEL-algorithm
generates 2 hypothetical oracles for a newly generated test
case. Thus, in S fuzzing iterations, a committee containing
2 x S automatic oracles is generated. Each hypothetical
oracle created by adding a hypothetically labelled test case
to the initial training (1) set demonstrates a possible status
of the automatic oracle (O) one step ahead. As each newly
generated test case (f7) is hypothetically labelled as both
passing and failing contributing to two different hypothetical
oracles, the oracle committee overall is unbiased.

Finally, the unlabelled test case ¢; is presented to the
oracle committee, and the occurrences that ¢ is predicted
as failing, i.e., fail_votes, are counted. (Line 11-12). As there
are 2 x S oracles in the committee,Athe robability of
labelling t- as failing is estimated by 6 = %‘ges As the
oracles in the committee are some possible future states of
O, 0 is a look-ahead estimation of the probability of failing.
The DECIDE2LABEL-algorithm considers that test cases with
0 > 0.5 have higher failure likelihood and sends those for
human labelling (Line 18). According to the oracle commit-
tee, if t; has a higher failure probability, it implies that the
automatic oracle (O) has not been trained adequately to
identify the failing test cases. Thus, labelling such test cases
and using them in training rectify the automatic oracle (O).

3.4 Automatic Program Repair

Algorithm 1 returns a human-labelled test suite 7', contain-
ing both passing and failing tests, as an additional outcome
of the oracle learning. The labelled test suite 7" is used as a
repair test suite with a test-driven automated program repair
(APR) tool [12], [15] to repair the buggy program (P).

To generate a fix for the given buggy program, test-
driven APR techniques use a test suite containing passing
and failing test cases. The failing tests exercise the bug to
be fixed, while the passing tests indicate the behaviour that
should not be changed. This test suite is known as repair test
suite. Given the repair test suite, the APR technique changes
the buggy program to pass all the test cases. According
to Le Goues et al. [2], Heuristic repair and Constrained-based
repair are the two main categories of test-driven automated
program repair techniques. In common, these two categories
use the repair test suite for fault localization [28], i.e., finding
the code locations that are likely to be buggy.

Heuristic / generate-and-validate techniques iteratively
generate and validate repair candidates, modifying the
given buggy program. To generate repair candidates, these
techniques apply syntactical modifications to the given

6

buggy program. The abstract syntax tree (AST) representa-
tion of the buggy program is used in this process. To reduce
the search space and guide the syntactical modifications,
heuristic repair techniques use the information obtained in
the fault localization. After a repair candidate is generated,
the validation step calculates the number of tests in the
repair test suite passed by the candidate. The generate and
validate process continues until a repair candidate passing
all the tests in the repair test suite is found. GenProg [12] is
a popular heuristic repair technique that uses an extended
form of genetic programming [29] to generate repair candi-
dates.

Constraint-based repair techniques explore a repair con-
straint that the patched program should satisfy, rather
than modifying the program to generate patches [1], [2].
The patch (typically a code segment) to be generated is
considered as an unknown function. The fault localization
indicates where the patch should be placed. The properties
about the unknown function are extracted through symbolic
execution [25] or other methods; these properties constitute
the repair constraint. A patch for the bug is explored by
finding a solution to the repair constraint. This is usually
achieved by search or constraint solving. Angelix [15] is an
example of constraint-based repair technique.

4 EXPERIMENTAL SETUP

We empirically evaluated the different aspects of
LEARNZFIX. Firstly, we evaluated the quality of the automatic
oracles and the human effort involved in the learning process.
Secondly, we analysed how these two factors vary across
different classifier representations. Thirdly, we examined the
applicability of the test suites generated in oracle learning
(T'" - Algorithm 1) to automated program repair. Finally,
we analysed the impact of mislabelled tests on the oracle
quality, human effort and automated program repair. The
research questions in Section 4.1 were used to guide these
experimental tasks.

4.1 Research Questions

RQ.1. (Oracle Quality) How accurate are automatic oracles
trained by LEARN2FIX in classifying test cases in the
repair benchmark?

(Labelling Effort) What is the proportion of gener-
ated test cases that are sent to the human oracle for
labelling? Does the probability of sending failing test
cases indeed increase versus a random choice of test
cases?

(Oracle Representation) Which category of classi-
fier representation (interpolation or approximation)
works better with LEARN2FIX?

(Patch Quality) How does the quality of patches pro-
duced through LEARN2FIX’s automatically generated
test suites compare to the quality of patches pro-
duced through the manually constructed test suites
given by the benchmark? How many subjects can be
repaired, and what is the proportion of validation
test cases that the patched program passes? How
does the patch quality vary across different classifier
representations?

RQ.2.

RQ.3.

RQ..

RQ.5. (Impact of Noisy Labels) How do incorrectly (noisy)
labelled test cases affect the oracle quality, human
effort and patch quality?

4.2 Experimental Subjects

To evaluate LEARN2FIX and answer the research questions,
we selected 552 programs from Codeflaws [30] benchmark
according to the following criteria.

1) There should be a sufficiently large number of pro-
grams that are algorithmically complex.

2) There should be a diverse set of real world defects that
cause functional bugs, i.e., programs produce incorrect
or unexpected output for certain inputs. There should
be one functional bug for each subject.

3) For each subject, there should be a golden version, i.e.,
a program that produces the expected, correct out-
put for an input. For a given input we simulate the
Human oracle () by comparing the subject’s (buggy
program’s) output with its golden version’s output. If
both outputs are different, the human label of the test
case is considered as failing.

4) For each subject, there should be a manually constructed
and labelled repair test suite and repair validation test
suite. We use both test suites combined to evaluate
oracle quality. The repair test suite is used to generate a
patch with the automated program repair tool, and the
repair validation test suite is used to evaluate the patch.

5) For each subject, there should be at least one failing
test case in the repair test suite, i.e., a test input for
which the buggy program and its golden version pro-
duce different outputs. Otherwise, LEARN2FIX cannot
be started.

6) For each subject, there should be test inputs having a
constant number of numeric values. For each such test
input, the program should produce a numeric output.
Otherwise, the classification algorithms cannot be ap-
plied to learn the automatic oracle (O).

Codeflaws consists of 3902 buggy programs that belong
to 40 real-world defect classes. These programs have been
written in C programming language and extracted from
the Codeforces online database. For each buggy program,
there is a manually constructed and labelled repair test suite
and repair validation test suite. In this benchmark, the repair
validation test suites are named held-out test suites. Tan et al.,
the authors of Codeflaws, claim that ”to our best knowledge,
in automatic program repair evaluation, our benchmark has
the largest number of real defects obtained from the largest
number of subject programs to date” [30].

The selected subjects from Codeflaws for the experi-
ments belong to 34 defect classes. (Table 1). Each program
takes a fixed number of numeric inputs and returns a
numeric output. Figure 2 shows the distributions of the
manually constructed test cases, given by Codeflaws, of the
selected subjects. In most subjects, there are more passing
test cases than failing test cases (Figure 2b).

We ignored IntroClass and ManyBugs benchmarks [31],
as those do not satisfy our selection criteria. ManyBugs
contains programs taking complex and non-numeric inputs,
which violates our sixth criterion. The programs taking
numeric inputs in IntroClass have very simple functions

7

(e.g. return the smallest of three numbers), which does not
satisfy the first criterion.

4.3 Automated Program Repair Tools

We selected GenProg [12] and Angelix [15] as the automated
program repair (APR) tools in the experiments. Several
studies related to APR have considered these two tools
as the state-of-art APR tools (e.g. Le Goues et al. [2], Yi
et al. [32], Motwani [33] and Le et al. [34]). GenProg is
a Heuristic / Generate-and-validate repair tool, whereas An-
gelix is a Constraint-based repair tool [2]. These APR tools
have shown their capability to repair large programs cost-
effectively. Also, these both GenProg and Angelix are already
set up with Codeflaws benchmark.

4.4 Setup and Evaluation

A ~ Automated
J% I ”””” - Program -
,," Repair Tool

Failing Test Buggy Program Patch for the
] Semantic Bug
> v

Test suite T

labeled ¢t |

1

1
1
f Classification !
X Algorithm 1
1

MUTATE_FUzz

Mutational Fuzzer

Oracle Reinforcement Learning

Automatic | <E*>
Oracle

T A
Human Oracle
Supporting

Oracle
Committee

discard

Fig. 1: Workflow of LEARN2FIX

First, we select one from the algorithms listed in Sec-
tion 3.2 as the classification algorithm of LEARN2FIX. For
each program subject, we randomly select a failing test
case from the repair test suite as the input to LEARN2FIX.
After LEARN2FIX generates the automatic oracle, we apply
it to predict the labels of the test cases in the manually
constructed test suite (i.e., repair test suite + held-out test suite)
given by the benchmark.

A human-labelled test suite (T-Algorithm 1), including
both passing and failing test cases, is generated in this pro-
cess. The failing test cases in T' do not contain the expected,
correct outputs for the inputs. We replace the output of each
failing test case with its expected output to convert T to a
repair test suite. We call this repair test suite auto-generated
repair test suite. Then, we attempt to repair the program
with the auto-generated repair test suite and the manually
constructed repair test suite, given by the benchmark, sep-
arately using an APR technique in Section 4.3. Under each
test suite, if the APR technique generates a patch, we count
the number of tests in the held-out test suite (validation test
suite) passed on the patched program.

Figure 1 shows the detailed workflow of this process.
We repeat this process for each classification algorithm (Sec-
tion 3.2) and for each automated program repair technique
(Section 4.3). The results of the best-performing classification
algorithm in oracle learning are used to answer RQ.1. and

.. No. of
Defect Class | Description Example Subjects
Replace Constant — for(i=n+1;1i<=90;1i++)
DCCR with variable/constant + for (i=n+1;1i<=100;i++) 71
Tighten condition or - 1f (t%2==0)
OILN loosen condition + if (£%2==0 && t=2) 64
. — if (sum>n)
ORRN Replace relational operator ¢ if (sums=n) 59
HIMS Insert multiple non-branch + frepoen ("input.txt","r",stdin); 50
statements + freopen ("input.txt","w", stdout) ;
. - scanf ("%s",h);
HOTH Other higher order + for (i=0;i<71;1i++) 48
defect classes ! X
+ scanf ("%c",&h[1i]);
Insert / Delete arithmetic - max += days$2
OAIS operator + max += (days%7)%2 47
STYP Replace variable declaration | - int a; 37
type + long a;
Replace a read variable — for (i=0;i<1l;i++)
DRVA with a variable/constant + for (i=0;i<m; i++) 28
- scanf ("%d", &i);
SMOV Move statement scanf ("$s", &a) ; 19
+ scanf ("%d", &i);
Replace a write variable - b=0;
DRWV with a variable + a=0; 17

TABLE 1: Top 10 defect classes (out of 34) of the 552 Codeflaws subjects selected for the experiments

RQ.2.. To answer RQ.3., we use the data collected under all
the classification algorithms. The data collected under the
program repair experiments are used to answer RQ.4..

