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As our lives, our businesses, and indeed our world economy become increasingly reliant on the secure operation of many interconnected
software systems, the software engineering research community is faced with unprecedented research challenges, but also with
exciting new opportunities. In this roadmap paper, we outline our vision of Software Security Analysis for the software systems of the
future. Given the recent advances in generative AI, we need new methods to evaluate and maximize the security of code co-written
by machines. As our software systems become increasingly heterogeneous, we need practical approaches that work even if some
functions are automatically generated, e.g., by deep neural networks. As software systems depend evermore on the software supply
chain, we need tools that scale to an entire ecosystem. What kind of vulnerabilities exist in future systems and how do we detect
them? When all the shallow bugs are found, how do we discover vulnerabilities hidden deeply in the system? Assuming we cannot
find all security flaws, how can we nevertheless protect our system? To answer these questions, we start our research roadmap with
a survey of recent advances in software security, then discuss open challenges and opportunities, and conclude with a long-term
perspective for the field.
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1 INTRODUCTION

Over many years, the primary focus of the software engineering community has been on building larger and more
reliable software systems with minimal effort. Today, we are proud to see the world’s digital economy run reliably on
a super-scale, ever-changing, hyper-connected network of software systems. With the power of the software supply
chain, cloud computing resources at our fingertips, and a large automation ecosystem at our disposal, we can build
complex systems from existing components at an unprecedented pace. Recent advances in artificial intelligence (AI)
promise further automation even of creative tasks (incl. auto-programming to build even larger systems). Our software
systems are becoming more heterogeneous and extend further into the real world, as for instance, virtual reality, the
Internet of things, autonomous cars, and robots.

Over the coming years, we anticipate that software security analysis will become another important focus of the
software engineering SE community. How can we make our large, interconnected software systems robust against
attacks? In this paper, we draw a research roadmap towards 2030 and beyond. We identify concrete challenges and
opportunities for the security analysis of our software systems of the future and provide specific directions of research.
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2 STATE OF THE RESEARCH AND PRACTICE

Software security analysis has seen significant progress over the last decade. Several program analysis techniques,
ranging from static analysis [49, 55, 62] to fuzzing [126, 143, 202] to symbolic execution [42, 146, 166] have reached
maturity, and many software systems have started to adopt them. Combined with other software development changes,
such as new-generation IDEs [59, 186], better code hosting platforms [85], and higher adoption of code review and
continuous integration [28, 170], this has enabled the development of larger and more complex software systems.

2.1 Software Analysis Techniques

This section briefly describes the most widely used software analysis techniques employed in practice, particularly in a
security context:

Formal verification provides the highest level of security guarantees, with formal machine-checked proofs being able
to establish the absence of certain classes of bugs. In the last 15 years, the field has seen tremendous progress, with
researchers building several safety and security-critical software systems, such as the seL4 microkernel [113] and the
CompCert compiler [120]. Yet, there are, unfortunately, two main inter-related limitations of formally-verified systems:
(1) they require years of PhD-level expertise, with the specification often larger than the verified code itself, and (2) the
resulting systems lack many of the features and/or performance of their non-verified counterparts. In addition, evolving
these systems is often costly, as the verification effort is not always modular.

Static analysis reasons about program code without executing it. Abstract interpretation [61] is a well-known type
of static analysis, with sound reasoning, which can also be used for formal verification. Especially in the security
domain, more lightweight vulnerability detection techniques have become very popular [122]. These frequently focus
on identifying the most common kinds of vulnerabilities, e.g., the SANS 25 [65]. These techniques are usually based
on data-flow analysis that—for scalability reasons—oftentimes forgoes complex reasoning about arithmetic and other
aspects. To provide a “good signal” with few false positives, most such approaches these days also accept a certain level
of unsoundness [149]. While recent work has shown that clever program abstractions and algorithms can improve
analysis precision and speed at the same time [172], scalability remains a challenge when it comes to analyzing large
code bases. Another major shortcoming of static analysis, shared with other techniques, is that analyzers need to be
configured: they only report what they are configured to report, which is why they must be told, e.g., which particular
API calls in which combination can lead to which kinds of vulnerabilities [157, 158]. In other words: static analysis also
does not completely forego a specification, yet here one specifies vulnerability types, not program functionality.

Fuzzing [34], at a high level, involves testing software with randomly generated inputs. There are three main forms of
fuzzing: black-box, grey-box, and white-box fuzzing, with the latter also known as dynamic symbolic execution and
discussed separately below. Black-box fuzzing does not use any knowledge of the implementation, nor any execution
feedback other than what can be observed by running the software in a black-box manner. At the same time, it requires
domain knowledge to be effective, such as grammar for the inputs accepted by the program. The technique has been
applied with a lot of success in several areas, for instance for optimizing compilers and database management systems
(DBMS), where it has found hundreds of critical bugs in mature compiler and DBMS implementations [118, 162, 197].
Greybox fuzzing is the most widely used form of fuzzing for general software systems, which is guided by the code
coverage achieved by the generated inputs. It is typically combined with mutation-based input generation. Greybox
fuzzing was pioneered by AFL [202] and now there are dozens of greybox fuzzers available for many different languages
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and domains. OSS-Fuzz [142] is a service provided by Google which runs several state-of-the-art greybox fuzzers on
open-source software. To date, it has found over 10K vulnerabilities and over 36k bugs in over one thousand projects.

Dynamic symbolic execution [43, 48, 86, 146, 166], also referred to as concolic execution, whitebox fuzzing or just
symbolic execution, is a program analysis technique that can systematically explore paths in a program by using an
SMT constraint solver [70] to reason about path feasibility and generate concrete test inputs for each explored path.
While the technique has a long history going back to the 1970s [56, 111], it is only in the last couple of decades that it
has become practical, enabled by both algorithmic advances and practical tool design [29]. Nevertheless, important
scalability challenges remain, both in terms of path explosion and constraint solving [48]. Dynamic symbolic execution
has started to be adopted in practice [44, 45] by companies such as Fujitsu [121], Microsoft [86] and Samsung [116],
and nowadays several mature open-source tools exist for different languages and platforms [42, 69, 146, 159].

