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Abstract—Automated test generators, such as search-based software testing (SBST) techniques are primarily guided by coverage

information. As a result, they are very effective at achieving high code coverage. However, is high code coverage alone sufficient to

detect bugs effectively? In this paper, we propose a new SBST technique, predictive many objective sorting algorithm (PreMOSA),

which augments coverage information with defect prediction information to decide where to increase the test coverage in the class

under test (CUT). Through an experimental evaluation using 420 labelled bugs on the Defects4J benchmark and using theoretical

defect predictors, we demonstrate the improved effectiveness and efficiency of PreMOSA in detecting bugs when using any acceptable

defect predictor, i.e., a defect predictor with recall and precision� 75%, compared to the state-of-the-art dynamic many objective

sorting algorithm (DynaMOSA). PreMOSA detects up to 8.3% more labelled bugs on average than DynaMOSA when given a time

budget of 2 minutes for test generation per CUT.

Index Terms—Search-Based Software Testing, Automated Test Generation, Defect Prediction

Ç

1 INTRODUCTION

SEARCH-BASED software testing (SBST) techniques consider
test caseswith high code coverage as high quality test cases,

and aim at maximising code coverage [1], [2], [3]. As a result,
they are very effective at achieving high code coverage [4]. A
test suite with high code coverage, however is not sufficient to
effectively detect bugs in a program. Previous work shows
that SBST techniques have limitations in terms of detecting
bugs [5], [6], [7]. For example, DynaMOSA [3], a state-of-the-
art SBST technique, could only detect on average 22% of the
bugs from the Defects4J dataset, when it is given a 30 seconds
time budget per class and using branch coverage as criterion
[8]. In this paper, we hypothesise that we can improve the bug
detection performance of SBST by augmenting coverage infor-
mation used by SBSTwith defect prediction information.

Defect predictors are well-studied techniques for estimat-
ing the bug-prone areas in software. The predictions can be
coarse-grained like package [9] and file/class [10], [11] levels,
or fine-grained like method level [10], [12], [13]. They use
various features related to metrics like code size [14], code
complexity [15], change history [16] and organisation [17] to

predict whether a package, file or method is defective. Defect
predictors have been shown to be effective at locating bugs
in software [10], [18], [19]. As a result, organisations use
defect predictors to help developers in code reviews [20],
[21] and to focus their testing efforts on likely buggy parts in
code [22]. In addition, defect prediction has been successfully
used to inform other automated testing techniques, i.e.,
Paterson et al. [23] proposed a test case prioritisation strat-
egy, Perera et al. [8] introduced a time budget allocation
approach for SBST, and Hershkovich et al. [24] proposed a
strategy to select a subset of all the classes in a project to run
test generation. In contrast to existing work, ours is the first
to adapt defect prediction information to guide the search
process of an SBST technique.

We introduce predictive many objective sorting algorithm
(PreMOSA) which uses information from a defect predictor
and focuses the search for tests in the likely buggy methods to
increase the chances of detecting bugs. PreMOSA starts with
coverage targets containing likely buggy methods as predicted
by a defect predictor that works atmethod level [12], [13]. Once
it deems to have searched enough for test cases that cover the
likely buggy targets, it starts finding tests to cover the likely
non-buggy targets in the class under test (CUT). It generates
more than one test case for all the selected targets, thus increas-
ing the likelihood of detecting bugs. Finally, to ensure the non-
trivial targets have an equal chance of being covered, PreMOSA
dynamically balances the test coverage among all the targets in
the search. To do this, PreMOSA temporarily removes cover-
age targets from the search in every iteration based on their cur-
rent test coverage and number of independent paths.

We evaluate how PreMOSA performs in terms of its effec-
tiveness and efficiency in detecting bugs when compared to
the state-of-the-art DynaMOSA. We evaluate PreMOSA on
420 labelled bugs from 6 open source java projects in the
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Defects4J dataset. We use theoretical (i.e., simulated) defect
predictors that can be replacedwith any real defect predictor
in practice [12], [13]. We intentionally abstract the defect pre-
dictor in PreMOSA to avoid potential confounding effects
that can be caused by using a single defect predictor. Our
experimental evaluation demonstrates that PreMOSA is sig-
nificantly more effective than DynaMOSA with large effect
sizes when using any acceptable defect predictor, i.e., recall
and precision � 0.75 [25]. In particular, PreMOSA detects
8.3% and 7.8% more labelled bugs on average than Dyna-
MOSA when using an ideal defect predictor and most con-
servative and acceptable defect predictor, respectively.
Moreover, we find that PreMOSA is significantly more effi-
cient than DynaMOSAwith small effect sizes.

In summary, the contribution of this paper is a novel
SBST technique that uses defect prediction information
along with coverage information to guide the search process
in order to improve the bug detection capability of SBST. In
addition, we present an empirical evaluation involving 420
bugs from 6 open source java projects (which took roughly
48,800 hours) that demonstrates the effectiveness and effi-
ciency of our proposed approach, PreMOSA with theoreti-
cal defect predictors. The source code of PreMOSA, defect
predictor simulator, post processing scripts and data are
publicly available in the following link: https://doi.org/
10.6084/m9.figshare.19027778

2 PROBLEM STATEMENT AND MOTIVATION

2.1 Problem

Coverage is often used to define the fitness function used in
search-based software testing (SBST) [2], [3], [26]. During
the search process, test cases with high coverage are consid-
ered of higher quality, and the aim of the search process is
to generate test cases that maximise coverage. Different fit-
ness function formulations exist based on coverage, such as
approach level [3] and branch distance [27], [28]. A notable
technique that uses coverage is DynaMOSA [3], which is
considered the state-of-the-art SBST approach.

High code coverage, however does not necessarily imply
effective bug detection by the test suite [8]. Indeed, previous
work shows that SBST techniques have limitations in terms of
detecting bugs [5], [6]. Even DynaMOSA could only detect on
average 22% of the bugs from theDefects4J dataset in a 30 sec-
onds time budget and using branch coverage as guidance [8].

Our hypothesis is that augmenting coverage information
used by SBST approaches with defect prediction informa-
tion improves the performance of SBST in terms of bug
detection. Defect predictors can predict the methods in a
class that are likely to be buggy. SBST generates tests for a
class, and a class usually has only one or few buggy meth-
ods. We argue that increasing the coverage in a large num-
ber of non-buggy methods is ineffective in terms of
detecting bugs. Therefore, we propose to use defect predic-
tion information in the search process along with coverage
information to guide the search for test cases towards likely
buggy methods in the class.

2.2 Motivating Example

Fig. 1 shows the buggy code snippet and the applied patch
for DateTimeZone class from Time-8 bug in Defects4J [29].

The buggy method, forOffsetHoursMinutes, takes two
integer inputs, hoursOffset and minutesOffset, and
returns the DateTimeZone object for the offset specified by
the two inputs. For example, if the method is called with the
inputs hoursOffset=0 and minutesOffset=-30, then
it is expected to return a DateTimeZone object for the off-
set �00 : 30. However, such inputs execute the true branch
of the if condition at line 279 and the method throws an
IllegalArgumentException instead of the expected
DateTimeZone object. This bug is fixed by modifying the
if condition at line 279 and adding a new condition at line
282 as shown in the diff in Fig. 1.

To detect this bug, test cases have to execute the false

branches of the if conditions at line 273 and 276; that is
hoursOffset 6¼ 0 or minutesOffset 6¼ 0 and hour-

sOffset 2 ½�23; 23�. They also have to execute the true

branch at line 279 with an additional constraint; minute-
sOffset 2 ½�59;�1�. Furthermore, the newly added if

condition at line 282 adds another constraint on the input
hoursOffset; that is hoursOffset � 0. In summary,
only the test inputs sampled from the space where hour-

sOffset 2 ½�23; 0� and minutesOffset 2 ½�59;�1� can
detect the bug.

It is evident that just covering the buggy code (i.e., the
true branch of the if condition at line 279) is not sufficient
to detect the bug. For example, the inputs hoursOff-

set=12 and minutesOffset=-60 cover the buggy code,
however, they do not detect the bug. Also, the space of all
possible test inputs that cover the buggy code (i.e., hour-
sOffset 2 ½�23; 23� and minutesOffset =2 ½0; 59�) is
larger than the space of test inputs that can detect the bug.
The existing SBST techniques that aim at maximising code
coverage, such as DynaMOSA are more likely to sample test
inputs from the larger space of inputs that cover the buggy
code without detecting the bug, and then terminate without
actually detecting the bug.

The existing SBST approaches can be configured to gener-
atemany tests for each coverage target in the DateTimeZone
class, and it will increase the chances of detecting the bug.
However, there are 54 methods in the class and only one
method is buggy. If we assume the test adequacy criterion to
be branch coverage, then there are 201 coverage targets in

Fig. 1. Buggy code and patch from time-8 bug.
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total, while only 14 of them actually contain the buggy
method. Thus, we find it is ineffective to spend all the criti-
cal search resources on covering all the 201 targets, when
only a few of them leads to the buggy code. We propose to
use buggy methods predictions from a defect predictor to
decide where to increase the coverage within the class.
Thus, our novel SBST approach concentrates the search for
test cases more on the only buggy method in the project,
forOffsetHoursMinutes.