To answer RQ.5., we consider 5%, 10% and 20% of the
allocated human queries (i.e., maximum labelling effort-L)
are incorrectly answered. The incorrectly labelled test cases
are introduced at random positions in active oracle learning.
Under each noise level above, we repeat the experiments
related to RQ.1., RQ.2. and RQ.A4..

For our experiments, we fixed the following values.

o Timeouts. In each subject, we allocated 10 minutes
per each for oracle learning (Algorithm 1) and auto-
generating a patch.

o Committee Size. We set the size of the oracle committee
to 20 members (i.e., S = 10 in Algorithm 2).

o Maximum Labelling Effort. We set the maximum labelling
effort to the human oracle (O) to 20. (ie., L = 20 in
Algorithm 1)

Related to RQ.1., comparing the predicted labels by
the automatic oracle (O) with the actual labels of the test
cases, we calculated Accuracy (Equation 2) Recall - Failing
(Equation 3), Recall - Passing (Equation 3), Precision-Failing
(Equation 5) and Precision-Passing (Equation 6). In some
experiments, we considered F-scores (Equation 7) of passing
and failing tests. It can indicate the variations of both
precision and recall.

Number of correctly predicted tests

A = 2
Y= Number of test inputs in the test suite @)
Number of correctly predicted
iling test
Recall-Failing = failing tests @3)

Number of failing inputs
in the test suite

Number of correctly predicted

passing tests

Recall-Passing = 4)

Number of passing tests
in the test suite

Number of correctly predicted
failing tests

©)

Precision-Failing =
g Total number of tests

predicted as failing

Number of correctly predicted
passing tests

(6)

Precision-Passing =
g Total number of tests

predicted as passing

2 X Precision x Recall
F-Score = — @)
Precision + Recall
We have identified that the labelled test suites of most
selected subjects from Codeflaws have more passing test
cases and fewer failing test cases. Thus, the Class Imbalance
Problem [8] impacts the evaluation. For this reason, Accuracy
is not a good metric of oracle quality. For example, an oracle
predicting everything as passing would be 90% accurate for
a test suite containing 90% of passing test cases. Therefore,
we report Accuracy, Recall-Failing, Recall-Passing, Precision-
Failing and Precision-Passing. Also, these metrics help to
evaluate the effectiveness of the techniques that LEARN2FIX
uses to deal with the class imbalance problem (Section 3.3 &
Section 3.3).
To address RQ.2., we measured the following.

i. The proportion of generated tests that are labelled
(Equation 8).

ii. The proportion of failing tests that are labelled from the
generated(Equation 9)

Heldout Test Suite

Fail. Rate

100% o

* @ man

75% A

50%

Statement Coverage

25% -

I

Manually Constructed Tests
1000
£ 100% A
)]
]
] (] b
@ 2 750
o100 =
¢ i
s | == -
2 c
g 10 . g
z = 25%-
H o
1 Q.
[e]
. S
o 0%+
1 .

Total Tests Passing Tests Failing Tests

(a) Distribution of tests

(b) Percentage of failing tests

0% A

%Failing

Buv::;gy Gollden

Version

(c) Statement coverage of held-out test
suites

Fig. 2: Manually constructed test suites of Codeflaws. On the left (a): Distribution of passing and failing tests and the number
of total tests. In the middle (b): Failing tests to passing tests ratio. On the right (c): Statement coverage of held-out test suites

in buggy and golden versions of the selected subjects

iii. The probability to generate a failing test (Equation 10)
iv. The probability to label a failing test (Equation 11).

Proportion of generated Number of tests labelled
tests labelled

~ Number of tests generated

Proportion of failing — Number of failing tests labelled
tests labelled

 Number of failing tests generated

Probability to generate Number of failing tests generated

a failing test case Total number of tests generated

(10)

Probability to label Number of labelled failing tests

11
Total number of labelled tests (1)

a failing test case

One objective of LEARN2FIX is to reduce the number of
labelling queries to the human while maximising the prob-
ability of human labelling a failing test case. Equation 10
indicates the probability of generating a failing test case in
oracle learning. This is also the probability that the human
would find a failing test only by mutational fuzzing and
without LEARN2FIX. We compare this with the probability of
labelling a failing test case (Equation 11). If the probability of
labelling a failing test case is greater than the probability of
generating a failing test case, the human needs less effort
than usual to explore failing test cases. Equation 9 assesses
the capability of LEARN2FIX to select failing test cases given
by mutational fuzzing. By comparing this with the proportion
of generated tests that are labelled, we can identify how effec-
tively LEARN2FIX utilizes the given query budget to explore
failing tests.

For exploring answer to RQ.3., we computed the same
metrics used in RQ.1. and RQ.2. for each classification
algorithm.

Regarding RQ.4., we measured the following for the
manual test suite given by the benchmark and the auto-
generated test suite by LEARN2FIX.

i. Repairability: The proportion of the subject that can be
repaired by the APR tool (Equation 12)

ii. Validation Score: The proportion of validation test cases
that the patched program passes (Equation 13).

Number of subjects that were
successfully repaired

Repairability = (12)

Total number of subjects
Number of repair validation tests passed

the patched
Validation Score = on the patched programn

Total number of tests in the

repair validation test suite

(13)
In addition to these metrics, we computed the statement
coverage and composition (i.e., total number of tests, pass-
ing and failing tests) of the manual and auto-generated test
suites to support our analysis. In each APR technique, we
examined the defect categories repaired by using the man-
ual and auto-generated test suites with all the classification
algorithms.

We measured the repairability (Equation 12), as APR tools
fail to produce repairs with some repair test suites within
an allocated time. If the APR tool generates a patch, the
validation score (Equation 13) can be calculated. Regarding
a program subject, we used the held-out test suite as the
repair validation test suite. According to Tan et al. [30],
the held-out test suites in Codeflaws are large enough for
evaluating patch correctness. In addition, we observed that
the heldout-test suite achieved 100% statement coverage [35]
in the golden versions of most subjects (Figure 2c-Golden
box). It implies that the held-out test suite can exercise
all the expected correct behaviours of a subject. Therefore,
the manually created held-out test suites are suitable for
evaluating patch correctness in APR. If a patch can achieve
100% validation score, it implies that the patch is accurate
and non-overfitting.

Similar to our study, Motwani et al. [36] and Brun et
al. [37] use separate repair validation test suites to evaluate

the correctness of a patch. These works also use the metrics
repairability and validation score. Motwani’s study claims
that using a separate repair validation test suite is more
objective than manually evaluating patch correctness and
reproducible in a fully-automated manner.

To mitigate the impact of randomness and to gain sta-
tistical power for the experimental results, we repeat each
experiment 30 times.

5 EXPERIMENTAL RESULTS
5.1 RQ.1.: Oracle Quality

We investigate the quality of the automatic oracle under the
best-performing oracle representation (i.e., Decision Tree).!
Figure 3 shows the results for the automatic oracles trained
by LEARN2FIX as average over 30 runs distributed over the
different subjects.

~ ~

Under a maximum of 20 queries to the user, for the
majority of subjects, the automatic oracles trained by
LEARN2FIX are able to accurately predict the labels
of more than 89% of the manually labelled tests
given by the benchmark (“Overall”; Fig. 3). Even
though LEARN2FIX has seen only one failing test, the
automatic oracle correctly identifies more than 80%
of the failing tests in most subjects (“Failing-Recall”).
In addition, the precision and recall of passing test
cases are more than 90% for the median subject
(“Failing-Precision”).

Figure 3 shows the results for a fixed budget of 20 queries
to the user. The median values of all the metrics are above
75%. Thus, LEARNZ2FIX is able to train automatic oracles that
accurately distinguish the passing and failing tests of the
majority of subjects, using just one failing test. The higher
median values in failing-recall and failing-precision suggest
that LEARN2FIX is able to successfully deal with the class
imbalance problem. The results suggest that LEARN2FIX can
train highly accurate test oracles getting the maximum use
of the available human queries. The number of queries (20)
is reasonable to the human, as these are yes/no questions.

Figure 4 shows how oracle quality is impacted if we
change the allocated query budget (i.e., the maximum num-
ber of labelling queries) to the human.

As the maximum number of labelling queries in-
creases, the oracle quality is improved as well.

When the maximum number of queries to the human
increases, LEARN2FIX can obtain more labelled test cases
for oracle learning. Consequently, LEARN2FIX can learn the
failure condition of a bug more accurately. Hence, the over-
all accuracy increases (Figure 4-Overall). Also, the ability to
correctly distinguish between passing and failing test cases
is improved. The increases in F-score of passing and failing
test cases imply this fact. When there are fewer labelled

1. We report results for other classifier representations in Section 5.3.
According to the results, decision tree is one of the best-performing
classifier representations with LEARN2FIX.

10

test cases, the decision tree algorithm over-approximates
the failure condition. As an example, when the maximum
labelling effort is 5, the median of failing-recall is above 75%,
while the median of failing-precision is below 50%.

5.2 RQ.2.: Labelling Effort

We investigate the labelling effort under the best-performing
oracle representation.! The boxplots in Figure 5a show the
proportion of generated (left) and failing (right) tests that
are labelled. In addition, Figure 5b shows the distribution
of the probability to generate (left) and label (right) label a
failing test.

Despite choosing only a small proportion of gener-
ated test inputs for labelling, LEARN2FIX is effective
at sending mostly failing test inputs for labelling and
successfully tackles the class imbalance problem.

Under a maximum of 20 queries to the user, Figure 5a
shows that for the median subject, despite sending less than
25% of generated test inputs for labelling, LEARN2FIX asks
for the label of more than 75% of generated failing test
inputs. In contrast, a random selection of generated inputs
would send substantially less failing inputs for labelling,
indicating a substantial reduction in labelling effort by
LEARN2FIX. Figure 5b shows that for the median subject
despite a probability of less than 25% of generating failing
test inputs, the probability that a test input that is sent for
labelling is failing is more than 60%. As failing test inputs
are in the minority class during generation, this means
that LEARN2FIX is effective at tackling the class imbalance
problem during training.

Figure 6 shows how labelling effort is impacted if we
change the allocated query budget (i.e., the maximum num-
ber of labelling queries) to the human.

As the query budget increases, the proportion of
generated tests sent for labelling decreases (Fig-
ure 6a-left). Nevertheless, the median percentage of
failing tests sent for labelling is above 70% across all
query budgets (Figure 6a-right). The probability of
generating a failing test case does not significantly
change (almost the same) across query budgets (Fig-
ure 6b-left). Nonetheless, the probability of labelling
a failing test case increases as more queries are sent
for labelling (Figure 6b-right).