Machine learning was applied in software security analysis mostly to the problem of further automating code-level
vulnerability detection, ranging from approaches that help configure traditional static data-flow analyses [157] to such
that try to detect vulnerabilities solely using machine learning, without data-flow analysis [52]. For the latter case, while
in cross-validation lab experiments, many approaches in this field at first showed extremely promising results [211], it
has been unfortunately proven again and again that with current models the recognition quality quickly degrades when
the machine learning models are tested on code on which they had not been trained [84, 115]. This result is similar to
what has been observed for malware detection [19]. Another issue with many such classifiers is that they merely report
that they suspect some vulnerability in a given method or even file—information that is hardly useful to developers and
can at best help prioritize further vulnerability detection activities. While more recent approaches attempt to report
findings on the line level [82], and try to report at least the given CWE classification of the suspected vulnerability, it
remains to be shown whether developers can act on such findings.

Runtime protection mechanisms are used during software deployment, targeting vulnerabilities that development-
and testing-time activities have failed to detect. These techniques target specific classes of errors, typically memory
vulnerabilities [178], and usually make it harder rather than impossible, for attackers to exploit those vulnerabilities.
Well-know techniques include stack canaries [63], control-flow integrity [15], data-flow integrity [15], code-pointer
integrity [117] and write integrity testing [16].

2.2 Detected Errors

Given that most of our security and safety-critical code continues to be developed in unsafe languages like C and
C++, most attention has been given to memory safety errors [178]. On the one hand, techniques targeting such errors
have been designed and adopted in practice, such as compiler sanitizers [168, 173], which can find bugs such as buffer
overflows and use-after-free errors. On the other hand, techniques that can in principle find a broader class of bugs,
such as static analysis and symbolic execution, have been primarily applied to find memory safety errors and injection
vulnerabilities, both due to their importance and their easily available oracles [42, 49, 55, 166].

To go beyond memory safety, researchers have exploited differential and metamorphic oracles. For instance, differen-
tial testing has been extremely successful in the context of compiler testing [197], while various types of metamorphic
transformations have been effective for database management systems [162].

Certain types of functional bugs may escape differential and metamorphic testing. Specifications have been for long
proposed as a way to write correct software, but adoption has been limited, particularly in mainstream languages.
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3 CHALLENGES AND OPPORTUNITIES

As we look forward, we predict a substantial shift in the key challenges for security analysis. Not only will our software
systems grow larger, more interconnected, more distributed, and evolve faster.We also expect to see a greater dependence
on the software supply chain, a deeper integration with the physical world, and a broader range of important security
properties beyond memory safety. There are also many untapped opportunities for us to develop the area of software
security analysis. For instance, recent advances in machine learning hold a strong promise for non-traditional, empirical
approaches for reasoning about the security of a software system [33]. Outside of the technical aspects, as the field
matures, we should work on pedagogical aspects, such as establishing and teaching the foundations of software security,
as well as legal aspects, such as questions of liability or accountability in the digital world.

For easy reference, each challenge or opportunity is identified uniquely using a counter and a name. For instance,
O1. This is a challenge or opportunity.

3.1 Overview: Software Systems of the Future

Over the last several decades, software engineering has mainly focused on the design and implementation of the software
systems that underpin our digital world, including our digital economy, our digital entertainment and social networks,
as well as our apps and devices that we use every day. Going forward, we expect, the focus will slowly move to the
evolution, maintenance, and hardening of these software systems. Once the software supply chain is set up during design
and implementation, even if the software system itself is properly maintained, it is important also to monitor and
maintain the integrity of its supply chain. This will require ecosystem-scale analyses of large networks of dependencies.

Software systems will compose more dynamically and work in concert with many other systems that are in many
cases unknown at development-time. Such systems of systems will be highly interconnected and distributed to an
arbitrary complexity. Individual nodes may be elastically added or removed at any time depending on the current
user-demand or compute-availability. The dynamic organization of computation makes it difficult to analyze the security
of such systems a-priori. The distributed nature of computation poses challenges for the confidentiality and integrity of
the data that is being processed.

Software systems will change more rapidly. Many software systems are built and maintained with a continuous
integration / continuous deployment (CI/CD) pipeline enabled which allows for a rapid testing and deployment of new
features, bug fixes, or security patches. With the advent of effective tools for (semi-)automated programming [208]
and vulnerability remediation, we expect the rate of change to increase further. Submitted changes, bug fixes, and
security patches may be produced or reviewed entirely mechanically [81]. This increasing level of automation in the
development process poses interesting opportunities for future work in automatic software security analysis.

Software systems will be more heterogeneous and potentially integrating machine learning components. Some
components may be written in a memory-safe language while others are not. Some components may be implemented
in a type-safe language while another may not. Some components may be realized as machine learning model that
returns approximate, probabilistic results while the remainder of the system may be entirely deterministic (modulo a
thread schedule). An effective software security analysis tool should be able to deal with such heterogeneity.

Software systems will be embedded further into our physical world. Virtual reality systems will project virtual
objects into our physical space for us to interact with. Embodied AI will turn virtual chat bots into embodied robot
assistants that interact with the real world to test their hypotheses about the real world. More devices will be connected
to the internet (via fog and cloud computing). Cars receive software updates over the air. Transport is increasingly
Manuscript submitted to ACM
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automated. While rich with opportunities, from a safety and security perspective, the increasing ability to interact with
the physical world also poses increased risks of physical damage up to loss of life.

3.2 Machine Learning and Security

Recent advances in machine learning promise a paradigm shift in software security analysis.

3.2.1 Security for Machine Learning (Sec4ML). Traditional software systems are programmed, i.e., composed of human-
written instructions for the machine to process inputs. So, most existing security analyses work by processing these
instructions to reason about the security of the software system. However, we expect that future software systems, at
least in part, will be learned. Machine learning methods, such as deep learning and large language models have proven
extremely useful in the automation of certain tasks. For instance, rather than humans writing programs that provide
precise instructions on how to generate a video, an image, or even source code from a text description (called prompt),
it might be sufficient to train a machine learning model with large amounts of data.