3 BACKGROUND

3.1 Optimisation Problem

In this paper, our proposed approach, PreMOSA, tackles the
test generation problem as a many objective optimisation
problem, where each objective represents a coverage target
in the CUT. Our approach optimises test cases to meet a
given coverage criterion, such as maximising branch cover-
age, method coverage or a combination of both.

Let U ¼ fu1; . . .; ukg be the set of k coverage targets of the
CUT. fiðtÞ, where i 2 ½1; k� and t is a test case, is the fitness
function for the coverage target ui. For example, assuming
the coverage target is a branch ui 2 U , fiðtÞ is as follows;

fiðtÞ ¼ alðui; tÞ þ dðui; tÞ (1)

where alðui; tÞ is the approach level and dðui; tÞ is the nor-
malised branch distance of the branch ui for the test case t
[3]. Approach level is calculated based on the distance (i.e.,
number of control dependencies) between the branch where
the execution diverges from the desired execution path and
the branch under consideration. Branch distance [27], [28] is
a widely used heuristic in fitness functions to guide the
search to find inputs that evaluate the logic in branch predi-
cates as desired (i.e., to true or false).

For a given test case t, the fitness is a vector of k values
(hf1; . . .; fki), where fi (i 2 ½1; k�) represents the distance of t
from covering the target ui 2 U . If a test case t covers a tar-
get ui, then the corresponding fitness fi of t is zero.

To maximise the coverage of multiple targets, we need to
find a set of non-dominated test cases T ¼ ft1; . . .; tng where
for each tj 2 T , 9ui 2 U such that fiðtjÞ ¼ 0. A set of test cases
are said to be non-dominated if each test case in the set is bet-
ter on at least one coverage target and worse on the remain-
ing targets when compared to other test cases in the set.

To evaluate individual test cases, PreMOSA uses Pareto
dominance (Definition 1) and Pareto optimality (Definition
2) of test cases.

Definition 1 Pareto Dominance. A test case ti dominates
another test case tj, if, and only if, the values of the fitness vec-
tor satisfy the following conditions:

8x 2 f1; . . .; kgfxðtiÞ � fxðtjÞ
and

9y 2 f1; . . .; kgs:t:fyðtiÞ < fyðtjÞ

The definition above states that a test case ti dominates
another test case tj, if, and only if, ti is closer to cover at least
one coverage target and not worse in terms of covering
other targets when compared to tj.

Definition 2 Pareto Optimality. A test case is Pareto opti-
mal, if, and only if, it is not dominated by any other test case in
the space of all possible test cases.

The definition above states that a Pareto optimal test case
is better on covering one or more targets and can be worse
on covering the remaining targets when compared to all
possible test cases.

The solution to the many-objective problem is a set of
Pareto optimal test cases. Unlike in usual many-objective
optimisation problems where there are trade-offs in the
objective space, in the context of test generation, the optimal
test cases are the ones which cover at least one target, i.e.,
objective, (i.e., 9ui 2 U s:t: fiðtÞ ¼ 0). Therefore, these test
cases that cover at least one target form the final test suite
and represent a sub-set of the Pareto optimal test cases.

3.2 Existing Many-Objective Algorithms

Panichella et al. [2] first proposed many objective sorting
algorithm (MOSA), which formulates the test generation
problem as a many objective optimisation problem and pro-
duces a set of Pareto optimal test cases. MOSA is based on a
genetic algorithm (GA). It starts with a set of randomly gen-
erated test cases as the initial population. It generates new
population of test cases by applying crossover and mutation
operators. Test cases are selected to the next generation
using a ranking algorithm called preference sorting algo-
rithm which is based on ‘preference criterion’ and the non-
dominance relation of test cases. According to preference
criterion, for each target ui 2 U , the test case that is closest
to cover ui is selected to the first non-dominated front. All
the test cases in the first non-dominated front are selected to
the next generation. MOSA maintains an archive of test
cases generated during the evolution process that forms the
final test suite. The archive contains the shortest test cases
for each covered target.

Dynamic many objective sorting algorithm (DynaMOSA)
[3] is the successor of MOSA and stands as the state-of-the-
art SBST technique. A main limitation in MOSA is that it
tries to cover all the targets from the beginning of the search
while most of the targets are not reachable until their control
dependent targets are covered. DynaMOSA addresses this
problem by introducing a method called dynamic selection
of targets.

Fig. 2 shows the control dependency graph (CDG) of the
method forOffsetHoursMinutes from the motivating
example. Nodes denote the predicates and leaves denote
the exit points of the program. For example, node 279-1
denotes the minutesOffset < 0 predicate at line 279 and
leaf 280 denote the return statement at line 280. Lines
between nodes denote the control dependency edges. For
example, b5;T is the true branch of the minutesOffset <
0 predicate. For simplicity, we do not include the nodes that
are not predicates of the program.

A subset of the targets that are included in the search
process cannot be covered until their control dependent tar-
gets are covered. Assume a test generation scenario which
uses branch coverage as the optimisation criterion. In the
beginning of the search, U contains all the branches as
shown in the CDG (Fig. 2) as the set of targets to search for
test cases. However, branches like b3;T and b3;F cannot be
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covered until their control dependent branches b2;T or b1;F
are covered. Likewise, b2;F cannot be covered until b1;T is
covered. Therefore, it is inefficient to search for tests to
cover such targets, e.g., b3;T , while their control dependent
targets are still uncovered.

To address this, DynaMOSA dynamically selects targets
to search for test cases only when their control dependent
targets are covered. For example, b3;T and b3;F are selected
to the search process only if b1;F or b2;F is covered. At the
start of the search, DynaMOSA selects the set of targets
U� � U that do not have control dependencies. At any given
time in the search, DynaMOSA optimises test cases to cover
only the targets in U�. Once a new population is generated,
DynaMOSA needs to update U� with new targets if their
control dependent targets are covered. Since DynaMOSA
was originally proposed to maximise code coverage, it also
removes the covered targets from U� to allow itself to focus
more on uncovered targets.

3.3 Bug Detecting with Search-Based Software
Testing Techniques

In order to detect a bug, a test case must satisfy the condi-
tions of the reachability, infection and propagation (RIP) model
[30], [31], [32], [33]. In addition, it must also have a test ora-
cle to reveal the failure [34]. MOSA, DynaMOSA and Pre-
MOSA are implemented in the state-of-the-art SBST tool,
EvoSuite. Tests generated by EvoSuite satisfy all three con-
ditions of the RIP model. However, they do not have test
oracles, hence are incapable of revealing bugs without test
oracle inserted by humans or automated tools [35]. We will
explain this more with the motivating example.

Assume a test generation scenario for the buggy version
of the DateTimeZone class in our motivating example.
Fig. 3a shows a sample test case generated by EvoSuite dur-
ing the search process. The execution of the test case reaches
the buggy code, i.e., line 279. The execution of the buggy
statement causes an incorrect internal program state (infec-
tion), i.e., a valid minutesOffset must not cause the pro-
gram to throw an IllegalArgumentException at line
280. The incorrect internal program state is propagated to an
incorrect final state (failure) of the program, i.e., at line 4 in
the test case, forOffsetHoursMinutes(0,-30) call
should output a valid DateTimeZone object for the offset
�00 : 30, instead an IllegalArgumentException is
thrown. EvoSuite does not have test oracles, hence it gener-
ates assertions in the tests assuming the program under test

is correct. For example, Fig. 3b shows the final test case gen-
erated by EvoSuite for the test case shown in Fig. 3a, which
is not able to reveal the bug since the test case does not fail
when it is executed against the buggy program.

In the ideal scenario, if oracle automation [35] exists, the
generated test cases can reveal the bugs. Without oracle
automation, the best EvoSuite can do is to propagate the
incorrect state of the program to the output. The scope of
this paper is to improve the bug detection capability of the
test suites generated by SBST guided by defect prediction
and not oracle automation. Therefore, in this paper, we con-
sider that DynaMOSA or PreMOSA detect a bug if they gen-
erate a test case that propagates the internal error to the
output of the program. Nevertheless, we remind the readers
that neither DynaMOSA nor PreMOSA are able to reveal
existing bugs in a program without the aid of oracle auto-
mation. Finally, this limitation is not only applicable to Pre-
MOSA and DynaMOSA, but also to other SBST techniques
[2], [26], [36] in this space as well.

4 PREDICTIVE MANY OBJECTIVE SORTING

ALGORITHM

Predictive many objective sorting algorithm (PreMOSA) is a
novel search-based software testing approach that incorpo-
rates guidance from a defect predictor. PreMOSA receives as
input a buggy program with methods labelled as buggy or
non-buggy, which are labels that can be obtained using exist-
ing defect predictors [12], [13]. PreMOSA is not specific to a
certain defect predictor. Hence, we use the most commonly
used defect predictor output type in PreMOSA, which is

Fig. 2. Control dependency graph.

Fig. 3. A sample test generated by EvoSuite for the buggy version of
DateTimeZone class from Time-8.
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binary classification [37]. PreMOSA uses this information to
start searching for test inputs that cover targets that are
deemed to contain buggy methods as indicated by the defect
prediction information (see Section 4.1). This helps focus the
search initially on covering the likely buggy targets rather
than the likely non-buggy targets.