We previously observed that the accuracy of the auto-
matic oracle increases as more labelling queries are sent
(Figure 4). As the accuracy of the automatic oracle increases,
the DECIDE2LABEL algorithm can select more failing test
cases for labelling, thus increasing the percentage of labelled
failing test cases (Figure 6a-right). Due to the same reason,
most of generated passing test cases (the majority class) are
not sent for labelling. This is the reason for the decreases in
the percentage of generated tests sent for human labelling
(Figure 6a-left). All these facts lead to increasing the prob-
ability of labelling a failing test case (Figure 6b-right). The
increasing probability of labelling a failing test case implies

100% + 1
2 75%-
@
=
>
[&]
Q
<
c 50%-
Re] H {
S :
° b .
) .
= L3
o 25%- .
.
3
8 !
b .
0% - ! .
T T T T T
Overall Failing—Recall Failing—Precision Passing-Recall Passing—Precision

Fig. 3: LEARN2FIX Oracle quality under the Decision Tree algorithm

11

Overall Failing—Recall Failing—Precision

F—Score—Failing

Passing—Recall

Passing—Precision F—Score—Passing

Prediction Accuracy

100% -|
75% -
50% =
l $
o« T
25% -+
t } L]
.
0% -

i

#1

i

i

T T T T T T T T T T T T T T T T T T
5 10 20 30 40 50 5 10 20 30 40 50 5 10 20 30 40 50

é 1l0 2l0 3:04l0 5lO é 10 20 30 40 50
Max Labelling—Effort

T T T T T T T T
5 10 20 30 40 50 5 10 20 30 40 50

Fig. 4: Variations of oracle quality under the maximum number of queries 5,10,20,30,40 and 50

%Generated tests that are labeled

%Failing tests that are labeled

100% -

75% -

50% -

Proportion

25% -

0% -|

DT

(a) Proportion of generated (left) / failing tests that are labelled (right)

DT

Prob. to generate a failing test

Prob. to label a failing test

100%

75%

50%

Probability

25%

0%

DT

DT

(b) Probability to generate (left) / label a failing test (right)

Fig. 5: LEARN2FIX Labelling effort under the Decision Tree algorithm

%Generated tests that are labeled %Failing tests that are labeled

100%

75% 4

50% -

Proportion

25% 4

0%+

5 10 20 30 40 50 5 10 20 30 40 50

Max Labelling—Effort

(a) Proportion of generated (left) / failing tests that are labelled (right)

12

Prob. to generate a failing test Prob. to label a failing test

100% -

75%

50%

Probability

25% -

0%- [|
5 10 20 30 40 50 5 10 20 30 40 50

Max Labelling—Effort

(b) Probability to generate (left) / label a failing test (right)

Fig. 6: Variations of labelling effort under the maximum number of queries 5,10,20,30,40 and 50

that the human receives more failing tests as the number of
queries increases in LEARN2FIX.

5.3 RQ.3. Oracle Representation

Table 2 and Table 3 show the oracle quality and labelling
effort of LEARN2FIX under the classification algorithms in
Section 3.2, respectively. Not all classifier representations are
capable of accurately modelling the failure condition of a
bug. Thus, it is necessary to empirically evaluate the most
appropriate representation for this task.

LEARNZ2FIX trains better automatic oracles through
interpolation-based classification algorithms than
approximation-based classification algorithms. The
median recall-failing is above 75% in these algo-
rithms (Table 2). Decision Tree and AdaBoost algo-
rithms generate the best automatic oracles with
LEARNZ2FIX.

\. J

Interpolation-based approaches work better with
LEARN2FIX than approximation-based approaches. Both De-
cision Tree and AdaBoost are better than INCAL in terms
of oracle quality. The median precision-failing of INCAL is
significantly lower (the difference is greater than 10%) than
that of both algorithms (Table 2). According to the two-sided
Wilcoxon test, the differences in the metrics between Decision
Tree and AdaBoost are statistically insignificant (p > 0.05).

In approximation-based approaches, only Naive Bayes
produces automatic oracles that identify test failures with
significant accuracy (> 60%) in most subjects. Even though
SVM, MLP(20) and MLP(20,5) show more than 70% overall
median accuracy, their median recall-failing is below 50%
(Table 2).

Under all the classification algorithms, LEARN2FIX
sends less than half (< 50%) of the generated
tests for labelling in most subjects (Table 3). The
interpolation-based approaches Decision Tree and Ad-
aBoost show around 60% median probability to label
a failing test, which is approximately three times
greater than finding a failing test by random la-
belling.

In the interpolation-based classification algorithms, more
than 70% of the generated failing tests are sent for labelling
in most subjects (Table 3). LEARN2FIX shows the highest
median probability values for labelling a failing test case.
According to the two-sided Wilcoxon test, the differences
between AdaBoost and Decision Tree in the probability of
labelling a failing test are insignificant (p > 0.05).

Even though the approximation-based approaches send
only less than half of the generated tests, not the majority
of the generated failing tests is sent for labelling. In SVM
and Nuive Bayes, at least 10% of the generated failing tests is
not sent for labelling in most subjects. This implies that the
DECIDE2LABEL-algorithm works better with interpolation-
based approaches than with approximation-based ones. The
DECIDE2LABEL-algorithm achieves its intended objective,
i.e.,, maximising the probability of sending failing tests, with
interpolation-based approaches well.

When considering both labelling effort and oracle qual-
ity, the interpolation-based classification algorithms more
effectively use the available query budget to improve the
oracle quality than the approximation-based approaches.
We believe that interpolation-based classification algorithms
can incrementally model the condition under which a se-
mantic bug is exposed more accurately than approximation-
based ones. Hence, the DECIDE2LABEL algorithm is able to
send more of the generated failing tests and increase the
probability of labelling a failing test in oracle learning. This
is helpful in dealing with the class imbalance problem. All
these facts lead to high-quality automatic test oracles with
the interpolation-based classification.

Among the approximation-based approaches, the Naive
Bayes algorithm differently behaves from the other ap-
proaches. It uses fewer failing tests than most classifica-
tion algorithms (Table 3); however, the recall-failing and
precision-failing of the automatic test oracles are above 60%
for the median subject. This implies that Naive Bayes can
learn automatic test oracles at considerable accuracy using
fewer training data. However, the DECIDE2LABEL algorithm
fails to improve the test oracles obtaining more failing tests
in Naive Bayes.

5.4 RAQ.4. Patch Quality

We investigate the quality of the patches generated using the
test inputs that LEARN2FIX sent for labelling. The statement
coverage of the manual and auto-generated test suites is

Overall Recall Precision Recall Precision
C}zfsiﬁcition Accuracy (%) Failing (%) Failing (%) Passing (%) Passing (%)
orithm
8 Mean | Median | Mean | Median | Mean ‘ Median | Mean | Median | Mean | Median
Interpolation-based
INCAL 80.74 | 81.68 71.68 76.65 59.30 | 58.56 79.29 84.93 82.80 92.09
Decision Tree | 85.01 88.95 72.44 79.69 71.07 | 75.75 84.93 93.53 8457 | 94.21
AdaBoost 85.38 89.34 70.64 77.05 74.02 79.01 85.87 | 95.31 85.25 94.10
Approximation-based
SVM 77.70 82.46 39.51 31.25 58.79 58.24 77.51 97.27 80.41 87.27
Naive Bayes 79.25 83.04 63.82 65.63 66.12 68 80.34 92.12 81.46 89.39
MLP (20) 72.43 72.35 48.15 47.77 39.67 | 33.33 70.67 | 73.68 79.09 86.10
MLP (20,5) 72.03 72.07 47.68 46.88 39.08 | 31.96 70.81 74.53 77.56 85.43

TABLE 2: Mean and median values of the oracle quality of LEARN2FIX under different classification algorithms

Percentage of Percentage of Probability to Probability to
Classification generated tests Failing tests generate label
Algorithm that are labelled that are labelled a failing test (%) | a failing test (%)
Mean | Median | Mean | Median | Mean | Median | Mean | Median
Interpolation-based
INCAL 36.92 | 31.09 64.13 | 70.26 30.20 | 21.55 48.08 | 47.92
Decision Tree | 31.45 | 22.78 64.77 | 76.71 30.65 | 22.70 59.68 62.11
AdaBoost 29.64 | 181 6242 | 71.70 30.60 | 22.97 59.13 | 61.63
Approximation-based
SVM 17.33 | 0.38 2226 | 1.19 30.26 | 21.63 45.63 | 50.15
Naive Bayes 17.53 | 151 2880 | 7.6 29.58 | 20.72 53.49 | 54.40
MLP(20) 3390 | 2371 4521 | 42.08 30.36 | 21.72 39.97 | 34.53
MLP(20,5) 28.89 | 10.70 3895 | 22.37 30.36 | 21.14 40.07 | 34.84

13

TABLE 3: Mean and median values of the labelling effort of LEARN2FIX under different classification algorithm

computed as well. Related to each APR technique, we count
the number of repairable subjects in terms of defect cate-
gories under all the repair test suites. Table 4 summarises
the results of program repair experiments under all the clas-
sification algorithms. Figure 7 shows the statement coverage
of the manual and LEARN2FIX auto-generated repair test
suites. Figure 8 shows the composition of the repair test
suites.

For both test-driven APR approaches, the patches
produced using auto-generated test suites outper-
form the patches produced using the manual test
suites in terms of the validation score of the gener-
ated patches. For both APR approaches, all (100%)
test cases in the held-out test suite pass on the
majority of subjects when interpolation-based classi-
fication algorithms are used. Both types of test suites
can repair less than 30% of the selected subjects.
While with manual test suites the APR tools can
repair more subjects than with the auto-generated
test suites, the quality of the generated patches is
better for auto-generated test suites.

. .

Number of failing tests. Each manual repair test suite
given by Codeflaws contains a single failing input exposing
the bug (Figure 8). This kind of repair test suite could
lead to producing an overfitting or incorrect patches [18].
In contrast, the auto-generated repair test suite given by
LEARNZ2FIX contains more than one failing test in most sub-
jects, as DECIDE2LABEL algorithm prioritizes the labelling
of failing tests. Thus, it can exercise the faulty behaviours of
the bug more precisely than the manual repair test suite. For

this reason, the APR tools can produce more accurate and
non-overfitting patches with the auto-generated repair test
suites under most classification algorithms. Interpolation-
based oracle. The auto-generated repair test suites with
the interpolation-based classification algorithms show 100%
validation score for the median subject (Table 4). It implies
that an auto-generated repair test suite under these algo-
rithms contains enough failing tests to indicate the bug and
enough passing tests to indicate the behaviour that should
not be changed. In RQ.3., we observed that interpolation-
based classification algorithms can train highly accurate
automatic oracles with LEARN2FIX (Table 2). Therefore, most
generated failing tests and the passing tests in the vicinity
of those are sent for labelling. As a result, repair test suites
leading to high-quality program repair are generated.

Approximation-based oracle. The auto-generated repair test
suites with SVM do not outperform the manual test suites
in terms of the validation score in any APR tool. LEARN2FIX
sends very few generated tests for labelling with SVM
(Table 3). Figure 8 shows that the number of passing tests
in these repair test suites is lower than the other auto-
generated repair test suites and manual test suites (SVM
box). On average, there are four (4) passing tests in an SVM
repair test suite, which is the lowest compared to the others.
Consequently, such a repair test suite cannot completely
exercise the behaviour that should not be changed. The
reductions in statement coverage (Figure 7) in these repair
test suites also imply this fact. LEARN2FIX generates smaller
repair test suites with lower statement coverage with Naive
Bayes as well. Nevertheless, these repair test suites perform
better than the repair test suites generated with SVM.

