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In a typical experimental design in fuzzing, we would run two or more fuzzers on an appropriate set of benchmark programs plus seed
corpora and consider their ranking in terms of code coverage or bugs found as outcome. However, the specific characteristics of the
benchmark setup clearly can have some impact on the benchmark outcome. If the programs were larger, or these initial seeds were
chosen differently, the same fuzzers may be ranked differently; the benchmark outcome would change. In this paper, we explore two
methodologies to quantify the impact of the specific properties on the benchmarking outcome. This allows us to report the benchmarking
outcome counter-factually, e.g., “If the benchmark had larger programs, this fuzzer would outperform all others”. Our first methodology
is the controlled experiment to identify a causal relationship between a single property in isolation and the benchmarking outcome.
The controlled experiment requires manually altering the fuzzer or system under test to vary that property while holding all other
variables constant. By repeating this controlled experiment for multiple fuzzer implementations, we can gain detailed insights to the
different effects this property has on various fuzzers. However, due to the large number of properties and the difficulty of realistically
manipulating one property exactly, control may not always be practical or possible. Hence, our second methodology is randomization

and non-parametric regression to identify the strength of the relationship between arbitrary benchmark properties (i.e., covariates) and
outcome. Together, these two fundamental aspects of experimental design, control and randomization, can provide a comprehensive
picture of the impact of various properties of the current benchmark on the fuzzer ranking. These analyses can be used to guide fuzzer
developers towards areas of improvement in their tools and allow researchers to make more nuanced claims about fuzzer effectiveness.
We instantiate each approach on a subset of properties suspected of impacting the relative effectiveness of fuzzers and quantify the
effects of these properties on the evaluation outcome. In doing so, we identify multiple properties, such as the coverage of the initial
seed-corpus and the program execution speed, which can have statistically significant effect on the relative effectiveness of fuzzers.
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1 INTRODUCTION

Fuzzing [8] is a well-known automated software testing method for finding security flaws by generating invalid or
unexpected inputs. In particular, greybox fuzzers, which leverage light-weight instrumentation feedback to guide test
input generation, have emerged as one of the most successful automatic bug finding approaches in practice [28]. Fuzzing
has also emerged as an important research topic, with over 50 fuzzing papers published in the “Big Four” academic
computer security conferences in 2024 alone (i.e., CCS, NDSS, S&P, USENIX Security)!

Yet, which fuzzer performs best and when?
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Recently, the fuzzing community has identified sound fuzzer evaluation as a Top-3 most important research chal-
lenge [8]. To demonstrate improvement over the state-of-the-art, many fuzzing related benchmarks have been introduced.
For instance, the MAGMA benchmark [32] provides a set of 138 real bugs in 9 programs. ProFuzzbench [52] offers
access to 11 protocol implementations for network-enabled fuzzers. The FuzzBench benchmark [49] offers access to
over 650 open-source programs via an integration with the OSS-Fuzz project [2]. FuzzBench is officially developed by
Google demonstrating a substantial practical interest in sound fuzzer evaluation. Using these benchmarks, two or more
fuzzers are compared by ranking them in terms of their performance (e.g., coverage achieved or #bugs found) [7, 13, 41].
To ensure that the observed performance differences are not due to random effects, tool developers are encouraged to
repeat the experiments at least twenty times and measure effect size and statistical significance [6, 41]. To ensure that
the observed performance differences can be attributed precisely to the proposed improvements, tool developers are
encouraged to compare the prototype to the baseline which was extended to implement the improvement. To ensure
that the observed performance differences are general, benchmark designers attempt to select a sample of subjects
that are representative of the population of systems. Within this sample, there can be wide variations in benchmark
properties by virtue of it being composed of disparate representative programs.

We observe that the benchmark outcomes depend critically on the specific properties of the selected benchmark. On
the average, most fuzzers perform similarly while for each specific program there are often clear winners. For instance,
in a recent FuzzBench experiment involving 23 programs and 11 fuzzers, we can see that the average ranking for the
majority of fuzzers is 5.5± 11 – most fuzzers rank approximately the same. Looking only at these overall rankings across
all benchmarks, it is not apparent that e.g. the ranking of AFL++ improves on larger programs. We call this evaluation
methodology atomistic, because it does not account for the effects of benchmark properties. In other words, the final
outcome of such an atomistic evaluation is specific to the current choice of benchmark and provides no insights into the
conditions under which one fuzzer performs better than another. We are not the first to make this observation; it is well
known that some additional variables, i.e., covariates, can have a different relative impact on fuzzer effectiveness, and
thus benchmarking outcomes [34]. However, while this knowledge of that a particular covariate can possibly impact a
fuzzer is a step in the right direction, in many cases these results are not actionable. There is currently no guidance for
how to account for these covariates in future evaluations or assess their possible interactions with other variables in
the evaluation setup.