Most of the time, defect predictors are not 100% accurate.
Hence, there can be actual buggy methods among the meth-
ods labelled as non-buggy. Therefore, PreMOSA adds the
targets that contain predicted non-buggy methods, once the
likely buggy targets coverage does not improve for a pre-
defined number of consecutive iterations (see Section 4.1).

PreMOSA also generates more than one test case for all
the selected targets, hence, increases the chances of detect-
ing bugs (see Section 4.2).

Finally, to balance the test coverage among all the targets
in the search, we introduce a method to dynamically disable
coverage targets from the search based on their current test
coverage and number of independent paths (see Section 4.3).
This ensures that the non-trivial targets have an equal
chance of being covered compared to the targets that are
easier to cover.

PreMOSA is presented in Algorithm 1. It is based on a
genetic algorithm (GA). PreMOSA creates an initial popula-
tion of randomly generated test cases (line 9 in Algorithm 1).
Then, it evolves this initial population through creating new
test cases via crossover and mutation (line 13) and selecting
test cases to the next generation (line 18), until a termination
criterion, such asmaximum time budget, is met.

4.1 Filtering Targets with Defect Prediction

A defect predictor classifies the methods of the class under
test (CUT) as buggy or non-buggy, denoted as ci, where

ci ¼ 1 if mi is predicted as buggy
0 otherwise

�

where mi denotes method with index i. PreMOSA starts
with filtering the likely buggy and likely non-buggy targets,
UB and UN respectively, from the set of all targets U using
the classifications given (line 2 in Algorithm 1). The proce-
dure FILTERTARGETS labels targets as buggy if they belong to
a likely buggy method and non-buggy otherwise. Initially,
PreMOSA finds tests to cover only the likely buggy targets,
hence, only the likely buggy targets are selected to be
included in the search process in the beginning (line 5). This
way, PreMOSA can extensively search for test cases that
cover likely buggy targets, which leads to generating more
effective test cases faster than other approaches.

However, defect predictors often are not 100% accurate,
and it is likely that buggy methods may be labelled as non-
buggy. To address this issue, PreMOSA considers targets
that do not contain any methods that are predicted as buggy
if it deems to have searched enough for tests that cover the
likely buggy targets (line 19). If PreMOSA resorts to search-
ing for tests to cover only the likely buggy targets, then it
will miss actual buggy targets that are incorrectly classified.
Thus, PreMOSA starts finding tests to cover likely non-
buggy targets once the coverage of likely buggy targets
does not improve for a predefined number of consecutive
iterations (I) in GA (line 28). This way, PreMOSA expects to

account for the errors present in the predictions. Finally, if
there are no likely buggy targets, either because the class is
not buggy or the defect predictor is inaccurate, PreMOSA
considers all targets from the start (line 7).

Algorithm 1. PreMOSA

Input:
U ¼ fu1; . . . ; ukg ⊳ the set of coverage targets of CUT
G ¼ hN;Ei ⊳ control dependency graph of the CUT
f : E ! U ⊳ partial map between edges and targets
C = {c1; . . . ; cm} ⊳ the set of defectiveness classifications for
methods in the CUT
1: procedure PREMOSA
2: UB;UN  FILTERTARGETS(U;C)
3: L INDEPENDENTPATHS(G) ⊳ L is a vector of the number

of independent paths for each edge
4: if UB is not empty then
5: U  UB

6: else
7: U  UN

8: U�  targets in U with no control dependencies
9: P0  RANDOMPOPULATION(M) ⊳M is the population size
10: A UPDATEARCHIVE(P0; ;) ⊳ A is the archive
11: U�  UPDATETARGETS(U�; G;f)
12: for r 0 ; !terminationCriteria; r++ do
13: Qr  GENERATEOFFSPRING(Pr)
14: A UPDATEARCHIVE(Qr;A)
15: U�  UPDATETARGETS(U�; G;f)
16: Rr  Pr [Qr

17: U�  SWITCHOFFTARGETS(U�; A; L;f)
18: Prþ1  SELECTPOPULATION(Rr; U

�;M)
19: U�  ADDNONBUGGYTARGETS()
20: T  A⊳ Update the final test suite T
21: RETURN(T )
22: procedure ADDNONBUGGYTARGETS

23: if trigger not fired to add non-buggy targets then
24: if # covered goals ¼ prev. # covered goals then
25: w++
26: else
27: w ¼ 0
28: if w ¼ I then ⊳ I is max. # iterations without coverage

improvement
29: U  U [ UN

30: U�  U� [ fu 2 UN ju has no control dependenciesg
31: RETURN(U�)

4.2 Updating Targets and Archiving Tests

PreMOSA generates more than one test case for all the
selected targets in order to increase the chances of detecting
bugs. When updating targets in each iteration (lines 11 and
15), it does not remove covered targets from U�, allowing it
to keep generating more tests to cover those targets as well.

PreMOSA keeps an archive of all the test cases that cover
the selected targets u 2 U during the search (lines 10 and
14). This archive of test cases form the final test suite. Thus,
the final test suite is more likely to detect the bugs as it con-
tains all the generated test cases which cover the potentially
buggy targets.

Removing covered targets from U� and archiving only
the shortest test case for each covered target are beneficial
for achieving high code coverage with a minimal test suite
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size [3]. However, just covering the buggy code is not suffi-
cient to detect the bug. In particular, Perera et al. [8] showed
that there was an average improvement of up to 79% in
terms of detecting bugs when the state-of-the-art Dyna-
MOSA was configured to not to remove covered targets
from the search and retain all the generated tests. Therefore,
we decide to archive all the test cases that cover the selected
targets u 2 U and not to remove the covered targets from
the search in PreMOSA.

4.3 Balanced Test Coverage of Targets

In our running example, assume the branch coverage is
used as the optimisation criterion. An SBST technique that
does not remove covered targets from the search is more
likely to keep on generating test cases which cover more
trivial branches like b3;T or b4;T rather than a less trivial
branch b5;T (Fig. 2). This is detrimental to the bug detection
performance of SBST since it is necessary to find tests that
exercise the branch b5;T in order to detect the bug, and also,
to increase the chances of detecting the bug, SBST has to
find as many tests as possible that cover b5;T .

We introduce a method to dynamically remove coverage
targets from the search based on their current test coverage
and number of independent paths, in order to balance the
test coverage among all the targets. A balanced test cover-
age means that all the targets receive an equitable test cover-
age. This ensures that, in PreMOSA, the less trivial targets
also get a good coverage in the presence of more trivial
targets.

We consider a balanced test coverage is achieved when
the measure, the number of tests generated per an indepen-
dent path of a target, is equal for all of the targets. We mea-
sure the number of independent paths of a target by
assuming the paths start at the control dependent edge of
that target (line 3). An independent path is one that traverses
one ormore new edges in the control dependency graph.

In general, for each target u 2 U�, PreMOSA checks the
current test coverage (i.e., number of tests in the archive
that cover u), and then temporarily removes u from U� in
the current iteration, if the test coverage per an independent
path from u is higher than the other targets (line 17).

4.3.1 Independent Paths

We use the measure, the number of independent paths of a
target, to determine how much of a test coverage a target
should receive compared to other targets, in order to
achieve a balanced test coverage for all targets. For a target
u 2 U�, if there are many independent paths that start from
u, then PreMOSA should generate more tests to cover u
than the other targets which have few independent paths.
In our running example, the target b2;F should receive more
test coverage than b2;T because there are more independent
paths leading up from b2;F (6) compared to b2;T (1).

In the beginning of the search, PreMOSA finds the num-
ber of independent paths of each edge in the control depen-
dency graph G of the program (line 3). The control
dependency graph G ¼ hN;Ei consists of nodes n 2 N and
edges e 2 E � N 	N . The nodes represent statements in
the program. The edges represent control dependencies
between the statements. For each edge e 2 E, the procedure

INDEPENDENTPATHS calculates the number of independent
paths starting from e using the graph G. The actual execu-
tions of the paths start at the root node, however, in the cal-
culation of number of independent paths of e, we assume
the paths start at e. All the coverage targets that are directly
control dependent by e have the same number of indepen-
dent paths as that of e.

In the motivating example, the edges b2;T , b3;T , b4;T , b5;T ,
b6;T , b7;T and b7;F have only one path each that start from
those edges. There are 2 independent paths from the edge
b6;F , those are b6;F � b7;T and b6;F � b7;F . Likewise, there are
7, 6, 6, 5, 4 and 3 independent paths that start from edges
b1;T , b1;F , b2;F , b3;F , b4;F and b5;F , respectively. If the optimi-
sation problem is maximising the branch coverage, then
these edges become the coverage targets in the search.

4.3.2 Temporarily Disabling Targets from Search

In many objective optimisation, test cases are optimised
simultaneously to satisfy all the coverage targets. Thus, the
search resources (e.g., time budget) are not allocated to each
coverage target individually. Therefore, to focus the search
differently on covering each target, we decide to dynami-
cally switch off targets during the evolution. In every itera-
tion in GA, for each target u 2 U�, the procedure
SWITCHOFFTARGETS checks the current test coverage of u, and
then removes u from U�, if the test coverage per an indepen-
dent path of u is higher than that of the other targets. There-
fore, after calling the procedure SWITCHOFFTARGETS, only
the targets which are having a low test coverage (per an
independent path) remain in U�. Then, the procedure
SELECTPOPULATION selects test cases to the next generation
considering only these remaining targets in U�. Hence, this
paves way for the search to find more test cases in the next
generation that cover these targets, thereby guiding the
search to a balanced test coverage for all the targets.