Search-based versus constraint-based APR. The results in

GenProg Angelix
Test Suite Repairability (%) | Validation Score(%) | Repairability (%) | Validation Score(%)
Mean | Median | Mean Median Mean | Median | Mean Median
Auto-generated Interpolation-based
INCAL 17.14 | 17.15 90.35 | 100 15.66 | 15.57 90.65 | 100
Decision Tree 1648 | 16.48 90.45 | 100 1649 | 16.45 90.66 | 100
AdaBoost 1647 | 16.54 89.71 | 100 16.19 | 16.29 90.44 | 100
Auto-generated Approximation-based
SVM 2415 | 2413 81.77 | 94.52 2271 | 22.70 82.64 | 91.67
Naive Bayes 21.06 | 21.08 84.64 | 973 20.97 | 20.89 84.21 | 9444
MLP (20) 18.64 | 18.51 86.75 | 100 18.49 | 18.50 88.51 | 97.14
MLP (20,5) 1891 | 18.94 86.63 | 100 18.41 | 18.60 88.13 | 95.83
Manual
Manual [2352 [24.50 [8514 [97.56 [2553 [25.50 [8394 [91.67

TABLE 4: Mean and median values of the repairability and validation score under GenProg and Angelix

I

100%

Statement Coverage

0%

75%

50% -

25%

—
[]
3
.
.
.

$:]
H
.] M H : . i
H ‘ .] . H .
. s . . e s
o
[} s
H 5 o . : . 1
J s
o . o o
Marl1ual oT ADB \N(I:AL S\I/M NB MLPI(ZO) MLP(IZO,S)
Test suite

14

Fig. 7: Statement coverage of Codeflaws manual repair test suites and LEARN2FIX auto-generated repair test suites under
different classification algorithms

Number of tests

Manual DT ADB INCAL SVM NB MLP(20) MLP(20,5)
251 ¢ e
. .
L] .
. L]
L] L] P
B T | T F
.
15+ ! ’ |
10+ < ‘ i '
s [
' : B I
° ; H T
ot— 1 I e e e e e N A R
g ¢ g g & g et g g g g & g &k g e&E gog &
Fig. 8: Composition of the repair test suites (Manual and Auto-generated)

Manual or ADB INCAL SWM NB MLP(20) MLP(205)

Q ory
0O s
HEXP =
HDMS
HDIM
HBRN =

DRVA =
DCCR =
DCCA =

Number of Subjects
(a) GenProg

Fig. 9:
suites

Table 4 indicate that GenProg works more successfully with
the auto-generated repair test suites than Angelix. Except
SVM and Naive Bayes, the classification algorithms show
100% validation score for the median subject in GenProg.
Only the interpolation-based approaches achieve this much
accuracy in Angelix. Using the manual repair test suites,
GenProg produces more accurate patches than Angelix.

Code coverage of auto-generated test suites. According to
Figure 7, the auto-generated test suites cover all (100%)
code in the median subject. This is same in the manual
test suites as well. These results imply that LEARN2FIX's
semi-automatic approach can generate a repair test suite
that completely covers the code in most programs. In a
few subjects, we observed that the manual repair test suite
shows higher statement coverage than the auto-generated
test suites. The reason is that the DECIDE2LABEL algorithm
sends failing tests for labelling with priority. Consequently,
passing test cases that cover certain code segments might
not be sent for labelling. Another observation in Figure 7
is that the auto-generated repair test suites with SVM and
Naive Bayes report lower code coverage than the other auto-
generated test suites (SVM and NB boxes). As explained
before, we believe that the incapability of these algorithms
to send more test inputs for labelling in oracle learning is
the reason for this outcome. Even though the manual repair
test suites contain only one failing test, those have been
created to achieve 100% statement coverage. However, the
single failing test can be insufficient to exercise all the faulty
behaviours of the bug, which leads the APR tools to produce
lower-quality patches.

Defect categories. Figure 9 shows the distributions of
repairable subjects by the defect categories (Table 1) in
both APR tools. Most repairable subjects by both manual
and auto-generated test repair test suites belong to ORRN,
i.e., replace relational operator. In both APR techniques, we
observe lower repairability in the auto-generated repair test
suites than in the manual ones (Table 4). The technical issues
associated with the APR techniques are the key reason
for this situation. When a repair test suite contains many
failing test cases, the APR technique might not be able to

15

Manual ADB INCAL SV NB MLP(20) MLP(208)

FRERE
- FFEF

0102030 0102030 0102030 0102030 0102030 0102030 0102030 0 102030
Number of Subjects

HDIM
DCCA

STYP
SRIF
Swov
SISF
SIF
SDLA
D soF
o soe
o)) SDFN
O ORRN
+= OMOP
T oun
O OILN
0D
OFPF
O oee
QO oas
O omn
HOTH
HIMS
HEXP
HOMS
HBRN
DRWV
DRVA
DCCR

B0 [

(b) Angelix

Number of repairable subjects in GenProg and Angelix by defect categories under manual and auto-generated test

produce a patch that passes all the failing tests within the
allocated time. However, less accurate patches, similar to
the ones generated with the manual test suites, do not fix
bugs completely and can create new bugs in programs.
Therefore, we conclude that the auto-generated test suites
under the interpolation-based approaches are more suitable
for automated program repair than the manual test suites.

LEARN2FIX auto-generated test suites and the man-
ual test suites show 100% statement coverage in most
subjects. In both APR tools, most repairable subjects
under the auto-generated and manual repair test
suites belong to the ORRN, i.e., replace relational
operator, category.

5.5 RAQ.5.: Impact of Noisy Labels

We investigate the impact of mislabelling on the oracle
quality and labelling effort under the best-performing clas-
sifier (decision tree) and a budget of 20 queries. The human
can make mistakes in labelling tests. As LEARN2FIX uses
human-labelled tests to train automatic oracles and to repair
programes, it is important to analyze the impact of incorrectly
labelled tests. We allow between 0% and 20% of labelling
queries to be incorrect (noise levels). Figure 10 shows the
distributions of the overall accuracy, failing-recall / precision
and passing-recall /precision.

The oracle quality decreases under incorrectly la-
belled test cases. The highest decreases can be seen
in precision for failing tests (failing-precision box).

According to Figure 10, as expected incorrectly labelled
test cases negatively affect the oracle quality. Furthermore,
the automatic oracle’s (O) ability to identify both passing
and failing tests reduces when the test cases are incorrectly
labelled in LEARN2FIX active oracle learning (Algorithm 1).
Figure 10 further implies that the precision for failing inputs
is significantly affected by incorrectly labelled test cases. The

16

Overall Failing—Recall Failing—Precision Passing—Recall Passing—Precision
100%
> ?
0/ -
§ 75%
=1
o
o
<
= 50%
o
5 ' o ! i !
= . e L} M '
o TR S N
& 25% ° e ' b ‘
.
3 : s 1 1 '
: . § 8 . i l
0% -+ H H b4 b . [} []

T T T T T
0% 5% 10% 20% 0%

S‘I’A) 16% 2(?:% 0
Noise level

T T T T
5% 10% 20% 0%

T T T T T
5% 10% 20% 0% 5% 10% 20%

2-

Fig. 10: Variations of oracle quality under the noise levels 5%, 10% and 20%

median failing-precision drops by 10% when 5% noise is
present (failing-precision box).

There is a significant drop in effectiveness of
LEARNZ2FIX to accurately identify failing test inputs
to be sent for labelling. The number of failing test
cases sent for labelling reduces under incorrectly
labelled test cases. The probability of labelling a
failing test decreases, as well.

ing test cases is difficult. All these facts reduce LEARN2FIX’s
ability to explore failing test cases. The lack of failing tests in
T reduces the automatic oracle’s ability to correctly identify
failing tests, resulting in a drop in the oracle quality.

When there are incorrectly labelled test cases, the
repairability of LEARN2FIX auto-generated test suites
decreases in both GenProg and Angelix. Moreover,
the validation score of the patches decreases as well.

Impact on oracle quality. Figure 11 shows how the labelling
effort varies under the previous noise levels. Maximizing the
labelling of failing test cases is an objective of LEARN2FIX
active oracle learning. According to the results in Figure 11,
incorrectly labelled test cases prevent achieving this ob-
jective. As test cases are incorrectly labelled, LEARN2FIX's
ability to select failing test cases for labelling decreases.
Figure 1la-right shows this fact. When the noise level is
20%, LEARN2FIX sends less than 50% of the generated failing
test cases for labelling in most subjects. As LEARNZ2FIX
misses failing tests, the test cases sent for labelling are not
frequently failing tests. Thus, the probability of labelling a
failing test case reduces as in Figure 11b-right. In the noise
levels 10% and 20%, the median probability of labelling a
failing test is below 50%.

Interpretation. LEARN2FIX starts the oracle learning from
a single failing test case and incrementally expands the
training test suite (1'). The label given by the user in one step
affects the subsequent steps of the learning process. In the
beginning, the training test suites do not contain many test
cases. Therefore, the oracle accuracy is significantly affected
when the user incorrectly labels a test case in the initial
stages. When the automatic oracle is inaccurate, Algorithm 2
cannot correctly select the failing test cases in the subsequent
steps for human labelling. The decreasing percentages of
human-labelled failing tests in Figure 11a-right demonstrate
this fact. In addition, when failing tests are labelled as
passing, the chance to explore more failing tests is reduced.
When passing test cases are labelled as failing, those are
used to generate new test cases by fuzzing(Algorithm 1-Line
5 and 10). Finding more failing test cases by mutating pass-

Impact on repairability. The test suites generated by
LEARN2FIX under the above noise levels were used to repair
the programs using GenProg and Angelix. Figures 12a and
13a indicate that the ability of LEARN2FIX auto-generated
test suites to repair buggy programs is reduced when there
are incorrectly labelled test cases. The drop in repairability
in GenProg is more significant than in Angelix under the
noise level. In GenProg, from 0% to 5% noise, the median
repairability drops from 16% to 1% (Figure 12a). One reason
for the lower repairablity in GenProg is associated with its
fault localization technique. GenProg uses Equation 14 to
calculate the suspiciousness of a statement [1].

0, failed(s) =0
1.0, passed(s) = 0 A failed(s) = 1
0.1, otherwise

suspG(s) = (14)

Interpretation. According to Equation 14, the suspicious-
ness of a statement is highest if it is only executed by failing
test cases (1.0, passed(s) = OAfailed(s) = 1). A single passing
test case is enough for reducing the score of a statement
from 1.0 to 0.1. If a failing test case is incorrectly labelled
as passing, the faulty statements executed by that test case
receives 0 or 0.1. Consequently, GenProg cannot correctly
identify the actual faulty statements. As a result, GenProg
tries to change unnecessary statements and produces no
repair. The same problem can be observed under passing
test cases incorrectly labelled as failing as well. In addition,
we observed in the experiments that the search space gets
larger with incorrectly labelled test cases, and, therefore,
GenProg cannot produce a repair within the allocated time.