In this paper, we propose two methodologies, control and randomization, which provide an actionable framework
to can account for the effects of covariates in fuzzer evaluations. Using this framework, we suggest to report the
benchmarking outcome together with the conditions under which the outcome would change. The first component of our
methodology, a controlled experiment where one benchmark property is manipulated while all others are kept constant,
can establish the degree to which changing that property causes a change in the response variable. However, due to the
large number of possible properties and the difficulty of realistically varying a property and exactly one property, the
first methodology may not always be practical or possible. Hence, we propose a second component to our methodology
based on randomization and non-parametric multiple regression to identify the strength of the relationship between
arbitrary benchmark properties (i.e., covariates) and the benchmarking outcome. In doing so, one can effectively subtract
the influence of covariates without controlling their values.

Our methodologies allow users to evaluate the degree to which the benchmarking outcome is influenced by differences
of the fuzzers (which is the focus of the evaluation) as a function of the properties of the benchmark. For fuzzer developers,

1https://www.fuzzbench.com/reports/2022-04-19/index.html
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we see our approach as a way to gain insights into the variables which influence the effectiveness of their tools. For
fuzzer evaluators, we believe our framework provides the tools to make knowledge of important covariates actionable
by subtracting their influence in realistic (uncontrolled) benchmarking scenarios.

Control. Our first methodology is to control for the effect of a specific benchmark property. We suggest to keep all
other properties fixed while varying only the property of interest. In doing so, we can directly identify the contribution
of that property to the benchmarking outcome. To illustrate this approach, we conduct two instantiating controlled
experiments to evaluate the impact of program execution time and seed-corpus origin on the code coverage of various
fuzzers. In these studies, we find that both variables can have a statistically significant impact on the relative effectiveness
of fuzzers. Furthermore, we see that these differences are large enough to result in changes in the final ranking of
fuzzers in practice. For example, we observe that SymSan [15, 16] is significantly worse at covering new control flow
edges than AFL [62] or Eclipser [18] on a particular program. But, it is significantly better than either tool when that
program’s execution speed is only 100ms slower, with all other variables held constant. We also see that initializing
the starting corpus from prior fuzzing runs of different fuzzers [1, 62] can result in different benchmarking outcomes;
changing the probability AFL will achieve higher coverage than LibFuzzer from 𝑝 = 0.85 to 𝑝 = 0.15, on the lcms
benchmark program, for example. However, it may not always be practical, possible, or realistic to manipulate exactly
one benchmark property at a time. For instance, changing only the coverage of the initial seed corpus while keeping
the number of seeds may not be possible; inducing an artificial, random slowdown during the execution of a program
may not be realistic. Hence, we propose a second methodology.

Randomization. Our second methodology is to randomize the benchmark configuration and apply non-parametric
multiple linear regression. Here we suggest to vary all properties simultaneously and measure the impact of individual
properties using the coefficients from a multiple linear regression. By including the choice of fuzzer as an interaction
term, we can quantify the relative impact a property has on a particular fuzzer and compare it to the effect of that
property on other fuzzers. Suppose on the current benchmark LibFuzzer beats AFL in code coverage achieved after
24 hours. Our model can determine the degree to which a benchmark property must change (e.g., by choosing larger
programs), such that AFL improves to beat LibFuzzer. Using this methodology, benchmark maintainers and fuzzer
developers will understand when some fuzzers perform better or worse in certain contexts and can account for
confounding variables in their evaluations. We illustrate this methodology using a modification of the FuzzBench
evaluation platform, choosing eight benchmark properties that we reasonably believed to impact the fuzzer ranking for
our instantiating experiment.

Contributions. Concretely, this paper makes the following contributions:

(1) We argue that the outcome of a benchmarking procedure depends on the specific properties of the benchmark.
Hence, we recommend to augment the outcome with a counterfactual analysis, specifying the conditions under
which the outcome would change, to increase the soundness and utility of the evaluation.

(2) We propose a framework for quantifying the impact of benchmark properties on the outcome using control if
practical or randomization otherwise. Specifically, we present a novel application of non-parametric regression
analysis to keep the number of required experiments comparable to the traditional evaluation methodology.

(3) We instantiate this methodology in three experiments, demonstrating its application in a practical setting.
As a byproduct of this illustration, we identify several novel variables which can have significant impacts on
benchmarking outcomes such as the corpus origin, program execution speed, and initial corpus coverage.
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Fig. 1. Decrease in coverage relative to baseline at varying slowdowns of the target program

(4) We modify a leading benchmarking framework [49] to facilitate randomized experiments of arbitrary corpus
properties, which we release publicly on acceptance.