Algorithm 2. Temporarily Removal of Targets to Balance
Test Coverage

1: procedure SWITCHOFFTARGETS(U�; A; L;f)
2: NP  NODESWITHPREDICATES(G)
3: for n 2 NP do
4: fen;T ; en;Fg  outgoing edges in G from node n
5: ln;T  GETINDEPENDENTPATHS(L; en;T )
6: ln;F  GETINDEPENDENTPATHS(L; en;F )
7: un;T  RANDOMCHOICE(ffðen;T Þg)
8: un;F  RANDOMCHOICE(ffðen;F Þg)
9: An;T  GETTESTS(A; un;T )
10: An;F  GETTESTS(A; un;F )

11: if
jAn;T j
ln;T

>
jAn;F j
ln;F

then

12: U�  U� � ffðen;T Þg
13: else if

jAn;T j
ln;T

<
jAn;F j
ln;F

then

14: U�  U� � ffðen;F Þg
15: RETURN(U�)

First, the procedure SWITCHOFFTARGETS finds the set of
nodes with predicates NP in G (line 2 in Algorithm 2). Next,
for each node n 2 NP , it fetches the number of independent
paths from the outgoing edges of n (lines 5–6 in Algorithm
2). Then, it randomly selects a control dependent target
from each outgoing edge of n (lines 7–8 in Algorithm 2). We
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consider all the control dependent targets of an edge receive
the same test coverage. Hence, the test coverage of a ran-
domly selected target of an edge is equal to the test coverage
of that edge. Finally, it finds the edge which has the largest
number of tests in the archive per an independent path, and
removes all the control dependent targets of that edge from
U� (lines 9-14 in Algorithm 2).

In the running example, if we consider the node 276-2,
the outgoing edges are b4;T and b4;F , and the number of
independent paths from these edges are 1 and 4, respec-
tively. Assume the coverage criterion is maximise branch
coverage, hence b4;T and b4;F are also targets in the search,
and there are currently 30 and 20 tests in the archive cover-
ing b4;T and b4;F , respectively. Thus, b4;T has 30 (¼ 30=1) tests
in the archive per an independent path, while b4;F has only 5
(¼ 20=4) tests per a path. Hence SWITCHOFFTARGETS tempo-
rarily removes the target b4;T from U�, and paves way for
the search to find more test cases that cover b4;F . Overall,
this encourages the search to have a balanced test coverage
for all the targets rather an excessive coverage of more triv-
ial targets like b3;T and b4;T . As a result, a less trivial target
like b5;T , which contains the buggy code, receives a good
coverage in the presence of other more trivial targets.

5 DESIGN OF EXPERIMENTS

We design a set of experiments to evaluate PreMOSA in
terms of its effectiveness and efficiency in detecting bugs
compared to the state-of-the-art DynaMOSA. Through these
experiments, we aim to investigate if augmenting coverage
information with defect prediction information in the search
process of SBST indeed helps to improve the bug detection
performance of the generated test suites. Our first research
question is:

RQ1: Is PreMOSA more effective in detecting bugs compared
to the state-of-the-art DynaMOSA?

To answer this research question, we compare the number
of bugs detected by PreMOSA against DynaMOSA, which
we discuss in Section 5.4.We run test generation onDefects4J
bugs [29] (discussed in Section 5.3) using both PreMOSA and
the baseline. To account for randomness in PreMOSA and
DynaMOSA, we repeat the test generation for 25 runs for
each bug and testing approach. Once test cases are generated
and evaluated for bug detection, we report the bug detection
results as means and medians over 25 runs. To check if Pre-
MOSA significantly detects more bugs than DynaMOSA and
the effect size of the difference, we employ one-tailed non-
parametric Mann-Whitney U-Test with the significance level
(a) 0.05 [38] and Vargha andDelaney’s bA12 statistic [39].

To analyse the efficiency of PreMOSA, we seek to answer
the following research question:

RQ2: Is PreMOSA more efficient at generating test cases that
can detect bugs compared to the state-of-the-art DynaMOSA?

To answer this research question, we measure the time to
generate the first test case that can detect a bug by the two
approaches over 25 runs. As we described in Section 3.3, a
test case detects a bug if it satisfies all the three conditions
of RIP model, and we call such test cases bug detecting tests
throughout the paper. For each bug that is detected by both
approaches, we calculate the difference of the mean time to
generate the first test case that detects the particular bug by

the two approaches. If the difference is positive, that means
PreMOSA generates a test case to detect the bug in a shorter
time. A negative difference means otherwise. To check if
PreMOSA generates a bug detecting test in a significantly
shorter time, we employ one-tailed Wilcoxon signed-rank
test [38] and its effect size, r [40]. We remind the readers
that the time taken to generate the first bug detecting test is
not equal to time taken to reveal the bug. The latter happens
only after the test generation is completed.

Zimmermann et al. [25] argues that a defect predictor is
strong if, and only if, all recall, precision and accuracy are
greater than 75%. Therefore, we consider defect predictors
having both recall and precision in the range 75% to 100%
as acceptable defect predictors. In RQ1 and RQ2, we simu-
late defect predictor outcomes for two levels of performance
for PreMOSA; i) most conservative and acceptable defect
predictor (recall=precision=75%) and ii) ideal defect predic-
tor (recall=precision=100%). We will discuss this more in
Section 5.1. We expect PreMOSA to perform best with the
latter defect prediction simulation, and with the former sim-
ulation, we can see the most conservative performance of
PreMOSA when using acceptable defect predictors.

5.1 Defect Prediction Simulation

We simulate defect predictor outcomes at two levels of
recall and precision, which correspond to the theoretical
upper bound and lower bound performance of an accept-
able defect predictor. This would not be possible with real
defect predictors since their performance cannot be con-
trolled. Using a real defect predictor would have demon-
strated the viability of PreMOSA in practice. However, it
would then have the disadvantage of limiting the findings
of our study to one single defect predictor, e.g., a specific
defect predictor built with one learner and one set of met-
rics. Therefore, we abstract the defect predictor component
in the experimental evaluation.

Recall is the probability that the defect predictor correctly
labels a buggy method. It can be calculated as in Equation.
(2), where tp is the number of true positives, i.e., number of
buggy methods that are correctly classified, and fn is the
number of false negatives, i.e., number of buggy methods
that are incorrectly classified. Higher recall means Pre-
MOSA is informed of more buggy methods, hence, it is
expected to increase the chances of detecting bugs.

Precision measures what percentage of methods that are
labelled as buggy by the defect predictor are actually buggy.
It can be calculated as in Equation. (3), where fp is the num-
ber of false positives, i.e., number of non-buggy methods
that are incorrectly classified as buggy methods. For exam-
ple, if precision is 50%, that means half of the methods that
are labelled as buggy are not actual buggy methods. Higher
precision means that PreMOSA does not concentrate more
on covering non-buggy code, which otherwise will likely be
ineffective in terms of detecting bugs.

recall ¼ tp

tpþ fn
(2)

precision ¼ tp

tpþ fp
(3)
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Algorithm 3 illustrates the steps of simulating the
defect predictor outputs for a given recall and precision. The
procedure SIMULATEDEFECTPREDICTOR receives the set of meth-
ods in the project with the ground truth labels for their defec-
tiveness, M ¼ fm1; . . . ;mkg. mi ¼ 1 if the ith method is
buggy andmi ¼ 0 if the ith method is not buggy. First, it cal-
culates the number of buggy (d) and non-buggy methods
(nd) in the project (lines 2–3 in Algorithm 3). Next, it finds
the set of indices of all the buggy (Mb) and non-buggy
methods (Mn) in the project (lines 4–5). Then, it calculates
the number of true positives (tp) and false positives (fp)
for the given recall (r) and precision (p) (lines 6–7). The
RANDOMCHOICE(S; n) procedure returns a set of randomly
picked n items from the set S. Likewise, at line 8, Cb is
assigned a set of randomly picked tp number of buggy
and fp number of non-buggy method indices. Cb denotes
the set of buggy method indices as classified by the simu-
lated defect predictor. Finally, at line 9, the output C ¼
fc1; . . . ; ckg is formed where ci ¼ 1 if the ith method is
labelled as buggy and ci ¼ 0 if the ith method is labelled as
not buggy by the defect predictor.

Algorithm 3. Defect Predictor Simulation

Input:
r ⊳ recall
p ⊳ precision
M ¼ fm1; . . . ;mkg ⊳ ground truth
1: procedure SIMULATEDEFECTPREDICTOR

2: d COUNT(mi) formi 2M s.t.mi = 1
3: nd jMj � d
4: Mb  fi j 8i 2 ½1; k� ^mi ¼ 1g
5: Mn  fi j 8i 2 ½1; k� ^mi ¼ 0g
6: tp d � r
7: fp tp � ð1� pÞ=p
8: Cb  RANDOMCHOICE(Mb; tp) [ RANDOMCHOICE(Mn; fp)
9: C  fci ¼ 1 j 8i 2 ½1; k� ^ i 2 Cb, ci ¼ 0 j 8i 2 ½1; k� ^ i =2 Cbg
10: RETURN(C)

5.2 Time Budget

We set 2 minutes as the time budget for test generation per
class. In practice, the time reserved for test generation for a
project depends on the project size and resource availability
in the organisation. If the project is small and has a few
number of classes, then it takes a very short time to run test
generation on all the classes. Perhaps, the test generation
can be done on developer machines outside of the working
hours. If the project is large, which is usually the case, then
it may not be possible to run SBST on developer machines
as it may run for a longer duration and also slow down
them [41].

