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A Probabilistic Analysis of the Efficiency of
Automated Software Testing
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Abstract—We study the relative efficiencies of the random and systematic approaches to automated software testing. Using a simple
but realistic set of assumptions, we propose a general model for software testing and define sampling strategies for random (R) and
systematic (S0) testing, where each sampling is associated with a sampling cost: 1 and c units of time, respectively. The two most
important goals of software testing are: (i) achieving in minimal time a given degree of confidence x in a program’s correctness and
(ii) discovering a maximal number of errors within a given time bound n̂. For both (i) and (ii), we show that there exists a bound on c

beyond which R performs better than S0 on the average. Moreover for (i), this bound depends asymptotically only on x. We show that
the efficiency of R can be fitted to the exponential curve. Using these results we design a hybrid strategy H that starts with R and
switches to S0 when S0 is expected to discover more errors per unit time. In our experiments we find that H performs similarly or better
than the most efficient of both and that S0 may need to be significantly faster than our bounds suggest to retain efficiency over R.

Index Terms—Partition Testing, Random Testing, Error-based Partitioning, Efficient Testing, Testing Theory
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1 INTRODUCTION

E FFICIENCY is an important property of software testing;
potentially even more important than effectiveness. Be-

cause complex software errors exist even in critical, widely
distributed programs for many years [2], [3], developers are
looking for automated techniques to gain confidence in their
programs’ correctness. The most effective way to inspire
confidence in the program’s correctness for all inputs is
called program verification. However, due to state explosion
and other problems, the applicability of verification remains
limited to programs of a few hundred lines of code. Now,
software testing trades this effectivness for efficiency. It
allows one to gain confidence in the program’s correctness
with every test input that is executed. So, automated testing
is an efficient way to inspire confidence in the program’s
correctness for an increasing set of inputs. Yet, most research
of software testing has mainly focussed on effectiveness:

The most effective testing technique reveals a maximal
number of errors and inspires a maximum degree of
confidence in the correctness of a program.

Only now are we starting to investigate its efficiency:

The most efficient testing technique i) generates a suffi-
ciently effective test suite in minimal time or ii) generates
the most effective test suite in the given time budget.

Using a simple set of assumptions, we construct a general
model of software testing, define testing strategies where
each generated test input is subject to a cost, and cast our
efficiency analysis as a problem in probability theory.
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We model the testing problem as an exploration of error-
based input partitions. Suppose, for a program there exists
a partitioning of its input space into homogeneous subdo-
mains [4], [5]. For each subdomain, either all inputs reveal
an error or none of the inputs reveal an error. The number
and “size” of such error-based partitions can be arbitrary
but must be bounded. Assuming that it is unknown a-priori
whether or not a partition reveals an error, the problem of
software testing is to sample each partition in a systematic
fashion to gain confidence in the correctness of the program.

A testing technique samples the program’s input space.
We say that a partition Di is discovered when Di is sampled
for the first time. The sampled test input shows whether
or not partition Di reveals an error. Effectively, the sampled
test input becomes a witness for the error-revealing property
of Di. A testing technique achieves the degree of confidence
x when at least x% of the program inputs reside in discov-
ered partitions. Hence, if none of the discovered partitions
reveals an error, we can be certain that the program works
correctly at least for x% of its input.

For our efficiency analysis, we consider two strategies:
random testing that is oblivious of error-based partitions
and systematic testing that samples each partition exactly
once. Random testing R samples the input space uniformly
at random and might sample some partitions several times
and some not at all. Specifically, we show that for R the
number and size of partitions discovered decays exponen-
tially over time.1 Systematic testing samples each error-based
partition exactly once and thus strictly increases the estab-
lished degree of confidence. We model a systematic testing
technique S0 that chooses the order in which partitions are
discovered uniformly at random and show that number and
size of partitions discovered grows linearly over time. Note
that our hypothetical S0 can proof correctness eventually.

1. Thus, to predict the efficiency of R, e.g., in terms of errors exposed
(or even paths exercised), one only needs to fit an exponential curve!
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Weyuker and Jeng [4] observe that a technique that
samples from error-based partitions, like S0, is most effective.
However, realistic systematic testing techniques are much
less effective [6]. In fact, a test suite – that is 100% statement-
and branch-coverage adequate, kills all possible mutants,
and executes successfully – does still not guarantee the
correctness of the tested program [7]. By analyzing the
program’s specification, tools can automatically generate
test inputs that cover corner-cases [8]. By analyzing the
program’s source code, tools can generate inputs that stress
potentially faulty statements, branches, or paths by increas-
ing the coverage of the code [9], [10], [11]. By generating
and analyzing deliberately faulty versions [12], tools can
generate even more effective test input. Generally, the more
comprehensive such analysis, the more effective can the testing
technique be. But, with increasing analysis time, what about
the associated reduction of efficiency?

To analyze the efficiency of both techniques, we assume
that each sampling takes time and call it the sampling cost.
Random testing does not spend any time on program anal-
ysis. We say that R takes one unit of time to sample one test
input. However, systematic testing inherently requires some
time to analyze artifacts related to the program, such as
source code, specifications, or faulty versions, to derive the
error-based partitions. We say that S0 takes c units of time to
sample one test input. Note that we give the sampling cost
for S0 as a factor of the sampling cost ofR. This allows us to
account for the time spent on the concrete sampling-related
tasks that are common to both techniques. For instance, if
R takes, on average, 5ms to generate and execute a valid,
readable, and typical test case and check whether it passes
or fails, then by definition S0 takes (c · 5)ms which includes
the same time spent on test generation, execution, and oracle
checking and the time spent on program analysis.

We observe that the efficiency of systematic testing de-
creases as the time spent on analysis increases while the
efficiency of random testing remains unchanged. In other
words, as the sampling cost c for S0 increases, it takes more
time to establish the same degree of confidence and discover
the same number of errors. So, in order for S0 to maintain
its efficiency over R, c cannot exceed a certain value and is
thus bounded above!

In this paper, we study the maximum sampling cost c0
of S0 beyond which the systematic testing technique S0 is
expected to be less efficient than random testingR. Thereby,
we explore two notions of testing efficiency that may well be
the main goals of automated software testing: i) to achieve
a given degree of confidence in minimal time, and ii) to
expose a maximal number of errors in a given time. Further-
more, for our probabilistic analysis we take the sampling
cost c as a constant. However, we provide a discussion on
implications for the more realistic case when c increases
with time, program size, number of inputs sampled, or is
inversely proportional to partition size.

We design a more efficient hybrid technique. Given any
systematic testing technique S that discovers one partition
for each input sampled, we introduce a hybrid technique H
that starts with R and switches to S after a certain time. We
discuss how to determine when H switches from R to S in
expectation and in practice and show thatH is more efficient
than both its constituent techniques, on the average.

The most important contributions of the paper are as
follows. We provide a uniform mathematical framework
for modeling software testing which is elementary and
intuitive. In this framework we show that even a highly
effective systematic testing technique is inefficient compared
with random testing if the time per sampling is relatively
too high. More precisely, we show the following:

• 1st Problem of Efficient Testing. Given a degree of
confidence x, we show that the time taken by S0 to
sample an input cannot exceed (ex − ex2)−1 times
the time taken by R to sample an input. Otherwise,
R is expected to achieve x earlier. For instance, let R
take 10ms per test; to establish the confidence that
any program works correctly for 90% of its input, S0
must take less than 41ms per test. In our experiments
we find that S0 must take signif. less time than our
bound suggests to be expected to achieve x earlier.

• 2nd Problem of Efficient Testing. Given n̂ time units,
we show that the time taken by S0 per test cannot
exceed n̂

k · (1− (1− qmin)n̂)−1 times the time taken
by R per test, in order for S0 expose more errors in
n̂ time units — where k is the number of partitions
and qmin the fractional size of the “smallest” error-
revealing partition in the program’s input space.

• Exponential Decay. We show that for R the number
of errors discovered decays exponentially over time.
In practice, this allows to predict the efficiency of R
by fitting the exponential curve h(n) = ae−λn + b.

• Hybrid Testing Technique. Using the above insights,
(the efficiency of R decays exponentially while that
of S does not) we design a hybrid techniqueHwhich
starts using R and switches to S when S is expected
to discover more partitions per unit time than R.