In our instantiating experiments, we showcase our approach by answering four illustrative research questions. More
specifically, using two controlled experiments, we investigate the following questions:

IRQ1 What is the impact of program execution speed on fuzzer effectiveness?
IRQ2 What is the impact of seed corpus origin on fuzzer effectiveness?

Next, we utilize randomization through the application of our non-parametric regression analysis, answering the
following questions:

IRQ3 How is fuzzer ranking affected by varying a combination of properties?
IRQ4 Does seed initial corpus coverage affect the relative ranking of fuzzers?

2 CONTROL: MEASURING THE DEPENDENCE OF THE BENCHMARK OUTCOME ON ONE PROPERTY

Controlled experiments are the gold-standard for empirical research. By holding all other variables constant, researchers
can estimate the impact of an explanatory variable by recording its correlation with a response variable of interest.
In the context of fuzzing, a typical benchmarking setup is an example of a controlled experiment. All other variables
–target programs, seed corpus, hardware etc.– are controlled while the explanatory variable, the fuzzer itself, is changed.
The effect of each fuzzer is then evaluated with respect to different response variables, such as an ability to find bugs
or code coverage. Because other variables (covariates) are controlled, the effect observed at the response variable is
explained only by the effect induced by changing the explanatory variable.

However, if covariates do have an effect on the response variable, it can be important to understand what those
effects are, especially if they interact with the explanatory variable. Control only allows researchers to isolate the effect
of an explanatory variable for a single configuration of all other covariates. For example, if we fix the seed corpus to be
empty in a controlled experiment, we might find that choosing AFL over LibFuzzer (explanatory variable) correlates
with attaining higher code coverage (response variable)[34]. Because we controlled other variables, and we know that
changing the fuzzer itself should change coverage achieved. We can even claim this to be a causal relationship; choosing
AFL causes an increase in code coverage when the corpus is empty on the programs evaluated. In the following section,
we will use controlled experiments to understand two previously unstudied covariates in fuzzing.
Manuscript submitted to ACM
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2.1 IRQ 1: Program Execution Time

Motivation. Much emphasis has been made in research on making fuzzers fast [29, 50, 59]; however, as we shall
see, program execution time typically dominates greybox fuzzing campaigns. Different programs will have different
runtime characteristics, including execution time. Thus it is important to understand how changes in the dominant
portion of the fuzzing loop might affect existing fuzzers.

2.1.1 Experimental Setup.

Fuzzers. We select AFL [62], AFL++ [23], Eclipser [18] and SymSan [15, 16] as our four fuzzers. We select these fuzzers
because they represent both state-of-the-art greybox fuzzers and varying levels of whitebox (symbolic) approaches
to fuzzing. We hypothesize that different fuzzers, especially those using fundamentally different approaches, will be
affected differently by faster or slower executing programs.

Benchmark. We fix the benchmark to a single program and fuzzing harness –libxml_xml– randomly selected from
those included in the Fuzzbench [49] evaluation framework for a controlled experiment. Similarly, we use the default
seed corpus for all 20 of our 24 hour trials for each fuzzer.

Hardware. We use a Intel(R) Xeon(R) CPU E5-2660 v4 @ 2.00 GHz for all experiments.

Explanatory and Response Variables. To vary the program execution time, we modify the fuzz driver for each fuzzer
to inject a delay of 100ms, 10ms or 1ms in each iteration of the fuzzing loop. As our response variable, we investigate
the delays’ impact on code coverage.

2.1.2 Results. Figure 1 shows the net loss in edge coverage for each fuzzer at varying slowdowns of the target program.
We can see that at a slowdown of only 1ms per execution (left), the fuzzers are all similarly affected, losing roughly the
same amount of coverage each when compared to no slowdown. At a 10ms slowdown per execution (middle), again, all
fuzzers lose roughly the same amount of edge-coverage. At this execution speed, we can also see that the greatest loss
in edge coverage from slowing down the program for all fuzzers is at the beginning of a campaign, where there is a very
steep dropoff in coverage. This gap then narrows approximately logarithmically over time for all fuzzers. When the
program execution is slowed down by 100ms (right) we finally see a noticeable separation between the edge-coverage
loss of each fuzzer. During the early stages of fuzzing when the edge-coverage loss is the largest, SymSan is substantially
less affected by the slowdown relative to other fuzzers. By the 24 hour mark, SymSan remains the least affected by the
slowdown, but only by a small margin over AFL++. While we see differences in the relative effect of program execution
time on each fuzzer, from Figure 1 it is not clear whether these differences will significantly affect evaluation outcomes.