For example, running SBST for 2 minutes per class on a
project having several hundreds of classes could take up
to 30 hours to finish test generation for the whole project.
In a situation like this, SBST tools can be setup in the con-
tinuous integration (CI) system [42] of the organisation.
Although, if the organisation wants to run an SBST tool
in their CI system, then it should use as little resources as
possible, such that it will not cause any impact (e.g.,
idling other jobs) on the existing processes in the system
(e.g., regression testing, code quality checks, project

builds etc.) [8]. Therefore, we decide that 2 minutes per
class is a reasonable time budget in a usual resource con-
strained environment.

5.3 Experimental Subjects

We use the Defects4J dataset (version 1.5.0) [29], [43] as
our benchmark. It contains 438 real bugs from 6 real-
world open source Java projects. We remove 4 deprecated
bugs, 12 bugs that do not have buggy methods, and 2
bugs for which SBST generated uncompilable tests (e.g.,
method signature is changed in the bug fix). This results
in the following 18 bugs that are not part of the experi-
ments: Lang-2, 23, 25, 30, 56, 63, Math-12, 104, Time-11,
21, Chart-23, Closure-15, 28, 63, 83, 93, 111 and Mockito-26
are removed. Thus, we evaluate PreMOSA against the
baseline on a total of 420 bugs1. The 420 bugs are from the
following projects; JFreeChart (25 bugs), Closure Compiler
(170 bugs), Apache commons-lang (59 bugs), Apache com-
mons-math (104 bugs), Mockito (37 bugs), and Joda-Time
(25 bugs).

For each bug, the Defects4J benchmark gives a buggy
version and a fixed version of the program. The difference
between these two versions of the program is the applied
patch to fix the bug, which indicates the location of the bug.
We label all the methods that are either modified or
removed in the bug fix as buggy methods [44].

Defects4J is widely used for research on automated unit
test generation [5], [8], [45], automated program repair [46],
fault localisation [47], test case prioritisation [23] etc. This
makes Defects4J a suitable benchmark for evaluating our
approach, as it allows us to compare our results to existing
work.

5.4 Baseline

We use the current state-of-the-art SBST technique, Dyna-
MOSA [3], as the baseline. It is more effective at achieving
high branch, statement and strong mutation coverage than
previously proposed SBST techniques ([1], [2], [26]) [3].
DynaMOSA is implemented in the state-of-the-art SBST
tool, EvoSuite [36], and won the unit testing tool competi-
tion at SBST 2019 [48].

We configure DynaMOSA to not remove the covered
targets from the search, retain all the test cases generated,
and continue the search until the full time budget is con-
sumed in our experimental evaluation. DynaMOSA pri-
marily focuses on achieving high code coverage with a
minimal test suite size. Hence, it aims at generating only
one short test case to cover each target in the program.
However, just covering the buggy code is not sufficient to
detect the bug. Perera et al. [8] showed that DynaMOSA
detects 79% more bugs on average when it is configured
to not remove covered targets from the search, use the
full time budget, and retain all the generated tests in the
final test suite (i.e., disable test suite minimisation).

1. While there may be more unlabelled bugs in the six projects, we
use only the labelled bugs in the Defects4J dataset. The experimental
results and the conclusions are based on these bugs.
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5.5 Prototype

We implement PreMOSA in the state-of-the-art SBST tool,
EvoSuite [36]. EvoSuite is an automated test generation
framework that generates JUnit test suites for java programs
[49], [50]. To date, EvoSuite is actively maintained and eval-
uated for its effectiveness on both industrial and open
source projects in terms of code coverage [2], [3], [4], [26],
[51] and bug detection capability [5], [6], [8], [45]. We imple-
ment PreMOSA within EvoSuite version 1.0.7, forked from
the GitHub repository [49] on June 18th, 2019. The proto-
type is available to download from here: https://github.
com/premosa-sbst

5.6 Parameter Settings

There are several parameters that need to be configured in
PreMOSA. Parameter tuning of search algorithms is a long
and expensive process [52]. Arcuri and Fraser [52] showed
that the default parameter values in EvoSuite give reason-
able results when compared to tuned parameters. More-
over, Panichella et al. [3] also used these default values in
the state-of-the-art DynaMOSA. Therefore, we decide to use
the default parameter values used in EvoSuite [1] and Dyna-
MOSA [3] except for the following parameters.

Coverage criteria: We use branch coverage as coverage cri-
terion in PreMOSA inline with the prior studies which
investigated bug detection effectiveness of EvoSuite [5], [6].
EvoSuite with branch coverage was shown to be the most
effective coverage criterion in terms of detecting bugs when
compared with other criteria like line, output and weak
mutation coverage [7], [45].

Termination criteria: We use the maximum time budget as
the termination criterion. We find that stopping the search
after it covers all the coverage targets is detrimental to bug
detection. Just covering the buggy code is not sufficient to
detect the bug. Thus, the search needs to utilise the full time
budget to generate more tests in order to increase the chan-
ces of detecting bugs. Therefore, we run PreMOSA until it
consumes the allocated time budget.

Test suite minimisation: We disable test suite minimisation
since all the test cases in the archive form the final test suite
(see Section 4.2).

Assertion strategy:Mutation-based assertion filtering can be
computationally expensive and can lead to timeouts. There-
fore, following a similar approach to previous work [5], [8],
we choose all possible assertions as the assertion strategy.

Similar to PreMOSA, we configure the baseline tech-
nique, DynaMOSA, as described above.

Finally, following the results of our pilot runs, we use 50
consecutive iterations for the parameter maximum number of
iterations without coverage improvement (I) in PreMOSA. Fur-
thermore, we configure PreMOSA to add non-buggy targets
to the search if it cannot cover any buggy target in the first 25
iterations in the search. For some of the classes, PreMOSA
cannot find a test that covers the buggy targets until the trig-
ger is fired to add non-buggy targets to the search. Thus, all
the search resources spent until this point are ineffective in
terms of detecting bugs. Our preliminary results suggest that
for a significant number of classes, PreMOSA covers the first
buggy target within the first 25 iterations. Therefore, we
decide to add non-buggy targets to the search if PreMOSA
fails to cover at least one target after 25 iterations.

5.7 Experimental Protocol

We run experiments with PreMOSA using 2 instances of
simulated defect predictors and DynaMOSA on 420 bugs.
For each bug in the Defects4J dataset, we take the buggy
version of the project and collect the ground truth labels for
the buggy and non-buggy methods. Next, for each of the six
projects in Defects4J, we combine all the ground truth labels
from the bugs of those projects. For example, for Apache
commons-lang project, we combine the labels from all the
59 bugs. Then, we simulate the defect predictor outcomes
using the Algorithm 3 for each of the six projects in separate.

Our intended application scenario is generating tests to
detect bugs that already exist in the system. Hence, we run
test generation on the buggy version of the projects. Since
we are measuring the bug detection capability of both
approaches only on the Defects4J bugs, we do not run test
generation on the non-buggy classes, i.e., classes that are
not modified in the bug fixes of the Defects4J bugs.

To take the randomness of SBST into account, we repeat
each test generation run 25 times. Due to the randomness of
the Defect Prediction Simulation Algorithm, we repeat the
simulation runs 5 times for the recall=precision=75% experi-
ments. For each of these simulated defect predictor instan-
ces, we repeat test generation runs 5 times. Consequently,
we have to run a total of 3 (approaches) � 25 (repetitions) �
482 (buggy classes) ¼ 36,150 test generations.

We evaluate if the 36,150 generated test suites detect the
selected Defects4J bugs by using the interfaces provided by
Defects4J [29]. First, the flaky test cases are removed from
the test suites using the ‘fix test suite’ interface in Defects4J
[29] as described in [5]. We use the fixed versions of the pro-
grams as the test oracles [53]. If a test suite running against
the buggy version of a program produces a different output
compared to what it produces when it is run against the
fixed version, then it means the test suite detects the bug.
The ‘run bug detection’ interface uses the fixed version as
the test oracle and determines if a test suite detects a bug by
comparing the test execution results between the two ver-
sions. EvoSuite generates assertions assuming the program
under test is correct, therefore the generated tests should
always pass when they are run against the buggy version. A
test suite is considered broken, if it is not compilable or fails
when it is run against the buggy version. The test suite is
considered it has missed detecting the bug, if the test execu-
tion results are same when it is run against the buggy and
fixed versions of the program, if the results are different,
then it is considered as it has detected the bug.

The ‘run bug detection’ interface logs the test cases that
produce different test execution results when run against the
buggy and fixed versions. We configure both PreMOSA and
DynaMOSA to log the time taken to generate each test case
since the start of the search (in milliseconds). Fig. 4 shows a
sample test case with the time taken to generate it logged as a
comment. Hence, we can find the time taken to generate test
cases that detect the bugs by each approach, which will be
used to evaluate the efficiency of the two approaches (RQ2).