• 24,000 Simulation Experiments. We observe that H
performs similarly or better than the most efficient
of both, and that the maximum cost c0 of S0 can be
significantly higher if the input space is partitioned
such that there is a small number of huge and a very
large number of very tiny partitions.

In summary, we present strong, elementary, and theoretical
results about the efficiency of automated testing that hold for
all programs and every systematic testing technique under
the realistic assumptions stated in the following section.

2 PRELIMINARIES

2.1 Background
In this work, we focus on automated testing techniques
that seek to establish a certain degree of confidence in the
correctness of the program or reveal a maximal number of
errors. Interestingly, this eliminates inexhaustive, automated
techniques that seek to generate just one failing test input
as evidence of the incorrectness of the program. First, the
search for a failing test input may never terminate due to the
undecidability of the infeasible path problem [13]. Secondly,
the absence of a failing test input throughout the search does
not inspire any degree of confidence in the absence of errors.
Instead, we shall focus on partition testing techniques, such
as coverage, mutation, and specification based testing.
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Partition testing [4], [7] comprises of testing techniques
that 1) divide the program’s input domain into classes
whose points share the same property in some respect
and then 2) test the program for at least one input from
each class. Thus, the problem of systematic testing is re-
duced to finding a “good” partition strategy. For example,
a specficiation-based partition strategy might divide the input
domain into subdomains, each of which invokes one of sev-
eral program features or satisfies the pre-condition of some
predicate [8]. Mutation-based partition strategies may yield
subdomains, each of which strongly kills a certain mutant of
the program [12], [14]. A differential partition strategy yields
subdomains, each of which either homogeneously exposes
a semantic difference or homogeneously shows semantic
equivalence [15]. Symbolic execution is a path-based partition
strategy [11]. One may also consider an assertion-based par-
titioning strategy that divides the input space into classes
where inputs do and others do not violate an assertion in
the program. Such assertion-based partitioning would be fit
to serve as practical counter-part of the hypothetical error-
based partitioning where erroneous program behavior is
explicitly encoded using assertions (or exceptions, etc.).

However, questioning its effectiveness, Hamlet and Taylor
[7] find that “partition testing does not inspire confidence”.
Varying several parameters, the authors repeated the exper-
iments of Duran and Ntafos [16] who presented a surprising
result: The number of errors found by random and partition
testing is very similar. Hamlet and Taylor came to much the
same conclusion. The results universally favoured partition
testing, but not by much. Weyuker and Jeng [4] found that
the effectiveness of partition testing varies depending on the
fault rate for each subdomain that is systematically sampled
and concluded that a partitioning strategy that yields error-
based (revealing) subdomains is the most effective. Subse-
quently, several authors discussed conditions under which
partition testing is generally more effective than random
testing (e.g., [17], [18]).

Arcuri et al. [19] study the scalability of random testing.
In this work, scalability refers to the ability of exercising
many “targets” in the program as the number of targets
increases. Specifically, the authors show that random testing
scales better than a directed testing technique that focuses
on one target until it is “covered” before proceeding to
the next. Intuitively, parallel search (here, random testing)
scales better than sequential search (here, directed testing).
In contrast, we assess the scalability of systematic testing
relative to random testing by investigating the efficiency of
both techniques as the program size increases. Thereby, we
also consider systematic techniques that are not “directed”.

Leaving the scope of our analysis are several practi-
cal concerns that are common to all automated testing
techniques. i) Firstly, there is the oracle problem [20] which
states that a mechanism deciding for every input whether
the program computes the correct output is pragmatically
unattainable and only approximate. Partial solutions in-
clude the automated encoding of common [21], [22], [23]
and the manual encoding of custom error conditions as
assertions [24], [25], [26]. ii) Secondly, there is the typicality
problem which states that automatically generated test cases
may not represent the “typical” input a user would provide
or “valid” input that satisfies some pre-condition for the

program to execute normally. Technically, both techniques
could sample according to the operational distribution [27]
or using symbolic grammars [28]. Then, both techniques
receive the same ability to sample typical, valid inputs. We
make no such assumptions. iii) Finally, we want to stress
explicitly that for the purpose of this article the achieved
code coverage is only secondary. For instance, suppose a branch
somewhere in the program is exercised only if for some
variable i we have i == 780234. Then this branch may
(or may not) have a very low probability to be exercised
randomly. Instead, the technique shall achieve confidence
and expose errors. In our investigations, we also account for
partitions that are relatively small, possibly containing only
one input.

2.2 Definitions and Notations
We construct a general model of software testing that is
based on three simple assumptions: i) the input space is
bounded, ii) errors are deterministic, and iii) it is unknown
a-priori whether or not some input reveals an error. These
assumptions are stated explicitely and formally and may be
relaxed in future work. Furthermore, we define error-based
partitioning, the two problems of efficient software testing,
and the two testing strategies, R and S0.

Given any program P , the number of input variables to
the program determine the dimensionality of the program’s
input space. The values for an input variable determines the
values of the corresponding dimension in the program’s in-
put space. For instance, a program with two input variables
of type integer has a two dimensional input space that can
take any integer values. Regarding the input space, we make
the following assumptions:
• Bounded Dimensionality. Given any program P ,

the space of inputs to P has a bounded dimension.
This assumption is realistic since the length of P is
bounded, it can only manipulate a bounded number
of variables.

• Bounded Input Space. Given any program P , every
input variable P can take only a bounded number
of values from a finite domain. This assumption is
also realistic since in practice the size of the registers
where the variables are stored is bounded.

Given these assumptions, we see that given a program P ,
its input space can be taken to be a finite, measurable metric
space D =

∏d
i=1Ai where d is the dimension of the input

space of P and Ai is a finite set for every 1 ≤ i ≤ d. In
what follows, we fix a program P which in turn fixes the
dimension d and the input space D.
Definition 1 (Error-based Partitioning)

The input spaceD of a programP can be partitioned into
k disjoint non-empty subdomains Di where 1 ≤ i ≤ k
with the following property: Either every input t ∈ Di
reveals the same error, or every input t ∈ Di does not
reveal an error. If every input of a partition Di reveals an
error then we call Di an error-revealing partition.

We notice that Def. 1 requires determinism: All executions of
the same test input yield the same output. This is satisfied
also if a model that renders an execution deterministic, like a
specific thread schedule, is constituent of the test input.
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Note that |Di| > 0 for all 1 ≤ i ≤ k where | · | denotes
the cardinality of a set. Since |D| is finite, k is finite, too, and

|D| =
k∑
i=1

|Di| (1)

If we draw an input t uniformly at random from D, for
every partition Di there is a probability that t ∈ Di. We
denote this probability vector by p = 〈p1, · · · , pk〉. Note
that for every i : 1 ≤ i ≤ k

pi =
|Di|
|D|

and (2)

k∑
i=1

pi = 1 (3)

For every i : 1 ≤ i ≤ k, let θi be the indicator random
variable which is 1 if partition Di reveals an error and 0
otherwise.

A testing technique samples the input space of the
program-under-test and discovers error-based partitions.
We assume that the information whether a partition does or
does not reveal an error is unknown a-priori. This is a fair
assumption because otherwise there was no need for testing.
Hence, each sampled test case becomes a witness of whether
or not the corresponding partition is error-revealing.

Definition 2 (Discovered Partitions)

Given a testing technique F that samples the input space
D, we say thatF discovers partitionDi in n units of time
if F samples from Di after exactly n units of time and no
test input has been sampled from Di previously.

While the goal of software verification is to show the
correctness of the program for all inputs, the goal of software
testing is to show the correctness of the program at least for
some x% of the input. Arguably, this more modest goal may
also be more practical and economical.

Definition 3 (Achieving Confidence)

Let x = 〈X1, · · · , Xk〉 where Xi is the random variable
indicating whether testing technique F has discovered
partition Di in n units of time, we say that F achieves
the degree of confidence x in n units of time if

x|D| ≤
k∑
i=1

Xi|Di|

In other words, a testing technique achieves the degree of
confidence x when at least x% of the program inputs reside
in discovered partitions.

In the following, we define two main goals of efficient
software testing. The first goal is to achieve a certain degree
of confidence x in minimal time.
Definition 4 (The 1st Problem of Efficient Software Testing)

Given two testing techniques, F1 and F2, and the degree
of confidence x, let n1 and n2 be the units of time in
which F1 and F2 are expected to achieve x. We say that
F1 is expected to be more efficient than F2 according to
the 1st Problem of Efficient Software Testing iff n1 < n2.