O1. Analysis of ML systems. How can we make statements about the properties of a program whose behavior emerges
from a network of neurons with real-valued weights? From a formal perspective, we could investigate transpilation
techniques [192] which turn a machine-learning model into a traditional program (i) that is guaranteed to exhibit all
and only those behaviors as the original model, and (ii) that can be analyzed by existing software verification or static
analysis tools. Skipping the intermediary traditional program, we could develop new analysis techniques that directly
extract a formal model of computation representing all executions of that model and allow us to formally reason about
the properties of that model. From an empirical perspective, we could investigate statistical methods or PAC learnability
to quantify our uncertainty about empirical statements about a model’s properties, given a sample from the operation
distribution of inputs for that model [119]. We could employ experimental methods to make empirical statements about
hyperproperties [57] of an ML-based software system (e.g., robustness quantifies the degree to which a small change in
the input causes a change in the output of the model).

O2. Vulnerability types in ML systems. Which security flaws might exist in ML-based software systems that could
be exploited with malicious intent, and how do we analyze and mitigate them? We already know about certain broad
types of attacks on machine learning systems. In a data poisoning attack, the malicious actor manipulates the training
data to influence the behavior of the trained software system that is eventually deployed. In a data privacy attack (e.g.,
membership inference, model extraction, or model inversion), a malicious actor can extract sensitive data from the
deployed system. In a model evasion attack, a malicious actor learns to manipulate the deployed system’s outcome, e.g.,
to evade detection. There are most certainly other types of vulnerabilities; some may be domain- or model-specific.
How can we detect and mitigate them?

O3. Vulnerabilities in ML-generated code. Which security flaws are typically observed in ML-generated code and
how do we detect them? How do we improve the security of ML-generated code? Can ML-generated code be more
secure than human-written code? For little over a year, we have seen increasing adoption of ML-based programming
assistants that can translate simple comments [134, 211] or complex Github Issues [208] into source code written in
any programming language. Such ML assistants free developers from resolving mundane issues and help them focus
on the high-level, creative part of the development process. However, these machine programmers are also known to
“hallucinate” [150, 152]. Today, they tend to generate faulty and potentially insecure implementations. If the complicated,
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auto-generated code is accepted by the busy programmer without much reflection, ML-generated vulnerabilities might
start to sneak into production code at an increasing velocity.

3.2.2 Machine Learning for Security (ML4Sec). Machine learning has always played an important role in software
security analysis, e.g., for intrusion detection [72], malware analysis [182], and vulnerability detection [125]. Specifically,
machine learning is used to identify patterns that are correlated with security flaws. While results on academic
benchmarks seem promising, other factors, like overfitting or spurious correlations, cannot be excluded as alternative
explanations for the required code reasoning capabilities [22, 53, 163]. However, recent developments in large language
models, particularly towards systematic reasoning and planning [189], and further developments in causal reasoning
from data [153] hold exciting prospects for the application of machine learning to software security analysis.

O4. ML4SbD (Secure-by-Design). We anticipate that multi-model machine-learning models, which, for instance, can
work with not just text but also drawings, will reshape very soon the way in which we design and document software
systems. One can easily envision systems that derive software architectures in a joint interaction with developers. But
how can we make sure that ML models, if used in this way, come up with “the right” design? How can we factor in
security? Will it be problematic if such models yield non-deterministic output? And can machine learning even help
detect security flaws on the architectural level?

O5. ML4VD (Vulnerability Detection). How can we use recent advances in ML to swiftly analyze source code written in
arbitrary languages, at an arbitrary scale, with a tolerable number of false positives or negatives? Existing approaches
that work without executing the program require some human-provided encoding of the pertinent semantic rules of the
programming language. Machine learning can do away entirely with such semantic rules and—given enough training
data—works for programs written in any language. For instance, defect prediction [107] has been developed over many
years as an ML-based approach to identify potentially defective components via code property correlates. Deep-learning
based methods require substantial training data, and it is an open question if such data can at all be properly curated in
sufficient amounts for these models to work effectively. However, recent advances in deep learning (DL), large language
models (LLMs), and statistical methods [33, 119] promise an entirely new form of reasoning over the properties of
a program. As LLMs are known to make up facts (“hallucinate”), we should explore the limits of these approaches
and identify where they work well and where they do not. Given the enduring success of existing formal/symbolic
approaches in program analysis, we further envision the development of new neurosymbolic approaches.

O6. Tool configuration or assistance. How can we reduce the level of expert knowledge required to set up security
tooling for a given software system most effectively? For interactive security tooling, how can we increase automation
and further assist or even replace the engineer with ML? Most security tools are designed to be general, i.e., to work for
any software system that is in scope. To adapt such a tool for a specific system, it needs to be configured. For instance,
to attach a fuzzer to the system the user needs to write the required fuzz drivers [167] and provide the required input
format or protocol [21, 154]. To enable a static analysis security tool (SAST), the user needs to add it to the Continuous
Integration (CI) pipeline and possibly to the build process. Such a setup requires expert knowledge about both, the
security tools as well as the software system. The recent success of LLMs in similar high-level, creative tasks (e.g.,
translating hundreds of pages of natural language protocol specification into a format that is usable by a fuzzer [132]) is
a promising precedent. In the future, we envision that even the layman can set up security tooling for any specific
software system.

Manuscript submitted to ACM



Software Security Analysis in 2030 and Beyond: A Research Roadmap 7

O7. Sound evaluation. How can we properly evaluate the true capabilities and limits of ML-based security tooling to
discover or mitigate security flaws in important software systems? How can we establish a level playing ground for
a sound empirical comparison to other security analysis approaches, like static analysis? In ML-based vulnerability
detection, some papers report a performance on public benchmarks that greatly exceeds all expectations, given the
general experience in the industry with other security tools (e.g., lt. 6% false positives; 7% false negatives [125]). Yet,
they cannot distinguish between vulnerable and patched functions [163]. Going forward, we need to study the reasons
for those outstanding results, identify concrete benchmarking pitfalls, and develop reliable methodologies to evaluate
ML techniques for security analysis that systematically exclude alternative explanations for the observed performance.

3.3 Security of Evolving Software

Software systems have always been in constant change, but their evolution is due to further acceleration as more tools
are being integrated into the development process and AI-based systems are becoming capable of repairing code and
contributing new features. As a result, program analysis tools will need to become more agile in the way they are
deployed, focusing on analyzing the recently introduced code changes rather than on the overall system.