6 RESULTS

We present the results for our research questions following
the method described in Section 5. Our main aim is to
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evaluate if PreMOSA is more effective and efficient than the
state-of-the-art DynaMOSA.

RQ1: Is PreMOSA Effective in Detecting Bugs?

As we described in Section 5, we perform 25 runs of Pre-
MOSA using defect predictions at recall=precision=75%
(PreMOSA-75) and recall=precision=100% (PreMOSA-100),
and DynaMOSA against each buggy program in Defects4J
(Section 5.3) and report the bug detection results as boxplots
in Fig. 5. As we can see, both PreMOSA-100 and PreMOSA-
75 detect more bugs than DynaMOSA.

We report the means and medians of the number of bugs
detected and the results from the statistical analysis in
Table 1. DynaMOSA detects 197.16 bugs on average in 2
minutes. PreMOSA-100 and PreMOSA-75 outperform
DynaMOSA, and detect 213.56 and 212.6 bugs on average,
which are average improvements of 16.4 (+8.3%) and 15.44
(+7.8%) more bugs than DynaMOSA, respectively. The dif-
ferences of the number of bugs detected by PreMOSA-100/
PreMOSA-75 and DynaMOSA are statistically significant
according to the Mann-Whitney U-Test (p-value <0.0001)
with large effect sizes ( bA12 � 0.98). Thus, we conclude that
PreMOSA is significantly more effective than DynaMOSA

when using any acceptable defect predictor (i.e., recall, pre-
cision � 75%).

PreMOSA-75 detects only 0.96 (-0.4%) less bugs on aver-
age than PreMOSA-100. According to the one-tailed Mann-
Whitney U-Test, this difference is not statistically significant
(p-value = 0.5512), and the bA12 statistic indicates a negligible
effect size of 0.53. Therefore, we can confirm PreMOSA suc-
cessfully accounts for errors in the predictions of defect pre-
dictors in the acceptable range.

Certain bugs are harder to detect than others. We identify
a bug as a unique bug if it is only detected by one approach,
i.e., PreMOSA or DynaMOSA. The number of unique bugs
detected by an approach is an indication of the ability of
that approach to detect the bugs that are not detected other-
wise in the given time budget, which is an important
strength given how hard it is to detect a bug [54].

Table 2 shows a summary of the bug detection results of
PreMOSA and DynaMOSA. PreMOSA-100 and PreMOSA-
75 detect 287 and 292 bugs altogether, which is 68.3% and
69.5% of the total bugs respectively, whereas DynaMOSA
detects only 280 (66.7%) bugs. PreMOSA-100 detects 17
unique bugs that DynaMOSA cannot detect in any of the
runs, whereas DynaMOSA only detects 10 such unique
bugs. Similarly, PreMOSA-75 detects 22 unique bugs that
are not detected by DynaMOSA, whereas DynaMOSA only
detects 10 unique bugs that PreMOSA-75 cannot detect in
any of the runs. This shows that PreMOSA is capable of
detecting more bugs that are not detected by DynaMOSA.

We find that PreMOSA-100 detects less bugs in total and
less unique bugs than PreMOSA-75 when the bugs are iso-
lated in buggy methods with private access modifier (i.e.,
private buggy methods). For example, PreMOSA-75 detects
Closure-25, 50, 55, 57, 67, 68, 143, 154 bugs, which all have
only private buggy methods, while PreMOSA-100 detects
none of them. PreMOSA-100 starts the search for test cases
to cover only the buggy targets. When all the buggy targets
are in private methods, PreMOSA-100 has only limited
guidance to cover these targets since it cannot directly call
the private buggy methods. PreMOSA-100 will get further

Fig. 4. A sample test case with the time taken to generate.

Fig. 5. The number of bugs detected by PreMOSA and DynaMOSA in 2
minutes time budget.

TABLE 1
Mean and Median Number of Bugs Detected by PreMOSA

and DynaMOSA in 2 Minutes Time Budget

Mean Median p-value bA12

PreMOSA-100 213.56 213 PreMOSA-100
versus DynaMOSA

<0.0001 0.99

PreMOSA-75 212.6 212 PreMOSA-75
versus DynaMOSA

<0.0001 0.98

DynaMOSA 197.16 198 PreMOSA-100
versus PreMOSA-75

0.5512 0.53

TABLE 2
Summary of the Bug Detection Results at 2 Minutes

Bugs detected
Bugs detected
in every run

Unique bugs

PreMOSA-100 287 140 17
PreMOSA-75 292 127 22
DynaMOSA 280 114 10
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guidance to cover these targets only after the non-buggy tar-
gets are added to the search (line 19 in Algorithm 1). It will
be able to indirectly call the buggy targets in private meth-
ods through non-buggy methods with non-private access
modifier. In contrast, PreMOSA-75 is more likely to start
with non-buggy targets incorrectly predicted as buggy or
all likely non-buggy targets (line 7 in Algorithm 1). This
means PreMOSA-75 has a better chance of having more
guidance to cover buggy targets in private methods from
the beginning of the search compared to PreMOSA-100, and
as a result, it is able to detect more bugs in total and more
unique bugs than PreMOSA-100.

If we consider a bug as detected only if all the 25 runs by
an approach detect that bug (i.e., success rate = 1.0), then
the number of bugs detected by PreMOSA-100 and Pre-
MOSA-75 becomes 140 and 127 respectively, whereas it is
only 114 bugs for DynaMOSA. We further find that Pre-
MOSA-100 detects 108 bugs more times than DynaMOSA,
while for DynaMOSA, this is only 62 bugs. Similarly, Pre-
MOSA-75 detects 124 bugs more times than DynaMOSA,
whereas it is only 61 bugs for DynaMOSA. Altogether, this
demonstrates that PreMOSA is also more robust in detect-
ing bugs when compared to DynaMOSA.

In summary, PreMOSA is significantly more effective
than the state-of-the-art DynaMOSA with large effect
sizes when using any acceptable defect predictor. The
superior performance of PreMOSA is supported by both
its capability to detect new bugs that are not detected by
DynaMOSA and the robustness of the approach.

RQ2: Is PreMOSA Efficient in Generating Test Cases
That can Detect Bugs?

As described in Section 5, for each approach, we calculate
the mean time to generate the first test case that detects each
bug. In the case of a bug that is detected by both PreMOSA-
100 and DynaMOSA, we then calculate the difference of the
mean times to generate the first bug detecting test by the
two approaches, i.e., mean time to generate the first bug
detecting test by DynaMOSA - mean time to generate the
first bug detecting test by PreMOSA-100. We repeat the
same procedure for PreMOSA-75 and DynaMOSA as well.
If the difference is positive, that means PreMOSA generates
a bug detecting test in a shorter time on average. A negative
difference means PreMOSA has a worst performance.

We report the means and medians of the differences of
the time taken to generate bug detecting tests and the results
from the statistical analysis in Table 3. The average differ-
ence of mean time to generate bug detecting tests between
PreMOSA-100 and DynaMOSA is 2.59 seconds, and it is
2.02 seconds between PreMOSA-75 and DynaMOSA.

According to the one-tailed Wilcoxon signed-rank test,
these differences are statistically significant with p-values
<0.05. However, we find that the effect sizes (i.e., r) esti-
mated using the Wilcoxon signed-rank test are small. The
effect size of the difference of mean time to generate bug
detecting tests between PreMOSA-100 and DynaMOSA is
0.18, which translates to approximately 60% probability of
PreMOSA-100 generating a bug detecting test faster than
DynaMOSA [40]. The effect size of 0.11 between PreMOSA-
75 and DynaMOSA suggests that PreMOSA-75 generates a
bug detecting test faster than DynaMOSA approximately
56% of the time. Therefore, we can conclude PreMOSA is
significantly faster than DynaMOSA to generate a bug
detecting test when using any acceptable defect predictor.

The above analysis is carried out with respect to the time
to generate bug detecting test for each bug that is detected
by all the approaches in the comparison. In addition, we
also analyse the efficiency of PreMOSA and DynaMOSA
with respect to the number of bugs detected over the time
budget spent, which includes all the bugs in the dataset.

Fig. 6 shows the median number of bugs detected by
each approach over the time budget spent. The number of
bugs detected by an approach x (x 2 {PreMOSA, Dyna-
MOSA}) at time t (t 2 [0, 120]) is equal to the number of
bugs that can be detected by the tests generated by x after t
seconds of test generation. The shaded area around the
curves depicts the interquartile range. The dashed lines
depict the average improvements of PreMOSA-100 and Pre-
MOSA-75 relative to the baseline DynaMOSA.

In the first 2 seconds, DynaMOSA has a head start, due to
the slight additional overhead of PreMOSA in filtering tar-
gets and calculating number of independent paths (Sec-
tions 4.1 and 4.3). However, both PreMOSA-100 and
PreMOSA-75 outperform DynaMOSA after 2 seconds.