The second goal is to expose the most number of errors in a
certain time budget n̂ (see E-measure [19]).

Definition 5 (The 2nd Problem of Efficient Software Testing)

Given two testing techniques, F1 and F2, and the time
budget n̂, let d1 and d2 be the expected number of error-
revealing partitions discovered byF1 andF2 in n̂ units of
time. We say that F1 is expected to be more efficient than
F2 according to the 2nd Problem of Efficient Software
Testing iff d1 > d2.

Now, we define two particular testing techniques, ran-
dom testing R and the systematic testing technique S0. For
each technique we assign a sampling cost that corresponds
to the time that is required for sampling a test input. The
sampling of a test input comprises of concrete tasks such as
generating and executing the corresponding test case and
checking the correctness of its outcome. The sampling cost
is computed as the sum of the time it takes each sampling-
related task.
Definition 6 (Random Testing R)

Given a program P , random testing R tests P by sam-
pling at each iteration its input space D uniformly at
random. The cost for each sampling is one unit of time.

Note that random testing R samples with replacement.

Definition 7 (Systematic Testing Technique S0)

Given a program P , the systematic testing technique
S0 tests P by sampling at each iteration exactly one
undiscovered error-based partition uniformly at random.
The sampled partition itself is also chosen uniformly at
random from the remaining undiscovered error-based
partitions. The cost for each sampling is c units of time.

Note that S0 samples exactly one input from each error-
based partition. Eventually, S0 will have discovered all par-
titions and is thus most effective. The cost for each sampling
of c unit of time includes the time to generate and execute
the corresponding test case and verify the correctness of
its output and the time it takes for the additional analysis.
Hence, we call c the analysis cost of S0. Note that S0 discov-
ers all of k partitions in ck units of time.

We note that both techniques can sample from a reduced
input subdomain that contains only e.g., valid, readable, or
typical test cases if such are concerns. However, we make
no such assumptions.

We now delve into the technical details. In the following,
we shall formalise relevant concepts of approximation and
exponential decay.

Definition 8 (Asymptotics)

Let f : R→ R and g : R→ R be real functions. We say

1) f ∼ g if f(n)
g(n) → 1 as n → ∞. Thus, for every

ε > 0 there exists n0 ∈ R+ such that for every
n > n0, |f(n)− g(n)| < ε.

2) f . g if there exist constants c, n0 ∈ R+ such
that |f(n)| < c|g(n)| for all n > n0.

3) f & g if there exist constants c, n0 ∈ R+ such
that |f(n)| > c|g(n)| for all n > n0.
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Note, if f . g then g & f and conversely.

Definition 9 (Exponential Decay)

A function f : R → R has exponential decay if it
is differentiable at every x ∈ R and df(x)

dx = −λf(x)
for some constant λ. In particular note that the function
ae−λx where a is a constant has exponential decay.

3 THE 1ST PROBLEM OF EFFICIENT TESTING

Achieving a given degree of confidence x in minimal time
is the 1st Problem of Efficient Software Testing (1st PoEST).
In other words, an efficient testing technique establishes
that the program works correctly at least for x% of its
input in minimal time. Given a degree of confidence x, we
compare the expected time it takes to achieve x by random
testing R and by the systematic testing technique S0. After
introducing the concepts and insights with an example, we
investigate the efficiency of S0 and R. For S0, we show that
the expected degree of confidence achieved grows linearly
with time. In contrast, for R we show exponential decay.

Given a degree of confidence x, we find that the sam-
pling cost c of S0 must be below (ex− ex2)−1 units of time
in order for S0 to remain more efficient thanR. For example,
to establish that the program works correctly for 90% of its
input, sampling one test systematically must take much less
than five times the time it takes to sample one test randomly.

3.1 Efficiency Analysis of Individual Techniques
In this work, we define the confidence that is achieved wrt.
the input space that is discovered (Def. 3). So, we give the
expected size of input space discovered after n time units.

Lemma 1 (Confidence – Efficiency of S0)

For the systematic testing technique S0, the expected
input space discovered after n time units is

fs(n) =
|D|
ck
· n

where c is units of time taken for sampling one test input.

Proof : By Definition 7, S0 discovers n/c partitions in n
units of time. The order in which partitions are discov-
ered is decided by choosing uniformly at random from
the set of undiscovered partitions. Let Xi be the random
variable indicating that partitionDi has been discovered
after n units of time. Then,

E[Xi] =
n

ck
(4)

Let the expected size of the input space discovered by S0
after n units of time be given by the function fs : N→ R.
We compute fs(n) as the expected value of the sum of
the size of all discovered partitions.

fs(n) = E

[
k∑
i=1

Xi|Di|

]
(5)

=

k∑
i=1

|Di|E[Xi] [by lin. of exp.] (6)

=

k∑
i=1

|Di|
n

ck
[by Eqn. (4)] (7)

=
|D|
ck
· n [by Eqn. (1)] (8)

Thus, the expected size of the input space discovered grows
linearly with the number of iterations. As the cost increases,
the slope with the time-axis, |D|/(ck), of fs(n) decreases.

Now, we look at the case for random testing.
Lemma 2 (Confidence – Efficiency of R)

For random testing R, the expected size of the input
space discovered after n units of time is

fr(n) = |D|
[

1−
k∑
i=1

pi(1− pi)n
]

∼ |D|
[

1−
k∑
i=1

pie
−npi

]

Proof : By Definition 6,R samples n tests in n units of time.
By Eqn. (2), the probability that R discovers partition
Di in any trial is pi. Let Xi be the random variable
indicating that partition Di has been discovered after
n units of time. The probability that Di has not been
discovered after n units of time is (1− pi)n. Thus,

E[Xi] = 1− (1− pi)n (9)

Let the expected size of the input space discovered byR
after n units of time be given by the function fr : N→ R.
We compute fr(n) as the expected value of the sum of
the size of all discovered partitions.

fr(n) = E

[
n∑
i=1

Xi|Di|

]
(10)

=

k∑
i=1

|Di|E[Xi] [by linearity of exp.] (11)

=

k∑
i=1

|Di|[1− (1− pi)n] [by Eqn. (9)] (12)

= |D|
k∑
i=1

pi[1− (1− pi)n] [by Eqn. (2)] (13)

= |D|

[
1−

k∑
i=1

pi(1− pi)n
]

[by Eqn. (3)] (14)

To approximate the above quantity, we cast the
problem of achieving confidence into the problem of
finding the bonus sum in the generalized coupon collec-
tors problem [29]. Given |D| coupons with k different
colours, there are |Di| coupons of a colour i where
1 ≤ i ≤ k and each coupon has a bonus value of |Di|.
Note that the probability to collect a coupon of colour i
is pi = |Di|/|D|. Then the above quantity is nothing but
the bonus sum of the coupons collected after a person
collected n coupons when counting the bonus value of
each colour only once. From the result of Rósen [29,
Theorem 1] we have

fr(n) ∼ |D|

[
1−

k∑
i=1

pie
−npi

]

3.2 Example for Equal-Sized Partitions
We illustrate the main insights for the simplified case where
the size of each partition is equal. In this setting, we demon-
strate that the confidence achieved per unit of time decays
exponentially for random testing R while it grows linearly
for the systematic testing technique S0. Later, this result is
generalized for partitions of arbitrary size.

First, we show a simple corollary of Lemma 2.
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Fig. 1. On the average, S0 andR break even after approximately 80% of
the input space was covered and 160 random test inputs were sampled
(when c = 2, k = 100, pi = 1

k
).

Corollary 1

For random testingR where pi = 1
k for all i : 1 ≤ i ≤ k,

the expected size of input space discovered after n time
units is

f̄r(n) = |D|
[
1−

(
1− 1

k

)n]
= |D| − |D|e−λn

where λ = ln
(

k
k−1

)
.

Proof : Setting pi = 1
k

for every i : 1 ≤ i ≤ k in fr(n), we
have

f̄r(n) = |D|

[
1−

k∑
i=1

1

k

(
1− 1

k

)n]
(15)

= |D|
[
1−

(
1− 1

k

)n]
(16)

= |D| − |D|
(

k

k − 1

)−n
(17)

= |D| − |D|
(
eln( k

k−1 )
)−n

(18)

The corollary shows that f̄r(n) has exponential decay as per
Definition 9.