O8. Program analysis for fast-evolving software. How do we design program analysis techniques that keep up
with the high evolution of modern software systems? Preliminary techniques have already been proposed in the
literature [35, 130], but they still lag behind their whole-program counterparts. An important challenge is that such
techniques have to be fast, so as to not slow down software development; for instance, while whole-program fuzzing
campaigns are often expected to take 24h [112], incremental ones should take on the order of minutes [114]. How can
incremental updates [23] be used to speed up static analysis? Program analysis techniques should take advantage of
the runs performed on earlier versions [41, 196], as well as use the behavior of the previous version as an implicit
oracle [144].

3.4 Supply Chain Security

Yesterday’s software systems were developed and analyzed as monoliths that were often entirely developed by a single
vendor. Today’s software systems are (recursively) composed of many third-party components. This is the software
supply chain. The security posture of the projects behind these third-party components may drastically vary. Some
projects may have a vulnerability disclosure policy and track unique identifiers (CVEs) for the software vulnerabilities
that were present across different versions of the project. Others may not be actively maintained anymore and are
riddled with known vulnerabilities that are so automatically included in the complete software system.

Tomorrow’s software systems will contain new vulnerabilities that could be introduced into any part of the supply
chain at any time, e.g., by reusing code snippets from Q&A forums or source-code forges, that include both known
and unknown vulnerabilities. Some projects, like the Linux kernel,1 may have a liberal CVE-assignment policy while
others never request CVEs for their security flaws which renders the number of CVEs in the supply chain of a software
system an unreliable measure of its security posture. Moreover, with the increasing recent adoption of LLMs for the
generation of code, security issues hidden in third-party artifacts could be reused and imported in much more flexible
ways, which also challenges the existing infrastructure of supply chain security.

1“[..] the CVE assignment team is overly cautious and assigns CVE numbers to any bugfix that they identify”; https://docs.kernel.org/process/cve.html.
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3.4.1 Software Composition Analysis. A software composition analysis (SCA) [104, 141] automatically identifies the
third-party components of a software system to detect known vulnerabilities, license compliance issues, or other risks
or quality issues arising from the usage of those third-party components. Existing work on SCA has focused on code
clone detection either in the system’s source code [88, 102] or the distributed binary [123, 203].

O9. SCA in the era of ML-generated code. How can we reliably identify code snippets that are copied from a code
repository that is license-protected or that is potentially riddled with security flaws? If the adoption of AI-assisted
programming tools continues at the current rate, an increasing proportion of code added to our code bases will be ML-
generated. As these tools pull from a vast array of sources to generate or suggest code snippets, accurately tracking and
analyzing the security of these piecemeal components becomes daunting [24, 151, 165]. This fragmentation complicates
dependency and vulnerability mapping in SCA, making it difficult to ensure comprehensive coverage in vulnerability
scans. Furthermore, the fragmented code reuse also introduces significant challenges for the identification of plagiarism
of existing artifacts [124, 177, 200], which further complicates the copyright and license detection for SCA. To tackle
these challenges, we require new SCA techniques at the level of code snippets, like software genes [193], for improved
supply chain security assurance.

O10. Risk analysis. How can we evaluate the impact of security flaws in third-party components on the host software
system with reasonable accuracy and scalability? Even if SCA tools reliably identify the third-party components with
known security flaws (i.e., n-day vulnerabilities), it is left to the user to confirm whether such security flaws or their
interactions yield a vulnerability of the host system. A variety of static analysis techniques have been developed to
automate this process and identify specific vulnerable execution paths [137, 194, 204] or to determine the host’s general
security posture w.r.t. the exploitation of n-day vulnerabilities [67, 78]. However, there is a notable lack of dynamic
verification techniques to generate a witness host execution to confirm a vulnerability, and existing static analysis
techniques are often either not scalable or too imprecise.

O11. Tool support across the software development life cycle (SDLC). How can we support the automation of
supply chain security analysis across the different phases of the SDLC of a project and its dependencies? Similar to the
supply chain in manufacturing, the software supply chain consists of people, processes, tools, third-party components,
and other artifacts that play a role in the development and maintenance of a system [1]. Throughout a project SDLC,
we can identify several threats to supply chain security. During development, developers could submit code containing
security flaws [90, 94] or add vulnerable third-party dependencies [147] either accidentally or via compromised accounts
or malicious insiders [89]. During build and deployment, tools such as the compiler or build server may be compromised
and inject security flaws [46, 180]. During distribution, package managers and other registries could distribute malicious
third-party components, e.g., via typosquatting [179], compromised maintainer accounts [201], exploits of dependency
resolution mechanisms [92], or the persistence of outdated dependencies [99, 204]. During maintenance, the security
posture of a project may degrade over time when maintainers move on to other projects or simply do not have the time
anymore. This leaves downstream users exposed to known security flaws until they are eventually fixed, if ever [175].
All of these challenges require new techniques to support the security of a software system across the entire SDLC.

3.4.2 Supply Chain Ecosystem. Third-party components of a software system are often distributed via packagemanagers
(PMs) and reused within an ecosystem, constituting a network of dependencies. Examples of PMs and the corresponding
ecosystems are NPM/JavaScript [127], Maven/Java [104], PIP/Python [187], GoLang [99], and Android [203]. Apart from
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third-party libraries, pre-training models, datasets, and cloud services are also critical components in new emerging
systems, such as LLM-based systems, distributed systems, cloud platforms, and cyber-physical systems. These new
types of dependencies also become potential entry point for attacks.

O12. Longitudinal studies of ecosystem security health. How can we detect long-term or emerging security threats
in a swiftly evolving network of software dependencies involving multiple component versions? How does the overall
security health of an ecosystem evolve over time? Existing studies of such ecosystems have focused on the identification
of security threats [212] and the propagation of vulnerabilities [127]. As these ecosystems evolve and new ecosystems
emerge, in the future similar studies should be repeated in regular intervals and summarized longitudinally. We should
develop the capabilities to identify and track various types of attacks on an ecosystem and to monitor how the security
posture of individual projects impacts the overall security health of the entire dependency network.