%Failing tests that are labeled

%Generated tests that are labeled

100%

75% 4 ‘

50%

Proportion

25%4

0% I T I

v T T v v
20% 0% 5% 10% 20%

Noise level

T T v
0% 5% 10%

(a) Proportion of generated (left) / failing tests that are labelled (right)

17

Prob. to label a failing test

Prob. to generate a failing test

100% -

75% -

50% -

Probability

25% -

0% - T T T
T T T T T T
0% 5% 10% 20% 0% 5%

Noise level

T v
10% 20%

(b) Probability to generate (left) / label a failing test (right)

Fig. 11: Variations of labelling effort under the noise levels 5%, 10% and 20%

Validation Score

100%

75%

50%

n

25%

% Heldout Test Cases Passed

]
0% 3

Manual autogén—o% autogén—S% autoge‘n—lo% autoge'n—zo%

(b) Validation Score

Fig. 12: Variations of repairability and validation score in GenProg under the noise levels 5%, 10% and 20%.

Repairability
30%
——

B
= 20%
5]
Q
Q
o $
2
3]
2
o
@ 10%
53

0%

Manual autogén—o% autogén—S% autoge'n—lo% autoge‘n—ZO%
(a) Repairability
Repairability

30%
B
= 20%
<
Q
Q
[:3 $
2
o
2 .
E]
3 10% = i
K3 +

0%

Manual aulogén—o% autogén—S% autoge'n—lo% autoge'n—ZO%

(a) Repairability

Validation Score

100% [

75%

50%

...,.--_{

T

autoge'n—ZO%

25%

% Heldout Test Cases Passed

3 .

Manual autogén—o% autogén—S% autoge‘n—lO%

(b) Validation Score

Fig. 13: Variations of repairability and validation score in Angelix under the noise levels 5%, 10% and 20%.

All these facts lead to the significantly lower repairability of
GenProg under incorrectly labelled test cases. In contrast to
GenProg, Angelix uses Jaccard formula (Equation 15) for the
fault localization [15].

failed(s)

1
execute(s) + (totalFailed — failed(s)) (15

susp](s) =

Jaccard formula is not sensitive to incorrectly labelled
test cases as Equation 14, i.e., an incorrectly labelled test
case cannot significantly reduce the suspiciousness score of
a statement when there are enough correctly labelled test
cases. Therefore, the drops in repairability in Angelix under
different noise levels are not as large as in GenProg.

Impact on patch quality. Figure 12b and Figure 13b indicate
decreases in the median validation scores under the auto-
generated test suites with incorrectly labelled test cases in
both APR tools. According to the one-sided Wilcoxon-test,
the observed decrease in the validation scores in GenProg
are statistically significant (p < 0.05). In Angelix, statisti-
cally significant decreases can be seen from the 10% noise
level. Compared to the manual repair test suites, the valida-
tion scores of the auto-generated repair test suites are higher
in Angelix, even though incorrectly labelled test cases exist.
In GenProg, all the median validation scores of the auto-
generated repair test suites with incorrectly labelled tests
are below the median of the manual test suites.

Interpretation. The higher sensitivity to incorrectly la-
belled tests in GenProg’s fault localization technique leads
to reducing the validation score of the generated patches.
GenProg follows a generate-and-validate approach that
highly depends on the fault localization information [12].
When the fault localization is faulty, the generated patch be-
comes less accurate. These drawbacks cannot be seen in An-
gelix. As described before, the Angelix’s fault localization is
less sensitive compared to GenProg fault localization. Also,
after finding the faulty program statements, Angelix uses a
constraint solving approach to generate the patch [15]. This
approach is not significantly affected by a few incorrectly
labelled tests when there are enough correctly labelled tests.
For this reason, the validation scores of the patches are not
reduced as in GenProg.

Incorrectly labelled test cases negatively affects the
oracle quality, labelling effort and patch quality in
automated program repair. Test-driven APR tech-
niques assume that the repair test contains correctly
labelled test cases. Thus, incorrectly labelled tests
significantly affect the patch quality of the auto-
generated test suites. The classification algorithms
cannot produce accurate oracles with incorrectly la-
belled test cases. As a result, LEARN2FIX becomes
unable to send failing tests more frequently for hu-
man labelling. The lack of failing tests also reduces
the patch quality.

6 PiLOT USER STUDY

We conducted a pilot user study with six (6) participants
to assess the usability of LEARN2FIX in an actual human-in-
the-loop environment. In this study, we especially focused
on the human effort involved in deciding the label of a test
case and providing the expected, correct output of a failing
test case.

Study Design. We used the program in the motivating
example (Listing 1) as the buggy subject (P). The Decision
Tree (DT) algorithm was used as the classification algorithm
of LEARN2FIX based on the results in Section 5.3. We imple-
mented a user interface for the participants to interact with
LEARNZ2FIX.

At the beginning of the study, each participant was given
a brief introduction to the task, including a demonstration
of the user interface. Also, they were informed that the
intended functionality of the buggy subject (Listing 1) is
to classify triangles based on the lengths of their sides.
However, the source code of the program was not revealed
to them. For each participant, we allocated 10 minutes to
interact with LEARN2FIX and set the maximum number of
labelling queries to 20 (L = 20).

As described in Algorithm 1, a participant was presented
with a series of labelling queries to learn an automatic
oracle. A labelling query shows the values of the three
inputs and the corresponding output given by the buggy
subject. Then, the participant has to answer the question
“Did the program return the correct output ?”. If the answer
is “No”, the participant is asked to provide the correct out-
put. Otherwise, the next labelling query is presented to the

18

participant. Each participant was allowed to interact with
LEARNZ2FIX until the timeout was reached, or the allocated
query budget is exhausted. At the end of oracle learning,
the participant was allowed to provide any feedback on our
approach.

While interacting with LEARN2FIX, we measured the
time that the participant spent answering each labelling
query. In the test cases labelled as failing, the total time
for deciding the label and providing the correct output was
measured. At the end of oracle learning, we calculated the
oracle quality and labelling effort. To measure the oracle
quality, we used a manually constructed and labelled test
suite.

Selection of Participants. We followed the Belmont prin-
ciple [38] of respect people. We introduced ourselves, ex-
plained that they are being asked to participate in our
pilot study, described the study procedures and how their
anonymized data is used, explained that the participation is
voluntary, and provided our contact information for ques-
tions and concerns about our research. The six people who
agreed to participate in our pilot user study had sufficient
mathematical knowledge to understand the triangle classifi-
cation problem. This kind of person is eligible for this study,
as we assume that the human interacting with LEARN2FIX
knows the expected behaviour of the program under test.

‘ Mean (%) ‘ Median (%)

Oracle Quality

Overall Accuracy 90.91 90.91
Recall-Failing 100 100
Precision-Failing 75 75
Recall-Passing 87.50 87.50
Precision-Passing 100 100
Labelling Effort
Proportion of generated tests 17 0.2
that are labelled ’ ’
Proportion of labelled failing 9471 100
tests from generated
Prlo.bability to generate a 018 012
failing test
Pr_ojbablhty to label a 58.39 66.06
failing test

‘ Min (s) ‘ Max (s)
Response time (Seconds)
Answering a labelling query
(Including providing the 2 40
expected output
of a failing test case)

TABLE 5: Summary of the results in the pilot user study

Results. Table 5 summarizes the results of our pilot user
study. A user took 2 - 40 seconds to answer a labelling query,
including the time for providing the expected outputs of a
failing test case. Only one participant incorrectly labelled
two passing tests as failing. All the other participants made
no mistakes in answering the queries. Only two participants
received 20 queries to answer, and all the others received
less than that in the allocated time.

Similar to Section 5.1, LEARN2FIX produces high-quality
automatic oracles for the program in Listing 1. There is a
rare chance of generating a failing test for this program (i.e.,
the probability of generating a failing test is < 1%). Also,
very few tests from the generated tests are sent for human
labelling. Nevertheless, LEARN2FIX can select most gener-
ated failing tests and let the participant receive those more
frequently. This outcome is similar to the results obtained in
Section 5.2.

User Feedback on Labelling Queries. All the participants
claimed that the queries presented were easy to answer.
Also, they said that the time to generate the next query
after answering the current query was significant in some
situations. Most participants received the passing tests in
the first few queries and the failing tests in the later queries.
The reason for these incidents is that the automatic oracle
becomes accurate as more test cases are received; therefore,
the DECIDE2LABEL algorithm accurately selects the failing
tests while excluding most generated passing tests. As
explained in Section 3.1, the failing tests of Listing 1 are
rarely generated. The results in Table 5 also confirm this
fact. Due to the tendency of LEARN2FIX to select failing tests
for human labelling, the time to generate the queries can be
longer.

Additional User Feedback. We received some additional
important feedback regarding LEARN2FIX from the partic-
ipants in this pilot user study. Firstly, they mentioned that
this is a practical approach, as the user (i.e., person who an-
swering) only needs to know the expected behaviour of the
system under test. Experience in programming is optional
for working with LEARN2FIX. Secondly, the participants got
familiar with the pattern of the failing tests as answering
the queries. As a result, some participants answered the
last few queries quicker than the earlier ones. This is also
an advantageous property in LEARN2FIX. In addition, a
few participants commented that the chance of occurring
errors in labelling tests is minimal in real scenarios, as a
person (e.g. developer) trying to fix a bug usually studies
the expected behaviour of the given program.

To summarize, LEARN2FIX successfully works with the
actual human participants for the selected buggy subject.
The user response time for labelling queries and user feed-
back indicate that a human participant can easily answer
the labelling queries. This is a reasonable outcome, as we
selected participants who know the expected behaviour
of the subject buggy program. Similar outcomes could be
expected for other programs if it is possible to find a user
who correctly knows the expected behaviour of the program
under test (PUT) to work with LEARN2FIX. However, the re-
sponse time for the labelling queries could vary depending
on the complexity of the PUT and the skill of the human
participant.

7 THREATS TO VALIDITY

Similar to the other empirical studies, there are various
threats to the validity of our results and conclusions. The
first concern is the external validity, i.e., to what extent our
findings can be generalized to and across other subjects
and tools. Our results may not hold for other subjects.
The classification algorithms in Section 3.2 work only for

19

programs taking numeric data. Thus, our program subjects
were required to take numeric input values and return nu-
meric output values. Nevertheless, we selected a large num-
ber of real, arithmetically complex faulty programs under
diverse defect categories (i.e., 552 programs under 34 defect
categories). To answer RQ.4., we used GenProg [12] and
Angelix [15] as the automated program repair tools. Gen-
Prog is a heuristic / generate-and-validate repair technique,
whereas Angelix is a constraint-based repair technique.
These two techniques are state-of-the-art and have been
shown to repair large open-source programs cost effectively.
The results of the pilot user study (Section 6) demonstrate
that LEARN2FIX would work with real human participants.
However, we used only the program in Listing 1 in the
study, as conducting this kind of experiment for a large
group of programs is impractical. The key reason is that
finding a group of participants who are familiar with the
expected behaviours of a large set of programs is difficult.
The expected behaviour of Listing 1, i.e., classifying trian-
gles based on side lengths, is a famous and simple concept
in geometry, hence easier to find participants for the study.
The challenges faced by the human might be different in
labelling test cases in other programs.

The second concern is internal validity, i.e., to what extent
our study minimizes the systematic error. For each subject,
we repeat each experiment 30 times and report the average
values of the metrics. This approach helps to mitigate spu-
rious observations due to the randomness of the mutational
fuzzer and classification algorithms. Also, it helps to gain
statistical power for the results. Similar to other imple-
mentations of other techniques, our tool may not faithfully
implement LEARN2FIX as presented in Algorithm 1 and 2.
However, to facilitate scrutiny and reproducibility, we make
the source code and all data available.