Figure 1 shows the expected size of input space discov-
ered per unit of time for R and S0 when k = 100 and
c = 2. So, it takes S0 twice as long to sample a test input
compared to R. On the average, after 80 units of time, S0
discovered partitions in 40% of the input space while R
discovered partitions in 55% of the program’s input space.
On the average, after 160 units of time both techniques break
even, having discovered partitions in 80% of the input space.

There exists a time n0 where f̄r(n0) = fs(n0) and S0 has
discovered more of the input space than R for any n > n0,
on the average. To assess the relative efficiency of S0 we pose
the following question: Given a degree of confidence x, what
is the maximum cost c0 for S0 such that S0 achieves x in
time n ≤ n0? We give the answer by the following lemma.
Lemma 3

Given a degree of confidence x, let ns and nr be the time
at which S0 andR are expected to achieve x, respectively.
When pi = 1

k for every i : 1 ≤ i ≤ k, the maximum cost
c0 of S0, such that ns ≤ nr , is given as

c0 = c̆ · − ln(1− x)

x
for a constant c̆.
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Fig. 2. If the average analysis cost of S0 exceeds c0 for a given degree
of confidence x, then R is expected to be more efficient than S0 (here
for pi = 1

k
).

Proof : First, we compute the time it takes S0 to achieve x
depending on c0 and k. Setting fs(n) = |D|x gives

n = xkc0 (19)

Then, we set the same time for R by substituting n.
Setting f̄r(n) = |D|x yields

x = 1−
(

1− 1

k

)n
(20)

= 1−
(

1− 1

k

)xkc0
[by Eqn. (19)] (21)

Solving for the maximum cost c0 gives

1− x =

(
1− 1

k

)xkc0
(22)

ln(1− x) = xkc0 ln

(
1− 1

k

)
(23)

ln(1− x)

x
= −kc0 ln

(
k − 1

k

)
(24)

c0 = c̆ · − ln(1− x)

x
(25)

where

c̆ =

(
k ln

(
k

k − 1

))−1

(26)

Figure 2 shows for the segment from x : 0.8 ≤ x ≤ 1 the
exact cost c0 for S0 such that both techniques are expected
to break even at a given degree of confidence. Giving the
degree of confidence x = 0.8, S0 is expected to be more
efficient than R according to the 1st PoEST only if the
sampling cost of S0 is c < 2. For x = 0.99, we see in Fig. 2
that the maximum sampling cost of S0 is c0 = 4.65 units of
time so that S0 is expected to be more efficient than R.

3.3 Bounds on the Expected Confidence Achieved by
Random Testing
Under the simplified conditions of the example, where each
partition has the same size, |D1| = · · · = |Dk|, we have
shown that the confidence achieved per unit of time decays
exponentially for random testing. In the following, we prove
that this is the case for partitions of arbitrary sizes. Towards
that, we define two quantities pmin and pmax.

pmax = maxki=1{pi} and pmin = minki=1{pi} (27)

where the functions max and min compute the maximum
and minimum number in a given set, respectively. Note that
pmax ≥ 1/k and pmin ≤ 1/k. We claim
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Lemma 4 (Approximate Bounds)

fr(n) is bounded above and below approximately as

|D|[1− kpmine
−npmin ] . fr(n) . |D|[1− kpmaxe

−npmax ]

Proof : Let Imax ⊆ {1, 2, . . . , k} be the set of indices such
that pmax 6= pi iff i ∈ Imax. For all i ∈ Imax, let ni be the
point in time such that

ni =
ln(pmax)− ln(pi)

pmax − pi
(28)

This implies for all n ≥ ni

enpmax−npi ≥ eln(pmax)−ln(pi) (29)
e−npi

e−npmax
≥ pmax

pi
(30)

pmaxe
−npmax ≤ pie−npi (31)

Let nmax be the point in time such that

nmax = maxi∈Imax{ni} (32)

For all n ≥ nmax we have

k∑
i=1

pie
−npi =

∑
i∈Imax

pie
−npi +

∑
i/∈Imax

pie
−npi

=
∑

i∈Imax

pie
−npi +

∑
i/∈Imax

pmaxe
−npmax

[since pi = pmax for i /∈ Imax]

≥
∑

i∈Imax

pmaxe
−npmax +

∑
i/∈Imax

pmaxe
−npmax

[by Eqn. (31)]

= kpmaxe
−npmax

Similarly, let Imin ⊆ {1, 2, . . . , k} be the set of indices
such that pi 6= pmin iff i ∈ Imin. Let nmin be the point in
time such that

nmin = maxi∈Imin

{
ln(pi)− ln(pmin)

pi − pmin

}
(33)

We can show for all n ≥ nmin that

k∑
i=1

pie
−npi ≤ kpmine

−npmin (34)

So, for all n ≥ max{nmin, nmax}, we have

kpmaxe
−npmax ≤

k∑
i=1

pie
−npi ≤ kpmine

−npmin (35)

Hence by Lemma 2 and Def. 8, we have

|D|[1− kpmine
−npmin ] . fr(n) . |D|[1− kpmaxe

−npmax ]
(36)

Thus fr(n) being asymptotically bounded above and below
by functions having exponential decay also behaves like
one.

3.4 Relative Efficiency of S0 in 1st PoEST

We evaluate the efficiency of the systematic testing tech-
nique S0 relative to that of random testing R. Because of
the additional analysis cost, sampling a test input using S0
takes c times longer than sampling a test input using R.
Since in general the achieved confidence per unit of time
decays exponentially for R while it grows linearly for S0,
there is a point where S0 and R are expected to break even.
Its coordinates depend on the value of c.

Given a degree of confidence x, we compute the maxi-
mum cost c0 such that the expected time it takes for S0 to
achieve x is at most the same as the expected time it takes
R to achieve x and S0 remains more efficient than R.

Proposition 1

Given a degree of confidence x : 1 − e−1 ≤ x < 1,
let ns and nr be the units of time after which S0 and R
are expected to achieve x, respectively. For all programs
P , the maximum cost c0 of S0, such that ns ≤ nr, is
bounded above as

c0 .
1

ex− ex2

Proof : Fix a program P which in turn fixes the number of
partitions k and also the probabilities pi for all i : 1 ≤
i ≤ k. Let cP0 be the cost of S0, such that ns = nr for P .
Now, setting fs(ns) = |D|x in Lemma 1 yields

ns = nr = xkcP0 (37)

Setting fr(nr) = |D|x in Lemma 2 gives

x ∼ 1−
k∑
i=1

pie
−nrpi (38)

& 1− kpmine
−nrpmin [by Lemma 4] (39)

& 1− kpmin

exkc
P
0 pmin

[by Eqn. (37)] (40)

When solving for cP0 note that 0 < x < 1 and kpmin > 0,

exkc
P
0 pmin .

kpmin

1− x (41)

cP0 .
ln
(
kpmin
1−x

)
kxpmin

(42)

Let us denote
ln
(

kpmin
1−x

)
kxpmin

as h(k, pmin). From Eqn. (42),

c0 ≤ maxP{cP0 } . maxP{h(k, pmin)} (43)

where maxP denotes the maximum of the given quan-
tity over all programs.

To find the value of maxP{h(k, pmin)}, we first relax
the requirement that k takes integral values and allow
k to range over the reals R. By doing so we notice that
h(k, pmin) is a continuous function over (R×[0, 1]) which
is differentiable everywhere. This allows us to use tech-
niques from differential calculus to maximize h(k, pmin)
wrt pmin and k. [As we shall see below, h(k, pmin)
will have exactly one global extremum at some non-
boundary point. Hence, the value of maxP{h(k, pmin)},
with the original requirement that k ranges over the
discrete integral domain, will be attained at one of the
two nearest integers.]
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To derive all extrema of h(k, pmin) wrt. pmin, we set
the partial derivative of h(k, pmin) wrt pmin to 0.