According to the Mann-Whitney U-Test (a ¼ 0:05), Pre-
MOSA-100 and PreMOSA-75 detect significantly more bugs
than DynaMOSA with large effect sizes ( bA12 � 0:87) at any
time after 3 seconds. This confirms that PreMOSA not only
detects more bugs than DynaMOSA at the end of 120

TABLE 3
Mean and Median Difference of Time Taken to Generate Bug

Detecting Tests by PreMOSA and DynaMOSA

Mean (s) Median (s) p-value r

PreMOSA-100 versus DynaMOSA 2.59 0.22 0.0016 0.18

PreMOSA-75 versus DynaMOSA 2.02 0.05 0.0347 0.11

Fig. 6. The number of bugs detected by PreMOSA and DynaMOSA over
the time budget spent.
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seconds, but also is ahead of DynaMOSA from the very
beginning of the search (i.e., after 2 seconds).

The relative improvement by PreMOSA using any
acceptable defect predictor is much higher when it is given
a tight time budget. In particular, the average relative
improvements of PreMOSA-100 and PreMOSA-75 reach
maximums of 16.1% and 13.0% at 11 seconds respectively.
We also find that both PreMOSA-100 and PreMOSA-75
have an average improvement more than 10% in the inter-
val of 6 and 38 seconds. This further demonstrates the
increased efficiency of PreMOSA compared to DynaMOSA,
such that the large improvements of PreMOSA occur when
it is given tight time budgets like in a usual resource con-
strained scenario.

In summary, PreMOSA is significantly more efficient
than the state-of-the-art DynaMOSA with small effect
sizes when using any acceptable defect predictor. Over-
all, PreMOSA not only detects more bugs than Dyna-
MOSA when they are given a reasonably large time
budget, but also when they are given tight time budgets
like in a resource constrained environment.

7 DISCUSSION

The execution time of PreMOSA is comprised of the time
taken by the defect predictor and the execution time of the
search process. With simulated defect predictors, it is not
possible to know the execution time of an actual defect pre-
dictor. Also, the run-time of an actual defect predictor
changes from one model to another model depending on
several factors like the classifier used in the model etc.
Therefore, in the experimental evaluation, we do not
account for the time taken by the defect predictor, and allo-
cate the full time budget of 2 minutes to the search process.
However, we find that PreMOSA with an acceptable defect
predictor reaches the final number of bugs detected by
DynaMOSA in 79.2 seconds on average. This suggests that
even if the defect predictor takes 40.8 seconds to run on
average per CUT, PreMOSA will still perform on par with
DynaMOSA. Furthermore, Perera et al. [8] reported the
defect predictor used in their study spent 0.68 seconds per
class on average (with a standard deviation of 0.4 seconds).
Therefore, the execution time of an actual defect predictor is
not expected to affect the conclusions of this study.

PreMOSA is guided by coverage and defect prediction
information. It first attempts to cover the likely buggy tar-
gets and starts finding tests to cover likely non-buggy tar-
gets once it deems to have searched enough in likely buggy
targets. On the other hand, DynaMOSA is only guided by
coverage and aims at maximising code coverage. In our
experiments, PreMOSA-100, PreMOSA-75 and DynaMOSA
achieved 57.89%, 59.14% and 62.94% branch coverage of the
classes under test on average, respectively.

In the experimental evaluation, we do not consider addi-
tional cost factors such as the effort required to insert test
oracles manually or automatically and the execution time of
test suites. PreMOSA generates more than one test case for
each target in the CUT and retains all these test cases. Dyna-
MOSA is also configured to do the same as described in

Section 5.4. In our experiments, PreMOSA-100, PreMOSA-75
and DynaMOSA generate 12548, 13004 and 14344 test cases
on average per test suite, respectively. Both PreMOSA and
DynaMOSA are implemented in EvoSuite, which generates
assertions in the tests assuming the programunder test is cor-
rect. EvoSuite uses a mutation-based assertion filtering strat-
egy to minimise the number of assertions in the generated
test suites. However, we disable this in our experiments since
it can be computationally expensive and can lead to timeouts.
Therefore, in the experiments, there are 1,416,817, 1,462,391
and 1,277,024 assertions generated on average per test suite
by PreMOSA-100, PreMOSA-75 and DynaMOSA, respec-
tively. In practice, these assertions need to be updatedmanu-
ally or automatically for generated tests to reveal the bugs,
which can be problematic when the test suites become large.
Appropriate test suite minimisation techniques can be
applied to the test suites generated by PreMOSA to mitigate
this problem.

For completeness, we report the accuracy and Matthews
correlation coefficient (MCC) [55] of the defect predictors
used in PreMOSA. For recall=precision=100%, the accuracy
of the defect predictor is 100%, and for recall=precision=75%,
the accuracy is on average 99.97%. A high accuracy is
observed for the defect predictor with recall=precision=75%
because of the highly imbalanced nature of the Defects4J
dataset, which we discuss in threats to construct validity
(Section 8). MCC of the recall=precision=100% and recall=-
precision=75% predictors are 1.0 and 0.75 on average,
respectively.

The baseline method, DynaMOSA, does not use a defect
predictor and aims to cover all the targets in the CUT
equally. This means that in the eyes of DynaMOSA, all the
methods in a class are likely buggy, which translates to a
100% recall and precision per project as follows; Lang -
0.06%, Math - 0.03%, Time - 0.05%, Chart - 0.02%, Closure -
0.02% and Mockito - 0.15%.

8 THREATS TO VALIDITY

Construct Validity. The defect prediction simulator assumes
a uniform distribution of predictions. This means each
method has an equal chance of being labelled as buggy or
non-buggy by the simulator. However, the prediction distri-
butions of real defect predictors are likely to deviate from a
uniform distribution depending on the underlying charac-
teristics and nature of the prediction problem. This could
impact the realism of our defect prediction simulations.
Nevertheless, in the absence of prior knowledge about
defect prediction distributions, the reasonable choice is to
assume a uniform distribution of predictions.

In the experimental evaluation,we simulate defect predic-
tors for a given recall and precision, and consider an accept-
able defect predictor with respect to these metrics
(Section 5.1). Recall and precision have been widely used in
previous work to report the performance of defect predictors
[37], [56]. However, recall and precision can be biased in the
case of highly imbalanced datasets, which is usually a com-
monplace situation for defect datasets as there are only a few
number of buggy methods compared to non-buggy ones
[57]. Thus, future works need to be done with defining and
simulating acceptable defect predictors with unbiased
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performance metrics like Matthews correlation coefficient
(MCC) [55]. Even though our experiments are designed to be
driven by recall and precision, the MCC corresponds to 0.75
on average for the most conservative defect predictor (i.e.,
recall=precision=75%), and 1.0 for the ideal defect predictor.

We only consider the labelled bugs in the Defects4J data-
set in our experimental evaluation, which is likely smaller
than the set of actual bugs in the dataset. In order to check
howmany actual bugs are detected by PreMOSA and Dyna-
MOSA, we have to manually validate all the 36,150 gener-
ated test suites, which is not a feasible task. Therefore, in
line with previous work [7], [45], we choose to conduct the
experimental evaluation considering only the labelled bugs
in Defects4J dataset.

Internal Validity. To account for the randomness of the
simulated defect predictor, we repeat the simulations for 5
times for recall=precision=75% configuration. Then, for
each simulation, we repeat the test generation for 5 times to
account for the non-deterministic behaviour of PreMOSA.
For PreMOSA-100 and DynaMOSA, we repeat the test gen-
eration runs for 25 times to account for the non-determin-
istic behaviour of the two techniques. To derive conclusions
from the results of our experiments, we conduct sound sta-
tistical tests; one-tailed non-parametric Mann-Whitney U-
Test, Vargha and Delaney’s bA12 statistic, one-tailed Wil-
coxon signed-rank test, and its effect size, r.

The parameter maximum number of iterations without cover-
age improvement (I) in PreMOSA is configured based on the
results of our pilot runs. We expect the performance of Pre-
MOSA can be further improved by fine-tuning the parameter.

A threat to internal validity exists from the use of the
term experiment in our study. According to the hallmarks
characterised by Ayala et al. [58], our study corresponds to
an experiment with limited control. This is because we use a
retrospective repository (i.e., Defects4J) as the dataset, hence
our experimental design does not fully cover the control
hallmark [58].

External Validity. Our experimental evaluation is done
using 420 real bugs from Defects4J dataset. These bugs are
drawn from 6 open source projects. At the time of writing
this paper, 401 more bugs were added to the Defects4J
benchmark from additional 11 projects. Nevertheless, these
open source projects do not represent all program character-
istics, especially industrial projects. However, Defects4J has
been widely used in related literature as a benchmark [5],
[7], [8], [23], [47], [59]. We expect that future work needs to
be done on evaluating the performance of PreMOSA on
other bug datasets.

We implement PreMOSA in the state-of-the-art SBST
tool, EvoSuite, that generates JUnit test suites for Java
programs. Therefore, we may not be able to generalise
our findings to other programming languages. However,
the concept behind PreMOSA is not language dependent
and can be applied to other object oriented programming
languages.

Our findings may not be generalised to the defect pre-
dictors which have recall or precision less than 75%. We
experimentally assess the bug detection performance of
PreMOSA when using theoretically most conservative and
acceptable defect predictors (recall=precision=75%) and
ideal defect predictor (recall=precision=100%). The

experimental results demonstrate the improved perfor-
mance of PreMOSA when using either of the defect predic-
tors, which suggest PreMOSA is significantly better at
detecting bugs than DynaMOSA when using defect pre-
dictors having recall and precision greater than 75%. We
choose 75% recall and precision as the lower bound for an
acceptable defect predictor with the justification that Zim-
mermann et al. [25] recommended only the defect predic-
tors having recall and precision more than 75% as
acceptable defect predictors.