The third concern is construct validity, i.e., to what extent
a test measures what it claims to be measuring. To reduce
this threat, we discuss at least two measures for each of
the three independent variables: oracle quality, human effort
and patch quality.

8 RELATED WORK

Test oracle automation is an important topic in automated
software engineering. Several surveys on the oracle prob-
lem, such as the works of Earl et al. [39] and Pezze et
al. [40], emphasise the importance of having automated test
oracles in test automation. However, this topic has received
significantly less research attention than the other areas in
automated software engineering [39]. Also, the work of
Briand [23] suggests that test oracle automation is proba-
bly one of the most difficult problems in software testing.
All these facts indicate that significant improvements are
required in the area of test oracle automation.

The survey paper of of Earl et al. [39] categorises test or-
acles into three groups as implicit oracles, specified oracles and
derived oracles. Implicit oracles use general implicit knowledge
of incorrect program behaviours, such as program crashes
and timeouts. Also, implicit oracles can be injected. As an
example, ASAN [41] induces a crash for an input exposing a
memory safety error. However, this category of oracles can-
not be used for semantic bugs or functional bugs. Specified

oracles, i.e., test oracles based formal specifications, are ideal
for semantic bugs. However, developing these oracles is
impractical in most scenarios due to the difficulty of finding
a formal specification of a program [39]. For this reason,
derived oracles, i.e., oracles derived from sources other than
formal specifications, are most suitable for semantic bugs.
Based on these facts, we focused on a method to derive test
oracles based on test cases. Explicit oracles are applied to
detect functional and other bugs and should be manually
added. Typically, developers introduce explicit oracles to
programs as assertions [42]. These assertions should be
added proactively. However, our objective is to develop
oracles retroactively, i.e., the oracle should identify new test
cases exposing a known failure.

The works of Jin et al. [26], Vanmali et al. [43] and
Shahamiri et al. [44], [45] are some supervised machine learn-
ing [46] based oracle learning approaches. The automatic
oracles given by these methods are black-box, i.e., only the
program inputs and outputs are used to determine test
failures. All these works use artificial neural networks to learn
the relationship between (i.e., the function) the program
inputs and outputs. The learned function can be explicitly
represented as program assertions or likely invariants [47].
Given an input, the neural network model or the learned
function predicts the expected output. The predicted output is
compared with the output produced by the program under
test for the same input. If the two outputs are similar, the
test is predicted as passing; otherwise, it is failing. To learn
an accurate model for this task, these works ([26], [43], [44],
[45]) require a large training test suite. When the human is
the only oracle, finding such a test suite is a challenging
task.

In contrast to these works, LEARN2FIX learns the con-
dition under which the bug is exposed and thus produces
bug oracles. We believe that this is not a complicated task as
learning the relationship between the program inputs and
outputs. Also, it can be done more efficiently. For instance,
in our motivating example (Section 2), LEARN2FIX does not
learn how to classify a triangle. Instead, it learns which
triangles the program in Listing 1 incorrectly classifies. The
work of Braga et al. [22] uses AdaBoost to produce bug
oracles based on user actions. However, this approach is
only applicable to web applications. In contrast, LEARN2FIX
can be applied to a wide range of programs taking numeric
inputs.

The active learning method used in LEARN2FIX was
inspired by the work of Holub et al.[9]. The key objective
of this work is to reduce the human labelling effort during
image classification by sequentially presenting unlabelled
images that are informative when labelled to the human
(or oracle). In each iteration, Holub’s method selects the
most informative unlabelled point (MIUP), i.e., the image that
the classifier is most uncertain about its label, based on the
current status of the classifier. The work of Joshi et al. [48] is
similar to this work.

LEARNZ2FIX uses the concept of look-ahead probability esti-
mation from Holub’s work [9] to select test cases with higher
failure likelihood for human labelling. This is one way that
LEARN2FIX addresses the class imbalance problem. More-
over, we extended Holub’s pool-based approach, where the
number of data points is fixed, into stream-based approach,

20

where data points are continuously generated and decided
upon. Our insight is that a reliable probability estimate for
a point’s label can be derived with a fixed-size random
classifier committee.

The idea of generating more failing tests by mutating
a single failing test has been applied in AFL fuzzer [20]
and its recent developments [49], [50], [51]. The main focus
of these works is to explore the bugs leading to program
crashes. Generating new test cases helps to isolate faults
(BUGEX [52]) and improve auto-generated patches [53].
Given only a stack trace, there exist techniques to generate
crashing inputs [54] [55]. Unlike in our work, an automated
oracle, probably program crashes, is already assumed in all
these works.

LEARN2FIX interacts with a human oracle in the learning
process, and reducing the human effort is an important con-
sideration in our work. Several works have been proposed
to reduce the effort of human oracles in qualitative and quan-
titative aspects [39]. The quantitative approaches focus on
reducing test suite and test case size. The works of Harman
et al. [56], Ferrer et al. [57] and Taylor et al. [58] focus on
exercising all the different behaviours of the program under
test with fewer test cases. The qualitative approaches focus
on improving the comprehension of the tasks performed
by the human as a test oracle. For example, the work of
Afshan et al. [59] incorporates a natural language model into
the test generation process to improve the human readability
of the generated test cases. McMinn et al. [60] propose a
method to facilitate domain-aware test generation by incor-
porating knowledge from programmers, source code and
documentation into automatic test generation. This method
can generate more human readable test cases as well.

In addition, Staats et al. [61] propose a technique to select
oracle data, i.e., the subset of internal variables that should
be monitored during testing. Focusing on these variables
reduces the effort of human oracles. Distributing test cases
among different users is another strategy to reduce the
human effort. Pastore et al. [62] suggest an approach to
present test cases to a crowd for labelling. However, none
of these approaches addresses the problem of developing
an automatic oracle by systematically labelling generated
test cases. Nevertheless, the qualitative approaches could be
useful to improve the human readability of our work.

GRAMMAR2FIX [63] is closely related to our work. Given
a failing input of the semantic bug, GRAMMAR2FIX generates
an automatic oracle and a repair test suites for the bug.
The automatic oracle is given as a regular grammar that
describes the pattern of all the failing inputs of the bug.
Unlike LEARN2FIX, GRAMMARZ2FIX cannot be applied under
a limited number of human queries. The work of Bowring
et al. [64] is another active oracle learning approach similar
to our approach. In contrast to LEARN2FIX, this method uses
some white-box information such as event transitions. To reach
significant prediction accuracy, this approach requires more
than 100 human labelled executions. In contrast, LEARN2FIX
achieves high oracle quality with significantly fewer human
queries (20), even without knowing the source code of the
program under test.

Automated program repair (APR) is an emerging research
area that focuses on reducing the cost of manual debugging
while improving software quality [1][2]. In test-driven au-

tomated program repair, the quality of the patch depends
on the quality of the repair test suite. Low-quality repair
test suites lead to repair overfitting [1][18]. Yu et al. [3],
Yang et al. [4] and Xiong et al. [5] present several methods
to generate high-quality repair test suites for test-driven
APR, avoiding repair-overfitting. Unlike LEARN2FIX, all
these methods require an initial repair test suite (containing
both passing and failing test cases). The given repair test
suite is systematically augmented in a manner improving
the quality of the patch. UnsatGuided by Yu et al. focuses
on constrained-based repair techniques [3], while Yang’s
method [4] focuses on heuristic repair. Xiong’s method [5]
can be applied to both categories of repair techniques, sim-
ilar to LEARN2FIX. However, Xiong’s method needs a patch
as an input in addition to a repair test suites. In contrast to
all these methods, LEARN2FIX can be applied to all types of
test-driven repair techniques, given a single failing input of
a bug.

Evaluating the correctness of patches is an important
task in the researches related to APR. Manual inspection
(e.g. [34][65]) and using a validation test suite independent
from the repair test suite (e.g. [37][18]) are the two main
methods for evaluating patch correctness. The study of
Motwani et al. [36] suggests that using an independent
repair validation test suite is more objective than manual
inspection. The study of Le et al. [34] reveals that manual-
inspection-based methods can be inaccurate due to their
subjective nature. For this reason, Le’s study emphasises
that the results of manual-inspection-based patch evalua-
tions should be publicly available. In contrast, the patch
evaluations using independent repair validation suites can
be reproduced fully automatically.

The study of Yi et al. [66] explores the correlation be-
tween traditional test suite metrics proposed for software
testing (e.g. statement coverage, test suite size, mutation
score etc.) and the reliability of generated repairs by APR.
Its conclusion is that the traditional metrics are useful for
APR to improve the reliability of repairs. For example, this
study shows that regression-causing repairs [67] (i.e. pass all
positive tests, but fail one of positive tests) can be mitigated
by improving the statement coverage of repair test suites.
Our work also focuses on improving the quality of program
repair by improving the quality of repair test suites.

9 DiscussiON AND FUTURE WORK

Given a program with a semantic bug and its single failing
test, LEARN2FIX learns a bug oracle as a classifier, which
is the automatic oracle. The learned automatic oracle (O)
expresses the condition under which the bug is exposed (i.e.,
failure condition of the semantic bug) LEARN2FIX improves
the overall oracle quality by improving the classifier’s abil-
ity to correctly identify failing tests, the minority class.
For this purpose, LEARN2FIX maximises human labelling
of failing tests in the learning process. The results of or-
acle quality (Section 5.1) and labelling effort (Section 5.2)
suggest that LEARN2FIX’s oracle learning strategy works
for many real world semantic bugs in programs taking
numeric inputs. The automatic oracles show more than
75% accuracy in identifying both passing and failing tests
for most subjects. Manually exploring the failing tests of a

21

semantic bug is a difficult task in programs taking numeric
inputs. LEARN2FIX effectively addresses this issue by its DE-
CIDE2LABEL-algorithm. With the DECIDE2LABEL-algorithm,
the probability of finding a failing test is three times higher
than with random labelling. Thus, the human would receive
failing test cases frequently, even though those are rarely
generated. Hence, exploring failing tests would be easier for
the human through LEARNZ2FIX rather than doing it solely
by mutational fuzzing.

The experiments in Section 5.3 reveal that LEARN2FIX
works as intended with few classification algorithms. If the
classification algorithm is capable enough to accurately infer
the failure condition of a semantic bug, the DECIDE2LABEL
algorithm sends more failing tests generated by mutational
fuzzing for human-labelling. As failing tests are the minority
class, it is helpful in improving the oracle quality while
dealing with the class imbalance problem [8].

Our results suggest that interpolating binary classifiers
produce better automatic oracles than approximating binary
classifiers with LEARN2FIX. It implies that interpolating bi-
nary classifiers can better represent the failure condition of
a semantic bug; i.e., highly accurate automatic test oracles
can be produced by finding a model that exactly fits the
training data (human-labelled passing and failing test). The
interpolation-based approaches used in the experiments
create classifiers as a set of constraints on a numeric domain.
According to the results, such constraints can effectively
represent the failure condition of a semantic bug. According
to Section 5.3, LEARN2FIX shows the best performance with
Decision Tree and AdaBoost. AdaBoost is an ensemble version
of decision trees. Therefore, the decision tree representation
is most suitable for developing automatic test oracles for
semantic bugs.