∂

∂pmin

ln
(
kpmin
1−x

)
kxpmin

=
1− ln

(
kpmin
1−x

)
kxp2min

= 0 (44)

This yields a critical point for h(k, pmin) when

pmin =
e− ex
k

(45)

The second partial derivative of h(k, pmin) wrt pmin is
given by

∂2

∂p2min

ln
(
kpmin
1−x

)
kxpmin

=
−3 + 2 ln

(
kpmin
1−x

)
kxp3min

(46)

Hence for h(k, pmin) to be maximal wrt pmin it must hold
that

−3 + 2 ln
(
kpmin
1−x

)
kxp3min

< 0 (47)

which yields

pmin <
e
√
e(1− x)

k
(48)

Since (45) satisfies (48) we have that h(k, pmin) attains a
maximum wrt pmin at pmin = e−ex

k
.

By a similar analysis we can demonstrate that
h(k, pmin) attains a maximum wrt k at k = e−ex

pmin
which

is the same as Eqn. (45). Plugging pmin = e−ex
k

into
h(k, pmin) we get

c0 .
1

ex− ex2 (49)

Finally, to derive the bounds on the degree of confi-
dence x for which the above inequality holds, note that
it must also hold that 0 < pmin ≤ 1/k whence from
Equation (45) we have

0 <
e− ex
k

≤ 1

k
(50)

which gives
1− e−1 ≤ x < 1 (51)

4 THE 2ND PROBLEM OF EFFICIENT TESTING

Exposing the most number of errors within a certain time
budget is the 2nd Problem of Efficient Testing (2nd PoEST).
So, given the same time budget n̂, we compare the expected
number of errors found by random testing R with the
expected number of errors found by the systematic testing
technique S0. After illustrating our main insights by an
example, we investigate the efficiency of S0 and R w.r.t.
the expected number of errors discovered. We show that
the expected number of errors discovered per unit of time
grows linearly for S0 while it decays exponentially for R.

Note that Definition 1 of error-based partitioning states
that failing inputs revealing the same error are grouped
into the same error-revealing partition. This is reasonable
because in practice several failing inputs may expose the
same error. Thus, the number of error-revealing partitions
discovered corresponds to the number of errors found.

Given a time bound n̂, we find that the expected number
of errors discovered byR within n̂ time units is less than or
equals that of S0 only if the analysis cost c incurred by S0 is
less than n̂

k · (1 − (1 − qmin)n̂)−1, where k is the number of

error-based partitions, and qmin is the fractional size of the
“smallest” error-revealing partition.

Duran and Ntafos [16] define a quantity θi for every
partition Di which gives the probability of that partition to
reveal an error. In our setting, θi can be defined as

θi =

{
1 if Di is error-revealing
0 otherwise

Then the total number of errors is given by z =
∑k
i=1 θi.

4.1 Efficiency Analysis of Individual Techniques
First, we give the expected number of errors found per unit
of time, i.e., the efficiency, for the systematic technique S0.

Lemma 5 (Errors Found – Efficiency of S0)

For the systematic testing technique S0, the expected
number of errors discovered after n time units is

gs(n) =
z

ck
· n

for n : 0 ≤ n ≤ k, where sampling one input takes c
units of time.

Proof : By Definition 7, S0 performs n/c draws in n units of
time. In this classical urn problem of sampling without
replacement we shall call the discovery of an error(-
revealing partition) a “success”. The expected number
of successes in n/c draws without replacement from a
finite population k containing z successes is given by
z
ck
· n.

The expected number of errors discovered w.r.t the number
of iterations grows linearly. As the cost c increases, the slope
with the time-axis, z/ck, of the line, gs(n), decreases.

Now, we look at the case for random testing.

Lemma 6 (Errors Found – Efficiency of R [16])

For random testing R, the expected number of errors
discovered after n time units is

gr(n) = k −
k∑
i=1

(1− piθi)n

The proof is due to Duran and Ntafos [16]. By Definition 6,
every iteration occurs in one unit of time.

4.2 Example for Equal-Sized Partitions
We illustrate the main insights for the simplified case where
the size of each partition is equal, |D1| = · · · = |Dk|
and hence pi = 1

k for all 1 ≤ i ≤ k. In this setting,
we demonstrate that the number of errors exposed decays
exponentially forRwhile it grows linearly for S0. Later, this
result is generalized for partitions of arbitrary size.

First, we derive the corollary of Lemma 6.

Corollary 2

For random testingRwhere pi = 1
k for all 1 ≤ i ≤ k, the

expected number of errors found after n time units is

ḡr(n) = z − z (1− 1/k)
n

= z − ze−λn where λ = ln
(

[1− 1/k]
−1
)
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Fig. 3. On the average, S0 and R break even after 12 of 15 errors were
discovered and 1600 random test inputs were sampled (when c = 2,
z = 15, k = 1000, pi = 1

k
).

Proof : After setting pi = 1
k

in the formula of Lemma 6, we
have for z number of partitions that θi = 1 and for k− z
number of partitions that θi = 0. Thus,

ḡr(n) = k −
k∑
i=1

(
1− θi

k

)n
(52)

= k −
(

(k − z) + z

(
1− 1

k

)n)
(53)

= z − z
(

1− 1

k

)n
(54)

= z − ze− ln((1− 1
k
)−1)n (55)

The corollary shows that ḡr(n) has exponential decay.
Figure 3 depicts the expected number of discovered

errors per unit of time for random testing and S0 in our
example configuration. As the cost c is 2, it takes S0 twice as
long to sample a test input compared to R. After 800 units
of time, S0 discovered 6 of z = 15 errors on the average,
while R discovered 2.2 errors more, on the average. After
1600 units of time, both techniques discovered 12 of z = 15
errors, on the average. This the point of time where both
testing schemes, S0 and R, are expected to break even.

There exists a time n0 where ḡr(n0) = gs(n0) meet and
S0 has discovered more errors than R for any n > n0, on
the average. To assess the relative efficiency of S0 we pose
the following question: Given a time bound n̂, what is the
maximum cost c0 for S0 such that n0 ≤ n̂?
Lemma 7

In the case where pi = 1
k for every 1 ≤ i ≤ k, the

maximum cost c0 of the systematic testing technique S0
– such that the expected number of errors discovered by
S0 is at least the same as the expected number of errors
discovered byR in n̂ units of time – is given as

c0 =
n̂

k(1− (1− 1
k )n̂)

Proof : The proof follows directly from Lemma 5 and
Corr. 2 when fixing n to n̂ and setting ḡr(n̂) = gs(n̂).

Notice that the maximum cost c0 ∼ n̂/k as n̂→∞.
Figure 4 depicts the exact cost c0 for S0 such that both

techniques are expected to break even at a given time n̂.
Giving a time bound of n̂ = 1600, the maximum cost is
c0 = 2 and both techniques are expected to break even at n̂
as shown in Figure 3. Increasing the time-bound n̂, increases
the maximum cost c0 approximately proportionally.
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0

2

4

6

(1600, 2)

Time Bound n̂

C
os

tc
0

c0
n̂
k

Fig. 4. The maximum cost c0 increases approximately linearly as the
given time bound n̂ increases. If the average analysis cost of S0 exceeds
c0 for a given time bound n̂, then R is generally more efficient than S0
(here for pi = 1

k
and k = 1000).

4.3 Tight Bounds on the Expected Number of Errors
Discovered for Random Testing

Under the simplified conditions of the example, where each
partition has the same size, |D1| = · · · = |Dk|, we see that
the efficiency of random testing decays exponentially. In the
following, we show that this is the case for partitions of
arbitrary sizes. Intuitively, random testing discovers many
(error-revealing) partitions in the beginning and much less
as the number of iterations increases.

Towards that, let Q ⊆ {p1, . . . , pk} be a set of probabil-
ities such that pi ∈ Q iff θi = 1 for all indices 1 ≤ i ≤ k.
Thus, Q is the set of pi’s corresponding to all the error-
revealing partitions Di. We define two quantities

qmax = max{q | q ∈ Q} and qmin = min{q | q ∈ Q} (56)

where the functions max and min give the maximum and
minimum elements in a given set, respectively. We have

Lemma 8 (Tight bounds)

Given a programP , let k be the total number of partitions
of the input space out of which z are error-revealing. Let

λmin = ln

(
1

1− qmin

)
and λmax = ln

(
1

1− qmax

)
Then, z − ze−λminn ≤ gr(n) ≤ z − ze−λmaxn.