Figure 2 (a) and (b) show the pair-wise Vargha-Delaney 𝐴12[7] effect size between fuzzers with no slowdown (a)
and with a slowdown of 100ms (b). Entries marked in bold are statistically significant by the Mann-Whitney 𝑈 test
(𝑝 < 0.05), adjusted for multiplicity (c.f. Section 4). For example, looking at Figure 2 (a), the probability that a random
AFL run outperforms a random SymSan run is 𝐴12 = 83%. Below the effect sizes, we list the rankings of each fuzzer by
final edge-coverage. It is clear from the rankings that the relative advantage gained by SymSan over the other fuzzers
on slow programs is enough to completely change benchmarking outcomes. In terms of effect size, SymSan goes from
only having a 12% chance of beating Eclipser in a fuzzing run to a 90% chance on a slower program! Similarly, SymSan
flips the odds against AFL for slower programs by roughly 68 percentage points. However, despite SymSan being
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AFL AFL++ Eclps SymS
AFL 0.00 0.43 0.83
AFL++ 1.00 1.00 1.00
Eclps 0.57 1.00 0.88
SymS 0.19 0.00 0.12

Ranking
1. AFL++

2. / 3. AFL
Eclipser (Eclps)

4. SymSan (SymS)

(a) Outcome of normal fuzzing run.

AFL AFL++ Eclps SymS
AFL 0.00 0.48 0.13
AFL++ 1.00 1.00 0.94
Eclps 0.52 0.00 0.11
SymS 0.87 0.06 0.90

Ranking
1. AFL++
2. SymSan (SymS)

3. / 4. AFL
Eclipser (Eclps)

(b) Outcome if program was 100ms slower.

Fig. 2. Pair-wise Vargha-Delaney 𝐴̂12 effect size between edge-coverage of fuzzers. Bold values indicate significance at 𝑝 < 0.05.

relatively less affected by the slowdown than AFL++, this difference was not enough to make up for the large margin in
edge-coverage achieved between AFL++ and SymSan with no slowdown.

We suspect that SymSan is the least affected by the slowdown because it is a partially symbolic approach; SymSan
spends considerable time during the campaign solving path constraints with an SMT solver [16] and not executing the
program itself. While Eclipser also focuses on constraint solving, it only does so in a lightweight, approximate manner
for linear and monotonic constraints without invoking a solver [18]. This result may encourage renewed interest in
symbolic techniques, which have generally struggled in recent years to outperform their simpler, but highly optimized
greybox fuzzing counterparts on public benchmarks [45]. By expanding common fuzzing benchmarks to include slower
programs, we might see a resurgence of these symbolic fuzzers. However, further research is needed to determine if
these results generalize beyond our controlled experiment.

Program execution speed can have a significant effect on fuzzer efficacy, in absolute and relative terms. The symbolic

fuzzer SymSan scales better as program execution time increases when all other variables are held constant for the

libxml_xml benchmark.

2.2 IRQ 2: Corpus Origin

Motivation. It is not uncommon to see evaluations where the corpus generated in an initial campaign of one fuzzer
bootstraps a larger evaluation (e.g. [30]). If using seeds generated by such a bootstrapping campaign can bias fuzzer
evaluations, this is an important, unaccounted for threat to the external validity of these research studies. Thus we
propose a controlled experiment to determine whether the initial corpora origin affects fuzzers in practice.

2.2.1 Experimental Setup.

Fuzzers. We select AFL [62], AFL++ [23], LibFuzzer [1] and Entropic [10] as representative, state-of-the-art, general
purpose greybox fuzzers for our controlled experiment from two different lineages (AFL and LibFuzzer). Our hypothesis
is that corpora generated by the same fuzzer, or another similar fuzzer, will disadvantage that fuzzer in an evaluation
against distinct fuzzers.

Benchmark. We fix the benchmark to a single program and fuzzing harness (lcms-2017-03-21) randomly selected
from those included in the Fuzzbench[49] evaluation framework for a controlled 24 hour experiment (20 trials).

Hardware. We use a Intel(R) Xeon(R) Gold 6258R @ 2.70 GHz for all experiments.
Manuscript submitted to ACM
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AFL AFL++ EnLF LF
AFL 0.27 0.41 0.85
AFL++ 0.73 0.67 0.94
EnLF 0.59 0.33 0.94
LF 0.15 0.06 0.06

Ranking
1. AFL++
2. Entropic (EnLF)
3. AFL
4. LibFuzzer (LF)

(a) Outcome if started on LibFuzzer-generated seeds.