In approximation-based approaches, we observed higher
oracle quality in Naive Bayes than in the other approaches.
Naive Bayes uses the Bayesian probability model [68] to de-
velop classifiers. Our results indicate that the Naive Bayes
algorithm can accurately learn the failure condition of a
semantic bug as a probability model with fewer training
data. However, this algorithm does not outperform the
interpolation-based approaches in terms of oracle quality.
Also, it does not perform well in the program repair experi-
ments.

As the maximum number of queries to the human in-
creases, the automatic oracle’s ability to distinguish between
passing and failing tests increases as well (Figure 4). This is
an intuitive outcome in machine learning, as the classifi-
cation algorithm receives more data to learn an automatic
oracle. In addition, the probability of labelling a failing
test case also increases under the increasing query budget
(Figure 6). It implies that LEARN2FIX always uses the query
budget targeting failing tests and does not send passing tests
more frequently, even though human queries are available.

The experimental results related to automated program
repair (Section 5.4) suggest that LEARN2FIX produces high-
quality repair test suites with the interpolation-based ap-
proaches in GenProg and Angelix. These approaches produce
high-quality automatic test oracles for semantic bugs (Sec-
tion 5.3). Therefore, these results imply that classification
algorithms that produce high-quality test oracles generate
high-quality repair test suites for both APR techniques.

Finding a repair test suite leading to high-quality fixes,
i.e., non-overfitting and accurate patches, is a challenging
task in automated program repair. This issue becomes more
intense in semantic bugs, as only a human can answer about
a test failure. Providing an effective answer to this issue,
LEARNZ2FIX facilitates a human-in-the-loop interactive program
repair environment. Even a person without experience in
programming can contribute to the LEARN2FIX’s program
repair process.

In LEARN2FIX, we assume that the human always pro-
vides the accurate label of a test case. However, the human
can make mistakes in deciding the label of a test case in prac-
tical scenarios. In Section 5.5, we explored the consequences
of incorrectly labelled test cases in oracle learning and
APR. The results suggest that LEARN2FIX cannot achieve
its objectives when the human provides incorrect labels.
Moreover, the repairability of the auto-generated repair test
suites and the correctness of patches are reduced. The reason
for all these issues is the incremental learning process in
LEARNZFIX, i.e., if the human makes a mistake at one point,
it affects the subsequent oracle learning steps. This is a
drawback in LEARN2FIX.

According to the results in Figure 12 and Figure 13, a
higher impact from incorrectly labelled tests can be seen
in GenProg than in Angelix. GenProg’s fault localization
method is significantly misguided by incorrectly labelled
test cases. The result is that GenProg produces no repair
or less accurate repairs. Indeed, Angelix’s program repair
methodology cannot be misguided by a few incorrectly
labelled tests when the repair test suite contains sufficient
correctly labelled tests (see Section 5.5). This is an advantage
in Angelix over GenProg.

Test-driven APR techniques always assume that the re-
pair test suite has correctly labelled test cases. Thus, generat-
ing no repair or incorrect repair can be expected when there
are incorrectly labelled test cases in the repair test suite. The
results of RQ.5. indicate this fact. Even the manual repair
test suites would not achieve this much repairability and
validation score if it contained incorrectly labelled tests. All
these facts imply that repair test suites for test-driven APR
should be prepared under scrutiny.

In future work, we will explore techniques to deal with
incorrectly labelled test cases in oracle learning. The errors
in labelling test cases can be avoided. Pair programming [69]
concepts can be applied to this task. Another option is
to distribute test cases among multiple people as in [62].
LEARN2FIX generates test cases by mutational fuzzing. As
mutation operators are randomly applied in fuzzing, these
test cases can be less human-readable in some scenarios.
Hence, we will explore techniques to improve the human
readability of the generated test cases. The works of Afshan
et al. [59], McMinn et al. [60] and Bozkurt et al. [70] will be
helpful for this task.

An automatic test oracle produced by LEARN2FIX ex-
presses the condition under which a semantic bug is ex-
posed. Hence, the automatic test oracle can serve as a
specification of the bug. A bug specification describes the
behaviour of a bug, and the failure condition is an essential
part of it. Such a specification would be useful for devel-
opers. However, LEARN2FIX requires some improvements
for producing bug specifications, as it does not always pro-

22

duce 100% accurate test oracles under the limited labelling
queries. In future work, we will discover methods to convert
LEARN2FIX for producing bug specifications.

In constrained-based program repair techniques, exploring
the repair constraint of the given program is an important
task [1][2]. The accuracy of the repair constraint determines
the quality of the patch. An automatic oracle produced
by LEARNZ2FIX consists of constraints that that explain the
failure condition of a semantic bug. We will explore how to
incorporate these constraints into a repair constraint used in
constraint-based program repair. This will help to generate
more accurate repair constraints.

10 CONCLUSION

We introduced LEARN2FIX, a human-in-the-loop approach,
to repair programs with semantic bugs. Given a single fail-
ing input of the bug, it learns a high-quality automatic test
oracle for the bug. In oracle learning, LEARN2FIX maximises
the human labelling of the failing tests. In the experiments
with different classifier representations, we identified that
LEARN2FIX works better with interpolating binary classifiers
than approximating binary classifiers. Also, the automatic ora-
cles represented as decision trees are the most accurate. With
both GenProg and Angelix, the auto-generated test suites in
oracle learning produce better repairs compared the manual
test suites of the benchmark. All these findings indicate
that LEARN2FIX addresses some important problems in test
oracle automation and automated program repair.

REFERENCES

[1] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software
repair: A survey,” IEEE Transactions on Software Engineering, vol. 45,
no. 1, pp. 34-67, 2017.

[2] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated pro-
gram repair,” Communications of the ACM, vol. 62, no. 12, pp. 5665,
2019.

[3] Z. Yu, M. Martinez, B. Danglot, T. Durieux, and M. Monperrus,
“Alleviating patch overfitting with automatic test generation: a
study of feasibility and effectiveness for the nopol repair system,”
Empirical Software Engineering, vol. 24, pp. 33-67, 2019.

[4]]. Yang, A. Zhikhartsev, Y. Liu, and L. Tan, “Better test cases for
better automated program repair,” in Proceedings of the 2017 11th
joint meeting on foundations of software engineering, 2017, pp. 831-
841.

[5] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying
patch correctness in test-based program repair,” in Proceedings of
the 40th international conference on software engineering, 2018, pp.
789-799.

[6] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of
the art,” IEEE Transactions on Reliability, vol. 67, no. 3, pp. 1199-
1218, Sep. 2018.

[7] B. Settles, “Active learning literature survey,” University of
Wisconsin-Madison Department of Computer Sciences, Tech. Rep.,
2009.

[8] R. Longadge and S. Dongre, “Class imbalance problem in data
mining review,” arXiv preprint arXiv:1305.1707, 2013.

[9] A. Holub, P. Perona, and M. C. Burl, “Entropy-based active learn-
ing for object recognition,” 2008 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops, CVPR Work-
shops, pp. 1-8, 2008.

[10] M. Bohme, C. Geethal, and V.-T. Pham, “Human-in-the-loop auto-
matic program repair,” in Proceedings of the 2020 IEEE International
Conference on Software Testing, Verification and Validation, ser. ICST
2020, 2020, pp. 1-12.

[11] S. Kolb, S. Teso, A. Passerini, and L. De Raedt, “Learning smt (Ira)
constraints using smt solvers.” in IJCAI, 2018, pp. 2333-2340.

(12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” leee transactions on
software engineering, vol. 38, no. 1, pp. 54-72, 2011.

A. J. Wyner, M. Olson, J. Bleich, and D. Mease, “Explaining the
success of adaboost and random forests as interpolating classi-
fiers,” The Journal of Machine Learning Research, vol. 18, no. 1, pp.
1558-1590, 2017.

V. Kecman, “Support vector machines—an introduction,” in Support
vector machines: theory and applications. Springer, 2005, pp. 1-47.
S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable mul-
tiline program patch synthesis via symbolic analysis,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
(ICSE), May 2016, pp. 691-701.

R. Williams. (2002) Triangle classification problem. [Online].
Available: https:/ /russcon.org/triangle_classification.html

H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
“Semfix: Program repair via semantic analysis,” in 2013 35th
International Conference on Software Engineering (ICSE), May 2013,
pp. 772-781.

E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure worse
than the disease? overfitting in automated program repair,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, 2015, pp. 532-543.

V.J. M. Manes, H. Han, C. Han, S. K. Cha, M. Egele, E.]. Schwartz,
and M. Woo, “The art, science, and engineering of fuzzing: A
survey,” IEEE Transactions on Software Engineering, 2019.

M. Zalewski, “American fuzzy lop,” 2014.

C. Chen, B. Cui, J. Ma, R. Wy,]J. Guo, and W. Liu, “A systematic
review of fuzzing techniques,” Computers & Security, vol. 75, pp.
118-137, 2018.

R. Braga, P. S. Neto, R. Rabélo, J. Santiago, and M. Souza, “A
machine learning approach to generate test oracles,” in Proceedings
of the XXXII Brazilian Symposium on Software Engineering. ACM,
2018, pp. 142-151.

L. C. Briand, “Novel applications of machine learning in software
testing,” in 2008 The Eighth International Conference on Quality
Software. 1EEE, 2008, pp. 3-10.

C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of satisfiability. 10S Press, 2021, pp.
1267-1329.

R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi,
“A survey of symbolic execution techniques,” ACM Computing
Surveys (CSUR), vol. 51, no. 3, pp. 1-39, 2018.

H. Jin, Y. Wang, N.-W. Chen, Z.-]. Gou, and S. Wang, “Artificial
neural network for automatic test oracles generation,” in 2008 In-
ternational Conference on Computer Science and Software Engineering,
vol. 2. IEEE, 2008, pp. 727-730.

I. H. Sarker, “Machine learning: Algorithms, real-world applica-
tions and research directions,” SN Computer Science, vol. 2, no. 3,
pp- 1-21, 2021.

X. Liu, Y. Liu, Z. Li, and R. Zhao, “Fault classification oriented
spectrum based fault localization,” in 2017 IEEE 41st Annual
Computer Software and Applications Conference (COMPSAC), vol. 1.
IEEE, 2017, pp. 256-261.

J.R. Koza et al., “Evolution of subsumption using genetic program-
ming,” in Proceedings of the first European conference on artificial life.
MIT Press Cambridge, MA, USA, 1992, pp. 110-119.

S. H. Tan, J. Yi, S. Mechtaev, A. Roychoudhury et al., “Codeflaws:
a programming competition benchmark for evaluating automated
program repair tools,” in 2017 IEEE/ACM 39th International Confer-
ence on Software Engineering Companion (ICSE-C). 1EEE, 2017, pp.
180-182.

C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
S. Forrest, and W. Weimer, “The manybugs and introclass bench-
marks for automated repair of ¢ programs,” IEEE Transactions on
Software Engineering, vol. 41, no. 12, pp. 1236-1256, 2015.