Proof :

gr(n) = k −
k∑
i=1

(1− θipi)n (57)

= k − [
∑
qi∈Q

(1− qi)n]− [
∑
qi /∈Q

1] (58)

= k − [
∑
qi∈Q

(1− qi)n]− (k − z) (59)

= z −
∑
qi∈Q

(1− qi)n (60)

Hence, we have

z − z(1− qmin)n ≤ gr(n) ≤ z − z(1− qmax)n (61)

z − ze−λminn ≤ gr(n) ≤ z − ze−λmaxn (62)

The function gr(n) being bounded above and below by
exponentially decaying functions also behaves like one. That
is, there exists a 3-tuple (a, b, λ) such that gr(n) = ae−λn+b.
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4.4 Relative Efficiency of S0 in 2nd PoEST
We evaluate the efficiency of the systematic testing tech-
nique S0 relative to that of random testing R. Because of
the additional analysis cost, sampling a test input using S0
takes c times longer than sampling a test input using R.
Since in general the efficiency of R, here w.r.t. discovering
errors, decays exponentially while that of S0 grows linearly,
there is a point in time where S0 andR are expected to break
even. The coordinates of this point depend on the value of
S0’s sampling cost c.

Given n̂ units of time, we compute the maximum cost
c0 such that S0 remains more efficient than R according to
the 2nd Problem of Efficient Software Testing. Specifically,
we compute c0 such that the expected number of errors
discovered by S0 is at least the same as the expected number
of errors discovered by R after the time budget of n̂ time
units is exhausted.
Proposition 2

Given a program P , let k be the total number of error-
based partitions out of which z are error-revealing. Given
n̂ units of time, let dr and ds be the expected number
of error-revealing partitions discovered by the systematic
testing technique S0 and random testingR, respectively.
Then, the maximum cost c0 of S0, such that dr ≤ ds, is
given as

c0 ≤
n̂

k
·
(

1− (1− qmin)n̂
)−1

where qmin is defined as in Eqn. (56).

Proof : Setting gs(n̂) = gr(n̂) yields

zn̂

kc0
= k −

k∑
i=1

(1− piθi)n̂ (63)

zn̂

kc0
≥ z − z(1− qmin)n̂ [By Lemma 8] (64)

Solving for c0 having n̂ > 0, k > 0, and z ≥ 0 gives

c0 ≤
1

k
· n̂

1− (1− qmin)n̂
(65)

5 A HYBRID TESTING TECHNIQUE H
Given a systematic technique S that discovers a partition
with every input sampled, subject to the sampling cost c,
there exists a hybrid testing technique H that, at any time,
has discovered at least as many partitions as the random
techniqueR and at least as many partitions as the systematic
technique S .2 Since S is expected to discover all partitions
eventually, while R is not, there must be a time when it is
best to switch from R to S to gain optimal efficiency.

For simplicity, we assume i) that the sampling cost c
of S is known and constant, and ii) that the switch itself
takes no time at all. In practice, the sampling cost of S may
be a function over time n. In that case, c(n) of S needs
to be derived empirically by measuring the time it takes to
generate test cases as compared to a random generator.3

2. Notice that S0 as defined in Def. 7 is an instance of S where the
order in which the partitions are sampled is chosen at random.

3. Note that the partitioning need not be error-based forH to discover
at least as many partitions as R or S; a partition could also correspond
to the set of inputs exercising the same path [11].

Also, in practice the cost of measuring the number of
partitions that R has already discovered and the cost of the
switch itself should be considered.

Algorithm 1 Hybrid Testing Technique H
Require: Systematic Testing S with sampling cost c
Require: Random Testing R with sampling cost 1
Require: Program P with k partitions in input space D

1: let time, nDisc := 0
2: while nDisc < k do
3: let time := time + 1
4: sample t from D using R
5: if t sampled from undiscovered partition then
6: let nDisc := nDisc + 1
7: let TnDisc := time
8: let E[TnDisc+1] := regression({Ti| 1 ≤ i ≤ nDisc})
9: if E[TnDisc+1] > c then break; end if

10: end if
11: end while
12: while nDisc < k do
13: let nDisc := nDisc + 1
14: sample t from D using S
15: end while

In Algorithm 1, we define the hybrid technique H that
tests the program using R until the time to discover the
next partition exceeds c units of time and then switches
to testing using S . In Algorithm 1, H samples test input
using R until the expected time it takes R to discover (not
sample!) the next partition exceeds the expected time c it
takes S to sample (and thus discover) the next partition. The
expected time it takesR to discover the next partition is not
difficult to predict, given sufficiently many previous ran-
dom samples. From Lemma 8, we know that the expected
number of partitions discovered decays exponentially over
time. Hence, for each program there exists a 3-tuple (a, b, λ),
such that h(n) = ae−λn + b gives the expected number
of partitions that R discovers over time n. In Alg. 1, the
function regression in line 8 takes the vector of the previous
points in time, when R discovered a new partition to fit to
an exponential curve and predict the expected time-to-next-
discovery. In line 9, H switches to S .

The efficiency of the hybrid technique is intuitively
explained in Figure 5. The hybrid technique H switches
from R to S at that precise moment when S is expected
to discover the most number of partitions per unit time.
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5.1 Expected Time To Next Discovery
Given a systematic testing technique S and a program P ,
we can compute the number of partitions that have to be
discovered using random testing R until the expected time
to the next discovery exceeds the sampling cost c of S . In the
following, we discuss a simple example when we are given
that pi = 1/k for all i : 1 ≤ i ≤ k.

Lemma 9 (Expected Time to Switch
(
S0, pi =

1
k

)
)

Given sampling cost c of S and a program P where pi =
1
k for all i : 1 ≤ i ≤ k, the expected time to the next
discovered partition exceeds c after k(1− 1/c) partitions
have been discovered usingR.

Proof : Let the random variables Tj , 1 ≤ j ≤ k denote
the time units taken from the discovery of the j − 1-th
partition to the discovery of the j-th partition. Moreover,
let p denote 1

k
. The following are easy to observe.

E[T1] = 1 (66)

E[T2] = 1(1− p) + 2p(1− p) + 3p2(1− p) + . . .

= 1/(1− p) (67)

E[T3] = 1(1− 2p) + 2 · 2p(1− 2p) + 3(2p)2(1− 2p) + . . .

= 1/(1− 2p) (68)
· · ·

E[Tj ] = 1/(1− (j − 1)p) where 1 ≤ j ≤ k (69)

Let j0 be the number of partitions that have to be
discovered using R until the expected time to discover
the next partition exceeds c. Then,

E[Tj0+1] > c (70)

Using Eqn. (69) and substituting back the value of p

j0 > k (1− 1/c) (71)

Note, from the above proof that for R, E[Tj ] increases
strictly with j. We show that this is the case for non-equi-
sized partitions, too.

Lemma 10 (Monotonicity of R)

Let the random variables Tj , 1 ≤ j ≤ k denote the time
units taken from the discovery of the j − 1-th partition
to the discovery of the j-th partition for R. Then for all
i, j : 1 ≤ i < j ≤ k, we have E[Ti] < E[Tj ]. That is, E[Tj ]
increases strictly with j.

Proof : Let dj , 1 ≤ j ≤ k denote the probability that R
discovers a partition after the discovery of j − 1 parti-
tions. Note that d1 = 1. Because with every discovery,
the size of the space of undiscovered partition decreases
and hence the probability to sample from that space also
decreases, we have

dj < di for all i : 1 ≤ i < j ≤ k (72)

So, the expected time for the j-th discovery is given as

E[Tj ] = 1 · dj + 2(1− dj)dj + 3(1− dj)2dj + . . . (73)
= 1/dj (74)

Thus from (72) we have

E[Ti] < E[Tj ] for all i : 1 ≤ i < j ≤ k (75)

5.2 Efficiency of H over R and S
We can show that the hybrid testing technique H, at any
point in time n, has discovered at least as many partitions
as both its constituent techniques R and S in expectation.