9 RELATED WORK

9.1 Search-Based Software Testing

Search-based software testing (SBST) techniques use meta
heuristics search algorithms like genetic algorithms (GA) to
search for high quality test cases for a specific criteria (e.g.,
maximise branch coverage). Mainly, this test generation
problem can be formulated in two ways; i) single objective
formulation [26], [36], and ii) many-objective formulation
[2], [3]. In the latter one, the test generation problem is
approached as a many objective optimisation problem
whereas the single objective formulation is used in the whole
test suite approaches [26], [36]. In particular, Panichella et al.
[2] proposed many objective sorting algorithm (MOSA)
which simultaneously optimises test cases to satisfy hun-
dreds of coverage targets (e.g., branch coverage goals). Previ-
ouswork shows that thesemany objective sorting algorithms
[2], [3] are more effective and efficient than whole test suite
approaches in terms of code coverage [2], [3], [4]. In this
paper, we formulate the test generation problem as a many
objective optimisation problem and develop PreMOSA as a
many objective solver.

DynaMOSA [3] is the successor of the many objective
solver, MOSA, and stands as the state-of-the-art SBST tech-
nique. It considers all the coverage targets in the class under
test (CUT) as equally important to cover. Hence, it simulta-
neously optimises test cases to cover all of the targets in the
CUT. However, only one or few methods in a class are
buggy, hence, it is likely to be ineffective to search for tests to
cover targets that contain non-buggy methods. Contrary to
DynaMOSA, PreMOSA initially searches for tests in likely
buggy methods, and introduces targets containing likely
non-buggy methods to the search only when it deems to
have searched enough for tests to cover likely buggy targets.

Results from previous work show that SBST techniques
have limitations in terms of bug detection [5], [6], [7]. We
argue that aiming at maximising code coverage alone is not
sufficient to maximise the number of bugs detected. In par-
ticular, Salahirad et al. [7] showed that EvoSuite [36] - a state-
of-the-art SBST tool - is more effective when it is using fitness
functions based on maximising branch coverage compared
to other coverage criteria. However, EvoSuite only detected
an average of 25% bugs from the Defects4J dataset in a 10
minutes time budget even when using branch coverage in
the fitness function, suggesting that code coverage alone is
not enough to effectively detect bugs.

9.2 Defect Prediction

Zimmermann et al. [25] argued a defect predictor with
recall, precision and accuracy greater than 75% is a strong
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defect predictor, and vice versa. Results from previous work
suggest that 75% recall and precision is an achievable level
of performance for a defect predictor [13], [17], [19]. In par-
ticular, Giger et al. [13] reported the prediction models built
with change metrics can locate buggy methods with 88%
and 84% of recall and precision, respectively. In our study,
we consider a defect predictor is acceptable if its recall and
precision are greater than 75%.

Previous work on integrating defect prediction and soft-
ware testing have used single instances of defect predictors
in their experimental evaluations [8], [23], [24]. The purpose
of our study is not to find the best defect predictor to be used
in PreMOSA. In our experimental evaluation, we inten-
tionally abstract the defect predictor in PreMOSA to avoid
unfair evaluation and bias from using a single defect predic-
tor. We simulate the defect predictor outcomes for different
levels of performance. In particular, we simulate defect pre-
dictor outcomes at i) the most conservative performance of
an acceptable defect predictor, i.e., recall=precision=75%
and ii) the ideal performance, i.e., recall=precision=100%.
The conclusions derived from our results cover the full spec-
trum of acceptable defect predictors.

There is plethora of defect predictors working at coarse-
grained level such as file and class levels [20], [22], [60]. Hata
et al. [12] hypothesise that the effort required to find bugs
using coarse-grained predictions is higher than using fine-
grained predictions such asmethod level. Theirmethod level
prediction model built with historical metrics was shown to
outperform package and file level predictors in terms of
effort required to find bugs. Similar results were also
observed by Caglayan et al. [18] when using pre-release bugs
related metrics to build defect prediction models. Any of
these defect predictors are suitable to be used in PreMOSA.

9.3 Defect Prediction in Software Testing

Defect predictors are shown to be effective at locating bugs
in software [10], [18], [19]. As a result, they have been used
in the industry to support developers in code reviews [20],
[21] and in testing [22]. While the main assumption of defect
prediction is to provide useful information to developers
[20], prediction outcomes have also been used successfully
in automated testing techniques [8], [23], [24], [44], [53].

Perera et al. [8] and Hershkovich et al. [24] introduced
defect prediction guided time budget allocation approaches
for SBST. Our work is the first to use defect prediction infor-
mation in the search process of SBST to effectively guide the
search for test cases to likely buggy methods. Our proposed
SBST technique, PreMOSA, is orthogonal to the aforemen-
tioned budget allocation approaches [8], [24], and can be
used together by simply replacing the SBST components in
each of the approaches with PreMOSA to further improve
the performance of them.

G-clef [23] is a test prioritisation strategy that uses a
defect predictor based on change history related metrics
and prioritises test cases in terms of their likelihood of find-
ing bugs. It was shown to be effective at reducing the num-
ber of test cases required to find bugs. FaRM [53] is a
mutant selection technique that selects and ranks fault
revealing mutants using prediction models based on source
code metrics. It was shown to outperform the state-of-the-
art mutant selection and mutant prioritisation methods in

terms of revealing faults. FLUCCS [44] is a fault localisation
approach that ranks methods according to their likelihood
of being faulty using pre-trained models based on source
code and change metrics. It was shown to outperform the
state-of-the-art spectrum based fault localisation (SBFL)
techniques. All these approaches are applied after the test
generation step, i.e., G-clef and FaRM can be used to priori-
tise and select test cases, and FLUCCS can be applied to
localise the fault once a bug is detected through test genera-
tion. In contrast, PreMOSA uses defect prediction in the test
generation phase.

Perera et al. [61] incorporated buggy method predictions
outside of the search process in DynaMOSA and investi-
gated the impact of defect prediction imprecision on the bug
detection performance of DynaMOSA guided by defect pre-
dictions. The bug detection effectiveness of DynaMOSA sig-
nificantly decreased as the recall of the defect predictor
decreased, while the effect of precision was not practically
significant. In contrast, PreMOSA uses buggy method pre-
dictions inside the search process, i.e., balancing between
likely buggy and non-buggy targets, and the experimental
results indicate that its bug detection performance is not sig-
nificantly impacted by the change of defect predictor perfor-
mance from recall=precision=100% to recall=precision=75%.
This shows that PreMOSA is able to successfully handle the
potential errors in the predictions, while DynaMOSA with
simply filtering out the likely non-buggy targets suffers from
loss of recall of the predictor.

10 CONCLUSION

We hypothesise that augmenting coverage information with
defect prediction information in the search process of SBST
improves the bug detection performance of the generated
test suites. We develop a many-objective solver for test gen-
eration called predictive many objective sorting algorithm
(PreMOSA) that uses buggy methods predictions to decide
where to increase the test coverage in the CUT. We experi-
mentally assess the performance of PreMOSA when using
defect predictors having the theoretical upper and lower
bound performance of acceptable defect predictors. We vali-
date our technique against 420 labelled bugs from Defects4J
dataset. Our experimental evaluation demonstrates that
PreMOSA is significantly more effective than the state-of-
the-art DynaMOSA with large effect sizes when using any
acceptable defect predictor. In particular, it detects 8.3%
and 7.8% more labelled bugs on average than DynaMOSA
when using an ideal defect predictor and most conservative
and acceptable defect predictor, respectively. We also find
PreMOSA is significantly more efficient than DynaMOSA.

The performance of PreMOSA does not decrease signifi-
cantly when replacing the ideal defect predictor (i.e.,
recall=precision=100%) with most conservative defect pre-
dictor in the acceptable range (recall=precision=75%). On
the other hand, if defect predictions with errors, i.e., false
positives and false negatives, are directly used by develop-
ers, e.g., in code reviews and manual testing, it can lead to
waste of developer time, miss important bugs, etc [20]. Our
results show that PreMOSA successfully accounts for errors
in the predictions of defect predictors that are considered
acceptable [15].
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We find that after 60 seconds of time budget, there is no
significant difference in the performances of PreMOSA with
an ideal defect predictor and with the most conservative
defect predictor. Therefore, in the context of combining
defect prediction and SBST, we recommend practitioners to
not focus on improving the defect predictor performance
beyond 75% recall and precision if their testing resources
allow reasonably large time budget for test generation. On
the other hand, if there is a tight time budget for test genera-
tion, then improving the defect predictor performance
would further improve the bug detection performance of
PreMOSA.

We identify the following directions as future works to
extend this study; i) integrate PreMOSA in a continuous
integration environment, ii) adapt an appropriate test suite
minimisation technique to address the generation of large
test suites, iii) define and simulate acceptable defect predic-
tors with respect to unbiased performance metrics like
MCC, and iv) validate PreMOSA against other bug datasets
[62], [63], [64].
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