J.Yi, U. Z. Ahmed, A. Karkare, S. H. Tan, and A. Roychoudhury,
“A feasibility study of using automated program repair for in-
troductory programming assignments,” in Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, 2017, pp.
740-751.

M. Motwani, “High-quality automated program repair,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion). 1IEEE, 2021, pp. 309-
314.

X.-B. D. Le, L. Bao, D. Lo, X. Xia, S. Li, and C. Pasareanu, “On
reliability of patch correctness assessment,” in 2019 IEEE/ACM

(35]

(36]

(37]

[38]

[39]

[40]

[41]

[42]

(43]

[44]

[45]

[46]

(47]

[48]

[49]

[50]

[51]

[52]

(53]

(54]

[55]

[56]

23
41st International Conference on Software Engineering (ICSE). 1EEE,
2019, pp. 524-535.

A. Zeller, R. Gopinath, M. Boshme, G. Fraser, and C. Holler, “Code
coverage,” in The Fuzzing Book. CISPA Helmholtz Center for
Information Security, 2023, retrieved 2023-01-07 13:54:15+01:00.
[Online]. Available: https://www.fuzzingbook.org/html/Cover
age.html

M. Motwani, M. Soto, Y. Brun, R. Just, and C. Le Goues, “Quality
of automated program repair on real-world defects,” IEEE Trans-
actions on Software Engineering, vol. 48, no. 2, pp. 637-661, 2020.

Y. Brun, E. Barr, M. Xio, C. Le Gouses, and P. Devanbu,
“Evolution vs. intelligent design in program patching,” UC Davis:
College of Engineering, Tech. Rep., 2013. [Online]. Available:
https:/ /escholarship.org/2134uc/item /3z8926ks

D. Dittrich, M. Bailey, and S. Dietrich, “Building an active com-
puter security ethics community,” IEEE Security & Privacy, vol. 9,
no. 4, pp. 3240, 2010.

E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE transactions on
software engineering, vol. 41, no. 5, pp. 507-525, 2014.

M. Pezze and C. Zhang, “Automated test oracles: A survey,” in
Advances in computers. Elsevier, 2014, vol. 95, pp. 1-48.

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Ad-
dresssanitizer: A fast address sanity checker,” in Presented as part of
the 2012 {USENIX} Annual Technical Conference ({USENIX}{ATC}
12), 2012, pp. 309-318.

D. S. Rosenblum, “A practical approach to programming with
assertions,” IEEE transactions on Software Engineering, vol. 21, no. 1,
pp. 19-31, 1995.

M. Vanmali, M. Last, and A. Kandel, “Using a neural network
in the software testing process,” International Journal of Intelligent
Systems, vol. 17, no. 1, pp. 45-62, 2002.

S. R. Shahamiri, W. M. N. W. Kadir, S. Ibrahim, and S. Z. M.
Hashim, “An automated framework for software test oracle,”
Information and Software Technology, vol. 53, no. 7, pp. 774-788, 2011.
S. R. Shahamiri, W. M. Wan-Kadir, S. Ibrahim, and S. Z. Hashim,
“Artificial neural networks as multi-networks automated test
oracle,” Automated Software Engg., vol. 19, no. 3, p. 303-334, Sep.
2012. [Online]. Available: https://doi.org/10.1007 /s10515-011-0
094-z

A. Singh, N. Thakur, and A. Sharma, “A review of supervised
machine learning algorithms,” in 2016 3rd International Conference
on Computing for Sustainable Global Development (INDIACom). Ieee,
2016, pp. 1310-1315.

M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The daikon system for dynamic detection
of likely invariants,” Science of computer programming, vol. 69, no.
1-3, pp. 3545, 2007.

A.]. Joshi, F. Porikli, and N. Papanikolopoulos, “Multi-class ac-
tive learning for image classification,” in 2009 ieee conference on
computer vision and pattern recognition. 1EEE, 2009, pp. 2372-2379.
M. Béhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” IEEE Transactions on Software
Engineering, vol. 45, no. 5, pp. 489-506, 2017.

V.-T. Pham, M. Bohme, A. E. Santosa, A. R. Ciciulescu, and
A. Roychoudhury, “Smart greybox fuzzing,” IEEE Transactions on
Software Engineering, vol. 47, no. 9, pp. 1980-1997, 2021.

M. Bohme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Di-
rected greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp.
2329-2344.

J. Ropler, G. Fraser, A. Zeller, and A. Orso, “Isolating failure
causes through test case generation,” in Proceedings of the 2012
international symposium on software testing and analysis, 2012, pp.
309-319.

X. Gao, S. Mechtaev, and A. Roychoudhury, “Crash-avoiding pro-
gram repair,” in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2019, pp. 8-18.

W. Jin and A. Orso, “F3: Fault localization for field failures,” in
Proceedings of the 2013 International Symposium on Software Testing
and Analysis, 2013, pp. 213-223.

V.-T. Pham, W. B. Ng, K. Rubinov, and A. Roychoudhury, “Her-
cules: Reproducing crashes in real-world application binaries,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1. 1EEE, 2015, pp. 891-901.

M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo,
“Optimizing for the number of tests generated in search based test

https://russcon.org/triangle_classification.html
https://www.fuzzingbook.org/html/Coverage.html
https://www.fuzzingbook.org/html/Coverage.html
https://escholarship.org/ 2134 uc/item/3z8926ks
https://doi.org/10.1007/s10515-011-0094-z
https://doi.org/10.1007/s10515-011-0094-z

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

data generation with an application to the oracle cost problem,” in
2010 Third International Conference on Software Testing, Verification,
and Validation Workshops. 1EEE, 2010, pp. 182-191.

J. Ferrer, E. Chicano, and E. Alba, “Evolutionary algorithms for the
multi-objective test data generation problem,” Software: Practice
and Experience, vol. 42, no. 11, pp. 1331-1362, 2012.

R. Taylor, M. Hall, K. Bogdanov, and J. Derrick, “Using behaviour
inference to optimise regression test sets,” in IFIP International
Conference on Testing Software and Systems. — Springer, 2012, pp.
184-199.

S. Afshan, P. McMinn, and M. Stevenson, “Evolving readable
string test inputs using a natural language model to reduce human
oracle cost,” in 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation. 1EEE, 2013, pp. 352-361.

P. McMinn, M. Stevenson, and M. Harman, “Reducing qualitative
human oracle costs associated with automatically generated test
data,” in Proceedings of the First International Workshop on Software
Test Output Validation. ACM, 2010, pp. 1-4.

M. Staats, G. Gay, and M. P. Heimdahl, “Automated oracle cre-
ation support, or: How i learned to stop worrying about fault
propagation and love mutation testing,” in 2012 34th International
Conference on Software Engineering (ICSE). 1EEE, 2012, pp. 870-880.
E. Pastore, L. Mariani, and G. Fraser, “Crowdoracles: Can the
crowd solve the oracle problem?” in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation. IEEE,
2013, pp. 342-351.

C. Geethal, V.-T. Pham, A. Aleti, and M. Bohme, “Human-in-the-
loop oracle learning for semantic bugs in string processing pro-
grams,” in Symposium on Software Testing and Analysis (ISSTA'22),
2022.

J. E. Bowring, J. M. Rehg, and M.]J. Harrold, “Active learning
for automatic classification of software behavior,” ACM SIGSOFT
Software Engineering Notes, vol. 29, no. 4, pp. 195-205, 2004.

M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Mon-
perrus, “Automatic repair of real bugs in java: A large-scale ex-
periment on the defects4j dataset,” Empirical Software Engineering,
vol. 22, pp. 1936-1964, 2017.

J. Yi, S. H. Tan, S. Mechtaev, M. B6hme, and A. Roychoudhury,
“A correlation study between automated program repair and test-
suite metrics,” in Proceedings of the 40th International Conference on
Software Engineering, 2018, pp. 24-24.

S. H. Tan and A. Roychoudhury, “relifix: Automated repair of
software regressions,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 1. 1IEEE, 2015, pp. 471-
482.

S. R. Eddy, “What is bayesian statistics?” Nature biotechnology,
vol. 22, no. 9, pp. 1177-1178, 2004.

A. Begel and N. Nagappan, “Pair programming: what’s in it for
me?” in Proceedings of the Second ACM-IEEE international symposium
on Empirical software engineering and measurement, 2008, pp. 120-
128.

M. Bozkurt and M. Harman, “Automatically generating realistic

24

test input from web services,” in Proceedings of 2011 IEEE 6th
International Symposium on Service Oriented System (SOSE). 1EEE,
2011, pp. 13-24.

Charaka Geethal is a lecturer at the Depart-
ment of Computer Science, Faculty of Science
of the University of Ruhuna in Sri Lanka. His
research interests include test oracle automa-
tion, automated program repair, automated soft-
ware testing, machine learning, natural language
processing and text mining. He received his
Ph.D. degree in computer science in 2023 from
Monash University, Australia.

Marcel B6hme is a faculty member at the Max
Planck Institute for Security and Privacy (MPI-
SP) in Germany where he leads the Software
Security research group. He develops advanced
techniques, widely used in practice, for the au-
tomatic discovery of security flaws in large soft-
ware systems and works on the formal and prob-
abilistic foundations to study the guarantees of
existing approaches. He is an Associate Editor
for the ACM TOSEM the flagship journal in soft-
ware engineering and an Area Chair for ICSE’24,
the flagship conference in software engineering. He has served on
the program committees and organizational committees of all premier
international conferences in software engineering. Marcel received his
PhD from the National University of Singapore.

Van-Thuan Pham is a Lecturer in Cyber Secu-

— rity at the University of Melbourne in Australia.

He received his Ph.D. degree in Computer Sci-

ence from the National University of Singapore

in July 2017. He has been working on scal-

able and high-performance fuzz testing to im-

prove the reliability & security of software sys-

tems. His research, in collaboration with com-

‘ panies and government agencies, has led to

many papers published at premier journals and

conferences (e.g., TSE, ICSE, CCS), one U.S.

patent, and one Australian provisional patent. He has developed several

open-source automated security testing tools (e.g., AFLGo, AFLSmart,

AFLNet, AFLTeam) that are responsible for 100+ (critical) vulnerabil-

ities discovered in large real-world software systems. His research

has been featured on media channels like Theregister.co.uk and
Securityweek.com.

Theregister.co.uk
Securityweek.com

	Introduction
	Motivating Example
	learn2fix Methodology
	Generating More Failing Test Cases
	Training a Classifier as a Test Oracle
	Maximising the Probability of Labelling Failing Test Cases
	Automatic Program Repair

	Experimental Setup
	Research Questions
	Experimental Subjects
	Automated Program Repair Tools
	Setup and Evaluation

	Experimental Results
	RQ.1.: Oracle Quality
	RQ.2.: Labelling Effort
	RQ.3. Oracle Representation
	RQ.4. Patch Quality
	RQ.5.: Impact of Noisy Labels

	Pilot User Study
	Threats to Validity
	Related Work
	Discussion and Future Work
	Conclusion
	References
	Biographies
	Charaka Geethal
	Marcel Böhme
	Van-Thuan Pham