Proposition 3

Let 1 ≤ j ≤ k and suppose nr(j), ns(j) and nh(j) are
random variables denoting the respective times taken by
R,S andH to discover j partitions. Then

E[nh(j)] ≤ E[nr(j)] and E[nh(j)] ≤ E[ns(j)]

Proof : By construction, H employs R and switches to S
when the cost to discover the next partition using R
exceeds c. Given a program P , let j0 be the expected
number of partitions discovered beforeH switches from
R to S. Let Thj , T rj , T sj for all j : 1 ≤ j ≤ k be the
random variables denoting the time units taken from
the discovery of the j − 1-th partition to the discovery
of the j-th partition, by H, R, and S, respectively. Note,
that for all j : 1 ≤ j ≤ k

E[T sj ] = c (76)

We distinguish two cases: (i) j ≤ j0 and (ii) j > j0.
If (i) j ≤ j0, according to Alg. 1, E[Thj ] = E[T rj ], and
since H hasn’t made the switch from R to S0 we have

E[Thj ] < c (77)

E[Thj ] < E[T sj ] [by Eqn. (76)] (78)

If (ii) j > j0, according to Alg. 1, E[Thj ] = E[T sj ]. From
Lemma 10, we know that E[T rj ] strictly increases with j.
Since, E[T rj0+1] > c, we know that for all j : j0 < j ≤ k

c < E[T rj ] (79)
E[T sj ] < E[T rj ] [by Eqn. (76)] (80)

E[Thj ] < E[T rj ] [by Alg. 1] (81)

In both cases (i) and (ii), we have shown that for all
j : 1 ≤ j ≤ k

E[Thj ] ≤ E[T rj ] and (82)

E[Thj ] ≤ E[T sj ]. (83)

Thus,
j∑
i=1

E[Thj ] ≤
j∑
i=1

E[T rj ] (84)

E

[
j∑
i=1

Thj

]
≤ E

[
j∑
i=1

T rj

]
[by lin. of exp.] (85)

E[nh(j)] ≤ E[nr(j)] (86)

Similarly, we can show that E[nh(j)] ≤ E[ns(j)].

6 SIMULATION EXPERIMENTS

While the efficiency of the systematic technique S0 is inde-
pendent of the distribution of partition size,4 the random
technique R performs differently as p varies. Intuitively, R
is likely to discover bigger partitions earlier than smaller
ones. Using simulation, we study the impact of different
distributions of p on the efficiency of R and the maximum
cost c0 of S0 such that S0 remains at least as efficient as R.

4. The efficiency of S0 is independent of the distribution of partition
size since i) we prove a linear increase of errors discovered / confidence
achieved over time and ii) all partitions are discovered in kc time units.
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Achieving a Degree of Confidence x in Minimal Time Discovering a Maximal Number of Errors in n̂ Time Units
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Fig. 6. Efficiency plots for R, S0, and H. For each distribution (Col. 1), we show the degree of confidence achieved over time (Col. 2) and the
maximum sampling cost c0 of S0 (Col. 3) to remain more efficient than R, given a certain degree of confidence x. We also show the number of
errors exposed over time (Col. 4) and the maximum sampling cost c0 of S0 (Col. 5) to remain more efficient than R, given a certain time budget n̂.
In Col. 3 and Col. 5, the maximum cost c0 of S0 is shown as points while the upper bound on c0 (see Prop. 1 & Prop. 2) is shown as dashed line.

Setup. All simulations were conducted in R on a Mac-
Book Pro with 16GB of memory and a 2.3GHz i7 CPU. We
compute the mean of 1000 repetitions of each experiment.
The number of partitions was fixed at k = 1000. In total, we
performed 24,000 simulation experiments (2 testing goals,
3 testing techniques, 4 distributions, and 1000 repetitions).

Testing Techniques. We implemented the three tech-
niques discussed in this article. R samples with replacement
bigger partitions more likely than smaller partitions taking
1 time unit per sampling. S0 samples without replacement
bigger partitions as likely as smaller partitions. In Col. 2 and
4, S0 takes c=5 time units per sampling. H works similar as
in Alg. 1. However, it switches when the actual time-since-
last-discovery exceeds c · c, which might be slightly after the
expected time when time-to-next-discovery exceeds c.

Distributions of pi. We chose the uniform, a random,
and two long-tail distributions for the size of the partitions
(|Di| = pi|D|). The histogram featuring the frequencies of
partition sizes is shown for each distribution in the first row
of Figure 6. The uniform distribution is computed as pi =
1/k for every i : 1 ≤ i ≤ k. The random distribution assigns
each partition a random size. The long-tail distributions are
instances of the Zipf distribution (for s = 0.5 and s = 2).
Intuitively, Zipf yields a very large number of very small
partitions and a very small number of very large partitions.

Distributions of θi. There are a total of 20 error-revealing
partitions that are selected without replacement from the
set of all k = 1000 partitions where a partition Di is selected
with probability 1−pi. In other words, the smaller partitions
are more likely to be error-revealing. The 980 remaining
partitions do not reveal an error.

Results. Figure 6 shows for each distribution (Col. 1), the
efficiency ofR, S0,H and the maximum cost of S0 if the goal
is to achieve a given degree of confidence x in minimal time
(Col. 2-3), and the efficiency of R, S0, H and the maximum
cost of S0 if the goal is to expose a maximal number of errors
within a given time budget n̂ (Col. 4-5). We observe:

• (O1) The hybrid testing technique H has a similar
efficiency than the most efficient of both, R or S0.
Column 2: For all distributions, H can establish the
degree of confidence x = 1.0 significantly earlier
than S0. Except for Long-tail 2, H is always more
efficient than both its constituent techniques, R and
S0, in terms of achieving a degree of confidence x
in minimal time. Only for Long-tail 2 and for
some period of time does H achieve slightly less
confidence than the most efficient of both R or S0.
Column 4: For all distributions except Long-tail 2,
H is more efficient than both its constituent techniques
in terms of revealing a maximal number of errors in
a given time. For Long-tail 2, at any time H has
a similar efficiency than the most efficient of R or S0.

• (O2) The asymptotic bound on c0 is not very tight if
the goal is to achieve confidence x in minimal time.
For instance, given degree of confidence x = 0.99, for
all of the distributions the actual maximum cost c0 of
S0 never exceeds 7 units of time while our upper
bound on c0 gives about 37 units of time. In other
words, for x > 0.99 our asymptotic bound allows
S0 to be more than five times slower than it actually
should be before it guarantees R to be more efficient
than S0. Consequently, our upper bound is not tight.
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• (O3) c0 increases with the skewness of the dist. of pi
if the goal is to expose max. errors in n̂ time units.
Specifically, random testing R performs poorest for
the Long-Tail 2 distribution, where the majority
of the 10−3 partitions cover less than 10−6-th of the
input space. R exposes less than 3 of 20 errors after
10,000 sampled test inputs, on average (Row 4, Col.
4). This allows S0 to take up to c0 = 100 times longer
to sample a test input than R while still exposing
at least the same number of errors in n̂ = 10,000
time units (Row 4, Col. 5).5 Our theoretical bound is
magnitudes higher than the actual value of c0 for S0.

7 PRACTICAL IMPLICATIONS

To analyze the efficiency of automated testing in general,
we construct a mathematical, probabilistic model of auto-
mated testing that hinges upon assumptions made about the
real world. After repeating these assumptions, we discuss
(A) their validity for realistic testing techniques, and (I) the
implications of our theoretical results on the real world.
• (A1) S0 can prove the absence of errors eventually.

In practice, realistic systematic testing techniques T0 are
much less effective than our hypothetical, ideal technique
S0. For example, consider a (high quality) test suite that is
100% branch coverage, MCDC coverage, path coverage and
mutation-adequate, and also executes successfully on the
program. Can we conclude that the program is correct? –
No, because the absence of a failing test case does not imply
the absence of errors in the program [7]. This is because
complete certainty about the “true” error-based partitioning
is unattainable [20]. Consequently, T0 with some degree
of uncertainty samples some partitions several times and
others not at all. The degree of uncertainty depends directly
on the analysis cost. The more comprehensive the analysis,
the more effective is the testing technique. It follows that

(I1) The maximum sampling cost for realistic techniques
T0 is likely less than the maximum sampling cost c0 that
we give for S0. In practice, to approach the effectiveness of S0,
we need to increase the analysis cost which in turn decreases
the efficiency of the testing technique!

• (A2) S0 takes constant time c to sample one test input.
In practice, the sampling cost for realistic systematic tech-
niques T0 may be a function that increases with testing
time or program size. For example, consider coverage-based
testing. It requires almost no analysis to sample an initial
set of inputs that cover much of the source code. However,
it becomes increasingly difficult to cover the remaining few
uncovered code elements [30], [31]. So, the sampling of the
test inputs takes increasingly longer. However, the average
sampling cost for T0 must remain below c0 for S0!