O13. Ecosystem-wide vulnerability remediation. How can we improve the security of a software system that
depends on third-party components with known vulnerabilities? How can we improve the overall security health of an
ecosystem? Some projects in an ecosystem might reach their end-of-life, for one reason or another [100], but even if
every project was very well maintained where security flaws are fixed as soon as they are found, there is still technical
lag in the propagation of these fixes to its dependants [91]. Some hosts (i.e., dependants) might be reluctant to update
their otherwise trustworthy dependencies and still use an older version [64]. Hence, vulnerable versions should be
identified [31], vulnerability patches should be back-ported to these versions [71], and affected dependants should be
identified and updated [54]. To minimize the risks of breaking updates, multi-version execution techniques can be used
to roll back any failing updates [98, 156]. To minimize the reliance on (vulnerability-inducing) third-party components,
developers can use debloating techniques to trim redundant dependencies from a software system [39, 171]. If the
system depends on a third-party component with known vulnerabilities, existing SCA tools would suggest adopting the
corresponding patch [164], to update the third-party component (where the vulnerability is fixed) [188], or to migrate
to a different component that implements the required functionality [97].

However, most existing remediation strategies are vulnerability-specific with little adjustment to the host where the
remediation is applied. In other words, remediation might lead to potentially breaking changes in the host itself [206]
or the host’s dependants [205]. Moreover, beyond remediation for individual dependants, we should develop ecosystem-
wide intervention strategies to maximize the overall health of the ecosystem in the presence of known vulnerabilities
or emerging security threats.

O14. The software supply chain of emerging systems. How can we identify and properly manage new types of
dependencies in emerging systems? How can we systematically identify the new attack surfaces alongside? How can we
propose comprehensive detection and management solutions to mitigate these newly emerging threats? The software
supply chain of emerging systems faces significant challenges due to its complex, multi-layered nature. Managing
dependencies, particularly with pre-trained models, and cloud services, beyond third-party libraries, is increasingly
difficult, often resulting in opaque, hard-to-track components. Security vulnerabilities from external services [145, 185],
becomes a potential entry point for attacks, especially in distributed and cloud architectures. The rapid and untraceable
updates [87, 199] of external services could introduce potential unreliable functionalities, which should be further
included into the management of supply chain. Ensuring transparency and traceability across these diverse systems,
particularly in ML and LLM-based models, is another critical challenge. Pre-training models [79, 93, 106, 198, 209],
training frameworks [95, 191, 210], as well as poisoned datasets [36, 60, 148], are also vital components in supply chain,
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proper detection and management of corresponding threats should also be concerned. Additionally, cyber-physical
systems, such as IoT systems, introduce heightened risks due to their integration of software with safety-critical physical
components [131], their supply chains are intricate systems that involve the production and integration of not only
software but also hardware components [32, 129], their compliance with safety-critical standards for industries, such as
healthcare [51, 110, 128], transportation [207], and manufacturing [83], should also further managed.

3.4.3 Vulnerability DataQuality. The performance of security analysis tools that are developed for the software supply
chain rests on the quality of the vulnerability data that is available.

O15. Vulnerability provenance metadata. How can we uniquely identify and track a vulnerability across the entire
history2 of an ecosystem? How can we do so in bytecode or even machine code? How can we store, update, and access
relevant metadata for each vulnerability in a standardized, machine-readable format? What are the legal and ethical
considerations for the storage and availability of such potentially sensitive data? Currently, a vulnerability is assigned a
unique identifier, called Common Vulnerabilities and Exposures (CVE) by a CVE Numbering Authority (CNA) and stored
in vulnerability databases. The first vulnerability database was the Repaired Security Bugs in Multics project published
on February 7, 1973. Major vulnerability databases such as the ISS X-Force database, Symantec/SecurityFocus BID
database, the Open Source Vulnerability Database (OSVD), and the National Vulnerability Database (NVD) aggregate
a broad range of publicly disclosed vulnerabilities, including CVEs. Many SCA tools use these databases to identify
known vulnerabilities in third-party components. Therefore, vulnerability databases must be updated regularly to
ensure the maximum effectiveness of these tools.

However, there does not exist a standardized, machine-readable format for the associated metadata, such as the
vulnerable versions, the patch, or the proof-of-vulnerability. We should develop the mechanisms needed to track
a vulnerability through the ecosystem, and to swiftly update the metadata as remediation proceeds and new facts
emerge. The metadata should be comprehensive, current, and trustworthy. While we believe in responsible disclosure in
favor of the dependants, we should investigate the legal or ethical consequences of tracking such potentially sensitive
vulnerability information at the ecosystem scale.

O16. SCA tool benchmarking. How do we soundly evaluate the capabilities of SCA tools [68]? What about domains
where closed-source components play an important role, such as automotive, IoT, or blockchain? The scope of third-
party artifacts included in the SCA feature databases could also heavily influence SCA capabilities [105]. Though many
experimental SCA tools are proposed to improve accuracy, they are mostly only validated on a limited feature dataset,
i.e., by filtering open-source projects by metrics such as stars [66]. This is also why many experimental SCA tools reach
high accuracy but seem less satisfactory in real-world scenarios. Moreover, it is also difficult to collect a high-quality
feature dataset for specific domains, such as automotive [96], IoT [135], and blockchain [176], where closed-source
artifacts play a much more important role and could compromise SCA detection if no corresponding datasets are
well-established.

3.4.4 OSS Supply Chain Governance. In response to the escalating software supply chain security threats, the community
and open-source ecosystem have rallied to implement various countermeasures aimed at mitigating risks. However,
there are many regulatory and sociotechnical challenges. Addressing these challenges demands a collaborative effort

2Different hosts of a library often depend on different versions of that library. Some hosts might be late or reluctant to update their dependencies.
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to simplify security practices, share resources, and foster a culture of security awareness, ensuring that security
enhancements do not impede the innovation and agility inherent to the open-source community.