(I2) Given the same sampling cost for the first test input,
the maximum sampling cost for realistic techniques T0
is likely less than c0 for S0. The time to sample a test input
for T0 likely increases as a function on time, number of tests
generated, or the size of the program. In that case, T0 becomes
less efficient over time while S0 remains just as efficient.

5. Recall that we choose smaller partitions to be more likely to be error-
revealing so that R may perform better otherwise (Dist. of θi).

• (A3) Input partitioning into error-based subdomains.
In Def. 1, we define error-based partitioning to set up our
investigations of testing efficiency in terms of errors revealed
and the confidence achieved in the program’s correctness.
However, there is no reason why the partitioning should
not be target-based, path-based, or differential, for example.
Target-based partitioning yields subdomains for which all
inputs either do or do not reach a certain target in the source.
Differential partitions [15] are difference- and equivalence-
revealing subdomains in the context of regression testing.
Path-based partitioning [11], [32] groups all inputs into one
partition that exercise the same path.

(I3) The bounds on c0 for S0 hold for disjoint input sub-
domains that are homogeneous w.r.t. other properties,
for instance, if the goal is to cover a maximal number of paths
within a given time budget:
Question: We have a program with k = z = 106 paths
where the path with the least probability to be exercised is
of fractional size qmin = 10−8. We have two testing tools: a
symbolic execution tool S ′ that exercises each path – one at a
time, chosen uniformly at random from paths not exercised
– and a random testing tool R that takes 10ms to generate
and execute a test case. Finally, we only have one hour (n̂ =
1h) to exercise as many paths as possible. Which technique
should we choose, R or S ′?
Answer: We choose S ′ only if generating and executing one
test case takes, on the average, less than about 1s!

In practice, finding qmin while possible may not be viable;
e.g., using symbolic execution and model counting the num-
ber of inputs exercising a certain path can be computed [32].
• (A4) S0 samples error-based partitions in random order.

In Definition 7, we define testing technique S0 such that it
samples each partition exactly once (cf. (A1)). However, we
also specify that the partition that is sampled next is chosen
uniformly at random. This assumption holds for instance
for symbolic execution tools that exercise each path one at a
time, chosen uniformly at random from paths not exercised.
This assumption may not hold for other testing techniques
that discover large partitions earlier than small partitions.

(I4) The bounds on the maximum sampling cost hold for
realistic testing techniques T0 with a similar sampling
scheme than S0, i.e., those that choose uniformly at random
from the set of undiscovered parititons which partition is to be
sampled next.

• (A5) R samples from input space uniformly at random.
In our probabilistic analysis, we assume that R chooses an
input uniformly at random from the set of all program in-
puts. In practice, it is unlikely that any existing random test
generator satisfies this assumption [19]. For instance, there
may be bias towards producing small inputs, or dependence
among the sampled tests such that new inputs are produced
from previous valid ones in a feedback-directed manner.
• (A6) Input space is bounded; errors are deterministic.

Boundedness: In practice, no program can take infinite input.
Hence, our assumption that the program’s input space is
bounded is realistic. The input domain can be arbitrarily
large with an arbitrarily large number of error-based parti-
tions that may never all be discovered in any practical time.
Yet, our bounds are applicable since k and |D| are finite.
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Determinism: We assume that executing a test case that failed
once, does always fail for the tested (unmodified) program.
This is also satisfied if a model that renders a test execution
deterministic, like a specific thread schedule, is constituent
of the test case (and input space, respectively). However, for
many test generators indeterminism is an open problem.

• (A7) Works correctly for x% of its valid, typical input.
Consider a program that takes XML files as input. Then,
99.99 · · · 99% of random strings are effectively invalid input.
It may seem that sampling even one test input using R
achieves degree of confidence x > 0.999 suggesting that the
program works correctly for more than 99.9% of its input.
However, as long as no program analysis is involved we can
give both test generators the same power while retaining the
validity of our efficiency analysis: If we assume S0 to gener-
ate only valid input, then we should assume R to generate
only valid input, too. After all, we have c of S0 represent
the additional time for program analysis and defined to be a
factor of the time it takesR to sample a (valid, typical) input.
Thus, our bound holds even if we want to establish that the
program works correctly for x% of its valid, typical input.

(I5) If we want to establish whether any program works
correctly for x = 99% of its input, we can compute a
bound c′0 on the time that a realistic technique T0 takes
on average to generate and execute a test case and check
its outcome such that some random test generator tool
R is expected to achieve x earlier than T0 if T0 exceeds
c′0 = 37 times the time that R takes on average to
generate and execute a test case and check its outcome. T0
has the same sampling scheme as S0 but may be less effective.

The ,,class of nines” for a degree of confidence x is directly
proportional to the magnitude of the maximum analysis
cost. The class of nines for degree of confidence x is com-
puted as b− log10(1− x)c, where b.c is the floor function.

confidence x class of nines bound on c0
90% 1 nine c0 < 4.1 ∗ 100
99% 2 nines c0 < 4 ∗ 101
99.99% 4 nines c0 < 4 ∗ 103
99.9999% 6 nines c0 < 4 ∗ 105

8 CONCLUSION

In this paper we presented strong, elementary, theoretical
results about the efficiency of automated software testing.
For thirty years [16], we have struggled to understand how
automated random testing and systematic testing seem to
be almost on par [4], [5], [7], [17], [18], [33], [34].

Researchers in Software Engineering have spent much
time and effort developing highly effective testing techniques;
in fact, so effective that we can use testing even to prove
the correctness of a program [26], [35]. In practice however,
companies develop very large programs and have only
limited time for testing. Given the choice of two testing
tools, the developer would choose that which produces
good results faster. Efficiency is key for testing tools.

Instead of seeking to increase the effectiveness of automated
software testing, we should take time limitations into account
and increase the efficiency of automated software testing.

In this work, we have provided a uniform mathematical
framework for modeling the efficiency of software testing
which is elementary and intuitive. In this framework, we
showed that even a highly effective systematic testing tech-
nique is inefficient compared with random testing if the time
for program analysis and test generation/execution is rela-
tively too high. We explored two notions of testing efficiency
that may be the main goals of automated software testing:
i) to show in minimal time the correctness of a program for a
given percentage of the program’s input domain (Sec. 3) and
ii) to discover a maximal number of errors within a given
time bound (Sec. 4).

We defined a systematic testing technique S0 that is most
effective in terms of both the above notions. Subsequently,
we explored the efficiency of S0 again in terms of both
the above notions. We also discussed how these results
generalize, e.g., if the goal is to reach many targets, exercise
many paths, or expose many differences, and how these
results apply to realistic testing techniques (Sec. 7): Since
realistic techniques with the same sampling scheme and
cost as S0 are certainly less effective, they are trivially also
less efficient. We believe that our work can also provide
the formal framework to explore the efficiency of testing
techniques other than S0.

For both goals of efficient software testing, we showed
that there exists a bound on the time that S0 can take per test
case beyond which R performs better than S0 on the aver-
age. Moreover, if the goal is to achieve degree of confidence
x in minimal time, this bound depends asymptotically only on
x. This has implications on the scalability of S0: If the time c
to analyze the program increases with program size, for any
testing technique there exists a program large enough that
R is always expected to achieve x earlier.

Using insights from the above, we designed a hybrid
testing technique H that starts with R but switches to S0
at that precise moment when S is expected to discover the
most number of partitions per unit time. It is different from
earlier seeding techniques [36], [37] (e.g., run R for 60sec,
then run S) in that H is clearly more systematic about when
to switch to achieve optimal efficiency. We showed that H
performs similarly or better than the most efficient of both.
That H can be instantiated with techniques other than S0
demonstrates that the technique is robust and generic.

Finally, we conducted 24,000 simulation experiments
with varying parameters. We observed that i) H has a
similar efficiency than the most efficient of both, R or S0,
ii) the asymptotic bound on c0 is not very tight if the goal is
to achieve confidence x in minimal time, and iii) c0 can be
significantly larger if the input space is partitioned such that
there is a small number of huge and a very large number
of very tiny partitions if the goal is to expose a maximal
number of errors in n̂ time units.
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