O17. Regulatory challenges. To what extent software bills of material (SBOMs) are used and support cybersecurity?
Various efforts from governments have been made to enhance the cybersecurity of software products by delineating
regulations on adopting the SBOM for software products, such as the guidelines for security of the Internet of Things
from ENISA [77], the proposal of cybersecurity requirements for products with digital elements and amending Regulation
(EU) 2019/1020 by the European Commission [76], and the United States Federal Government, per President Biden’s
Executive Order 14028 [108]. The executive order mandated NTIA3 to publish the minimum elements of SBOMs,
including the standards to be used to produce and consume SBOMs. To this end, SPDX (Software Package Data
eXchange) [13], CycloneDX [9], and SWID (SoftWare IDentification) tags [5] have been gradually proposed to describe
a list of “ingredients" that make up software components and related threats, such as vulnerabilities and license
information. Corresponding SBOM generation tools are also integrated into security auditing tools.

However, the preliminary results in the literature suggest that the adoption of SBOMs by open-source projects is still
low, even if there is an increasing trend probably due to the growing interest and pressure from major players [138].
Moreover, the output of such tools also suffers from several limitations, such as representing dependencies at the level of
components or libraries identified from dependency configuration files rather than at the level of code snippets (which
could be manually copied from Stack Overflow or LLM-generated from license-protected source code repositories).

O18. Sociotechnical challenges. What will be the standards, best practices, tools, and guidelines for secure software
development? In addition to SBOMs, industry consortia, like the Open Source Security Linux Foundation (OpenSSF),
have created standards, best practices, and tooling to enhance ecosystem-wide software supply chain security. For
instance, the OpenSSF developed the Criticality Score [6] for trustworthy library reuse, a set of best practices for
package managers [7], guidelines for user dependency management [2], and the ScoreCard project [8] for security
threat evaluation. There are tools like OWASP [10] and Dependabot [3] to solicit dependency updates, Sigstore [4] for
the verification and provenance of third-party components, SLSA [12], SPIFFE [14] and SSDF [11] as guidelines and
infrastructure for secure software development and identity verification.

However, open-source projects are still reluctant to adopt these tools and guidelines, due to resource constraints, the
complexity and usability of the tools, interoperability issues across diverse systems, and the need to keep pace with
an evolving threat landscape. Additionally, striking a balance between rigorous security measures and maintaining
development productivity poses a significant challenge.

3.5 Beyond Memory Safety

Today’s most critical security flaws are due to violations of memory safety. For instance, 78% of confirmed exploited
“in-the-wild" vulnerabilities on Android devices [174] and 70% of vulnerabilities in Google Chrome [160] are violations of
memory safety. However, we see memory safety increasingly addressed at the programming-language level. For instance,
when the Android team adopted the Rust programming language for new code, the proportion of memory safety-based
vulnerabilities dropped from 76% down to 35% [174]. As memory safety vulnerabilities decrease in abundance and our
security tools become more effective, attackers will focus on other types of vulnerabilities to exploit.

3The United States Department of Commerce and National Telecommunications and Information Administration is an Executive Branch agency of the
United States Department of Commerce that serves as the President’s principal adviser on telecommunications and information policy issues.
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O19. Emerging vulnerability types. In the absence of memory-safety issues, which other types of software vul-
nerabilities exist and how can they be mitigated? How can we operationalize and detect violations of privacy or the
General Data Protection Regulation (GDPR)? Memory-safety issues are conceptually easy to detect. Other types of
vulnerabilities, such as injection attacks (e.g., command/code injection or deserialization attacks), data races (e.g.,
TOCTOU), or information leaks (e.g., side channels / information flow) require much more threat modelling from the
security practitioner’s point of view. In the future, we should support this modelling process. More generally, we should
design practical methods for specifying software properties [47, 133].

When memory-safety is solved, we expect that offensive security will move on to the next low-hanging fruit. From
an economical perspective, an attacker wants to maximize the likelihood of success with the least possible effort. We
should empirically monitor this shift and develop the corresponding mitigations in time.

O20. Input validation and sanitization. How can we make sure that adversarial inputs do not compromise the
security of a software system? If we assume that any public input to a software system is “tainted” and can be controlled
by a malicious user, it is crucial to ensure that such input is properly validated and sanitized. For example, a well-known
class of attacks is command injection, where a malicious user injects commands in a public input, and when this input
propagates through the software, some component of the software system can unintentionally execute the injected
command, resulting in loss of data or leakage of secret information. To track how much tainted data propagates through
the software and to detect potentially vulnerable program points, static and dynamic program analysis techniques
have been developed [58, 181]. In order to prevent the propagation of malicious inputs, it is crucial to validate (i.e.,
check if the input matches the expected format) and sanitize (i.e., transform the input to the expected format) the user
input [18, 30].

However, the additional validation- and sanitization-related code also increases the attack surface and might introduce
security vulnerabilities. As the processed user input is often given as a string, this requires effective string-based program
analysis [40, 109]. Another challenge is the fact that input validation and sanitization code is typically distributed
in different parts of a software system without a clear specification of the intended input validation and sanitization
policies. Finally, new types of attacks may require changes to the existing policies, and continued modifications to the
input validation and sanitization code. Due to these challenges discovering and eliminating errors in input validation
and sanitization code will likely continue to be an important area of research in the future.

O21. Sensitive data exposure. How to detect, quantify, minimize, and eliminate the leakage of sensitive or secret data,
such as customer data or cryptographic keys, due to software or hardware side-channels for the next generation of
software systems? A sensitive data exposure occurs when (properties of) secret data currently processed can be learned
by observing the behavior of the processing software system. The system behavior includes side channels such as the
execution time or memory/energy usage. Specifically, noninterference requires that publicly observable properties of
program execution are independent of any secret values. However, the binary notion of noninterference is not entirely
practical as software systems may be reasonably expected to reveal some amount of information that depends on secret
values. For example, the purpose of a password checker is to disclose if the provided input matches the password (which
is secret)—violating the noninterference property. Hence, there is increasing interest in quantitative information flow
(QIF) which asks “how much” rather than “whether” secret information is leaked [169]. The amount of information
leaked is quantified using concepts such as channel capacity [183] and Shannon entropy [27, 155].
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Going forward, we expect many more types of side channels to be discovered. For every side channel, the various
causes of leakage should be systematically identified. For instance, for a timing-based side channel, it is necessary
to identify all data-dependent optimizations4 in the hardware, the software, and the entire software supply chain
(including the compiler [38]). In general, we need strategies for defensive programming and automated tooling to
measure and minimize any possible information leakage. One interesting direction of research is to develop automated
attack synthesis techniques for both assessing the criticality of the vulnerability and also informing the mitigation
strategies, where the length of the synthesized attack is inversely correlated with the severity of the information
leakage [155]. We expect that both noninterference analysis and quantitative information flow analysis will continue to
be important areas of research to develop techniques that identify, quantify, and eliminate information leaks due to side
channels.

3.6 Beyond Monolithic, Fully Virtual Software Systems

Research on software security analysis has traditionally focused on monolithic programs that run on laptops, desktops,
or servers. However, as our software systems become more decentralized and integrated more deeply with the physical
world, we must develop new software security analysis approaches that work across large distributed systems and on
proprietary hardware, when resources such as energy, time, or computing are scarce, and to avoid physical harm.

O22. Security of distributed systems. How can we analyze the security of software systems (e.g., IoT, Software-as-a-
Service, distributed algorithm implementations, blockchain systems, smart contracts), which are distributed across
many machines and devices and often dynamically composed at runtime (e.g., as the workload changes, as components
are updated, or as machines or devices become (un)available)? How can we minimize data exposure and information
leaks for software components that interact via the internet? While we believe that the following challenges apply, at
least in part, to all these systems, we pick IoT as a concrete example. The IoT revolution has been enabled by affordable
and reusable embedded and cloud software platforms that integrate solutions for various design challenges.

Supply chain security. Practically all systems use additional third-party components (for IoT, these are peripheral
drivers, board support packages, and application-specific libraries). These third-party components can represent
90-99% of the code base. Yet, keeping up to date with issues and security releases across a diverse collection of
externally-maintained components is notoriously difficult. Hence, IoT supply chains are intricate systems that involve
the production and integration of both hardware and software components, as well as the establishment of trust
between different parties. The supply chain of the entire software system may not be considered as localized only
within individual devices but rather as spanning across a larger system of systems, i.e., edge, fog, and cloud. The
dynamic nature of these systems brings additional challenges to the supply chain security analysis. Different devices
may run different (versions of) third-party components. Going forward, improving supply chain security is critical and
standardized, shareable Software or Hardware Bills of Materials (SBOM/HBOM) are a major advance towards that goal
as they bring transparency to an otherwise opaque supply chain.

Security analysis. From an analysis perspective, distributed systems are particularly challenging for several reasons.
Firstly, distributed systems may change dynamically. Computing nodes of different kinds with different versions may
be added or removed elastically at any time. It is difficult to simulate this flexibility in a static analysis or in a lab/testing
environment. Secondly, there is often no central agent that can be analyzed or tested. Thirdly, there are domain-specific
types of vulnerabilities, like the Byzantine generals problem where decentralized parties need to arrive at consensus

4Data-dependent optimizations, like speculative execution, might change the (observable) execution time depending on properties of the secret data.
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without relying on a trusted central party. Some security analysis questions center around the trustworthiness of the
individual nodes in a distributed system. These analysis challenges require specialized approaches.

O23. Data segregation in cloud systems. How do we ensure the privacy of the immense amount of sensitive data
stored in cloud systems? Software systems that have high and dynamic demands on computational resources often
run on compute clouds using platforms such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud
Platform (GCP). Protecting the integrity and confidentiality of sensitive user data stored in these clouds is a critical
problem now, and will continue to be a critical problem in the future. Today, access control rules [50, 103, 161, 195]
are explicitly and often manually specified to identify exactly who has access to what part of data, while denying
unauthorized accesses. However, errors in access control policy specifications can result in the exposure of millions
of customers’ private data to the public [17, 25, 73, 184]. To check the correctness of access control policies, formal
verification techniques have been applied in the past [80, 101]; and in recent years they have shown promising results
in practical applications [26, 75].

We find that access control verification is an area where the scalability of formal verification techniques seem to be
sufficient for practical use. However, many challenges remain. The capabilities of existing constraint solvers should be
extended to handle the types of constraints encountered in this domain. The usability of the analysis tools should be
improved by providing easy ways to specify correctness properties (such as relying on differential analysis rather than
asking users to write assertions). Fully automated analysis should be achieved without generating any inconclusive
results (which may require hybrid approaches that combine formal reasoning with automated testing in cases where
formal reasoning is unable to prove or disprove correctness).

O24. Cyber-physical systems (CPS). How do we ensure the security and safety of software systems that physically
interact with an evolving and incompletely perceived environment, where insecurity can cause physical damage and
potentially loss of life (e.g., autonomous vehicles, IoT devices, robots, or virtual reality headsets)? CPSs are difficult
analyze both physically and virtually. When testing a CPS physically (i.e., in the actual environment), the testing
procedure ma may be relatively too slow and the CPS may break or get damaged. When analyzing a CPS virtually using
static analysis (SAST) or simulation, the CPS cannot be analyzed without certain assumptions about the environment.
These assumptions may or may not be true in a physical setup.

3.7 Resilient Computing

Widespread successful attacks on IT systems and even critical infrastructures have repeatedly proven that current
common security measures are insufficient. System developers and maintainers commonly try to secure their systems
by identifying, triaging, and fixing vulnerabilities. A system is commonly deemed secure when it is free of known
vulnerabilities - but what about the ones we do not know yet? Those vulnerabilities pose a strong technical debt that
future attackers will happily exploit.

The only useful paradigm is, therefore, to “assume breach”. We must design systems with the mindset that they are
and will be vulnerable and, nonetheless, should be able to successfully withstand at least certain classes of common
attacks, they must become attack-resilient. The guiding principle towards attack-resilience, defense in depth, has long
been known, yet is at the core of too few systems we build today. Most software architectures still assume a single
protection layer, which, if penetrated, puts the entire software system at risk of failure. But how to best implement
multi-layered defenses?
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O25. Risk analysis. How can we perform effective risk analysis already at the design level to judge a system’s attack
resilience? An analysis of attack resilience must incorporate different and complementary possible types of mitigations,
ranging from process-based mitigations, such as a four-eyes principle or the use of validation tools during coding, to
application-level measures, such as proper password hashing to platform-level measures, such as proper, risk-centric
compartmentalization of individual subsystems.

O26. Risk-centric compartmentalization requires research in systems security: Currently, we can isolate subsystems
essentially only by turning them into separate operating-system processes, which comes with huge computational and
maintenance overhead. But new technologies are on the horizon. WebAssembly, for instance, allows one to sandbox
untrusted parts of applications with relatively low overhead. Existing compilers allow one to create WebAssembly
for C/C++ components. Other opportunities to isolate computations within applications may be yielded by using
hardware support such as Intel’s Memory Protection Keys, ARMMemory Tagging and CHERI [190]. These are relatively
low-level features, yet researchers can test their efficacy as security barriers when properly integrated into programming
languages and environments. Further, GraalVM, in a feature still under development, now supports the proper isolation
of code executing within the same operating system process, currently in polyglot but soon also in single-language
settings.

3.8 Emergent Behaviors and Vulnerability Composition

Computer security research is sometimes seen as an arms race where the advances in defensive techniques that eliminate
vulnerabilities lead to advancements in offensive techniques that result in new types of attacks, which then inspire
new defensive strategies, resulting in a continuous cycle of security measures and counter-measures. In this race, the
defensive techniques must be in the lead to succeed in securing computer systems. An increasingly critical set of
offensive techniques relies on emergent behaviors and compositions of vulnerabilities to create exploit chains that
achieve the adversarial goals of the attacker.

The concept of “weird machines” characterizes exploit generation as a task of programming a weird machine, where
the instructions of the weird machine are vulnerabilities or unintended behaviors that take the system to an unintended
“weird” state [37, 74]. In this characterization, exploit chaining corresponds to writing a weird machine program that
achieves the attacker’s goal. Defending against this type of sophisticated attack strategy requires a defensive strategy
that not only detects emergent behaviors but also analyzes their compositions.

O27. Identifying emergent behaviors across layers of abstraction. How can we identify emergent behaviors that
cut across different layers of software, for example, emergent behaviors that involve a combination of vulnerabilities
in the firmware, operating system, and application code? Software is built at different layers, where a layer exposes
an interface providing an abstraction to the next layer. However, in many cases, these interfaces lead to unintended
behaviors due to misuse, under-specification, or ambiguous specification of the interface constraints. Although analysis
of software interfaces has been investigated in the past, novel techniques that can identify unintended/emergent
behaviors across multiple layers of abstraction that involve multiple interfaces are needed to assess the security of
the whole software system. This will require innovative analysis techniques that can track the behavior of the system
across multiple layers of abstraction.

O28. Discovering and defending against exploit chains. How canwe analyze collections of vulnerable or unintended
behaviors to prevent attacks that chain multiple vulnerabilities? An unintended behavior in a computer system may not
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be a security vulnerability by itself. However, an attacker who is aware of a set of unintended behaviors can combine
them to generate a programmable collection of adversarial operations (which correspond to instructions of a weird
machine) and then write programs that chain these operations. In order to defend against this type of attacks, we have
to first discover them. Exploit chains can be seen as a composition of emergent/unintended behaviors. Techniques
that can automatically compose emergent/unintended behaviors can lead to techniques that can automatically search
for exploit chains. Once the exploit chains are discovered, mitigation strategies can be developed to identify the most
effective ways to eliminate them.

3.9 Security Education

O29. Security as a mandatory course. There is a gap between the need for personnel skilled in software security and
the availability of that personnel [136]. Computer science students still graduate with scarce or no secure programming
knowledge [20]. It becomes necessary to provide adequate security training to the next generation of developers. This
will be possible by (i) improving students’ engagement in producing secure software (traditional, ESs, CPS, and IoT
systems), (ii) helping students acquire security skills and knowledge on the use of development methods for secure
development, (iii) training students on Dynamic and Static Analysis Security Tools (DASTs and SASTs, respectively),
and (iv) educating students on the perils related to the use of AI-generated code and code snippets from Questions &
Answers forums. In continuous education, the education of “security champions” within companies has shown great
successes. How can this be leveraged on a global scale?

O30. Integrate security tool usage into software engineering courses. While introducing some security concerns
in the source code is unavoidable (e.g., because a certain vulnerability is still unknown), others can be fixed before
the delivery of software systems (or even developers could avoid their introduction). Educators should train the next
generation of developers so that they identify known security concerns and then fix them before the delivery of software
systems (e.g., [139, 140]). This could be achieved by training students on DAST and SAST tools that are well known
in both the academy and industry. Specifically, DAST tools analyze software systems at run-time, while SAST tools
examine the code of software systems without executing them. There are three scenarios in which developers can
leverage SAST tools: (i) while developing code, by highlighting the presence of security concerns directly in IDEs
(Integrated Development Environments); (ii) within a Continuous Integration pipeline, which could make a build fail if
the code is not compliant with given security rules (e.g., the committed code must not contain critical vulnerabilities);
and (iii) during a code review. A DAST tool could be used in the last two scenarios together with a SAST tool.

3.10 Law and Policy Making

O31. Law and policy making. Apart from the sociotechnical challenges, how can we ensure that our critical software
infrastructure is robust against cyberattacks, we need effective policies and and regulation? How can we balance legal
and technical aspects for critical as well as non-critical systems, to both empower users and secure the interactions?
Should the vulnerability disclosure process or supply chain security practice be regulated, and if so how? While various
industries where software plays a key role are already strictly regulated (such as safety-critical domains like aerospace),
software products themselves lack such legal safeguards. We have previously discussed regulations for the software
supply chain in some domains like the IoT, including the need to accompany a software product with a Software Bill of
Materials (SBOM) [76, 77, 108]. However, much more work is needed with legal scholars, economics researchers, policy
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makers, and software vendors to create an effective legal framework and incentive system. It is important for software
researchers and practitioners to engage in shaping the legal framework to ensure that appropriate cybersecurity
practices are applied and lessons are learned after each cybersecurity incident.

4 CONCLUSION

In this paper, we have outlined our vision of software security for the software systems of the future. Specifically, we
have drawn a research roadmap towards 2030 and beyond. Starting from state-of-the-art recent advances in software
security, we have identified concrete challenges and opportunities for the security analysis of the software systems of the
future and provide specific directions of research for the software engineering community. We have also discussed open
challenges and opportunities and presented a long-term perspective for software security in the context of software
engineering.
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