AFL AFL++ EnLF LF
AFL 0.11 0.00 0.00
AFL++ 0.89 0.40 0.60
EnLF 1.00 0.60 0.77
LF 1.00 0.40 0.23

Ranking
1. Entropic (EnLF)
2. LibFuzzer (LF)
3. AFL++
4. AFL

(b) Outcome if started on AFL-generated seeds.

AFL AFL++ EnLF LF
Effect Size (𝐴̂12) 0.0429 0.0800 0.1464 0.1800
Statist. Sign. (𝑈 ) 2.3e-09 3.7e-07 1.9e-05 1.1e-04

(c) Intra-fuzzer effectiveness difference if the evaluation was started with AFL-generated seed corpora instead of LibFuzzer-generated ones.

Fig. 3. Vargha-Delaney 𝐴̂12 effect size of edge-coverage between fuzzers. Bold values indicate significance at 𝑝 < 0.05.

Explanatory and Response Variables. To vary the seed corpus origin, we sampled the starting corpus for each trial from
two pools of seeds, one generated by AFL and one generated by LibFuzzer. To create these seed pools, we conducted
two pre-fuzzing runs of 24 hours each using AFL and LibFuzzer respectively.

2.2.2 Results. Figure 3 shows the outcome of this experiment. The grids in subfigures (a) and (b) shows the pair-wise
effect size measured using Vargha-Delaney’s 𝐴12, highlighted in bold for statistical significance according to the
Mann-Whitney𝑈 test (p < 0.05), adjusted for multiplicity (c.f. Section 4). On this program, with initial corpora generated
by LibFuzzer, AFL++ performed best and LibFuzzer worst. However, the evaluation outcome is very different if we run
those same fuzzers on corpora generated by AFL. Figure 3.b shows the ranking if AFL-generated seeds were provided
instead. Now Entropic performs best while AFL performs worst. The probability that an arbitrary AFL run outperforms
an arbitrary LibFuzzer run is 𝐴12 < 1%. The choice of seed origin has a substantial impact on the benchmark outcome.
Figure 3.c further demonstrates this impact. All fuzzers perform worse on AFL-generated seeds (𝐴12 < 18%). Yet, the
impact on AFL/AFL++ is greatest (𝐴12 < 8%): AFL-based fuzzers perform worse using AFL-generated seeds.

In addition to showing that the corpus origin can have a significant impact on evaluation outcomes, we can also
begin to see some trends with this controlled experiment. Both fuzzers from the LibFuzzer lineage (LibFuzzer and
Entropic) improve in ranking when run on AFL-generated corpora. Similarly, the fuzzers from the AFL lineage (AFL++
and AFL) improve on LibFuzzer-generated corpora. In other words, using seed inputs generated by a fuzzer not only
can negatively impact that fuzzer, but also may negatively impact other similar fuzzer implementations. Given that many
fuzzers presented in research are modifications of existing tools [10, 11, 23], this means that any evaluation utilizing
fuzzer-generated seeds could be biased by this behavior. One explanation for this result is that similar fuzzers tend to
explore similar behaviors in the program under test. If most of those behaviors are already covered by the initial corpus,
it leaves less room for the fuzzer to explore during the evaluation.

Corpus origin can have a significant influence on fuzzer effectiveness. On the lcms benchmark program, we observe that

tools used to generate the initial corpora for an evaluation are negatively affected in that evaluation. Even distinct fuzzer

implementations based on the same lineage as the the initial corpus generator can be significantly negatively affected.
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2.3 Challenges of Control

While preferable, our methodology of control is not always applicable. Our controlled experiments demonstrate that
the result of the evaluation can change depending on the specific configuration of the benchmark. However, there are
many issues that can arise when applying this methodology in practice. In particular, there are two core reasons why a
second methodology may be needed instead of or in conjunction with controlled experiments.

Specificity. In order to keep other variables like program size and execution time constant, the fully controlled
experiments in IRQ1 and IRQ2 were only run for a single benchmark program and configuration. Thus, their results
cannot be safely generalized beyond this configuration without additional experiments. Does execution time affect
fuzzers on programs other than libxml? We can test our hypothesis on other benchmark programs, but this necessarily
means that our setup is no longer fully controlled; now both the execution speed and the program itself are variables
that may affect the response. If we naively aggregate the results on these different programs, the resulting variance will
include the effects of the programs themselves, reducing our ability to distinguish statistically significant effects for our
variable of interest. We also gain no insights into what general program characteristics might impact our response
variable. For example, programs which are already very slow might be less impacted by a further reduction in execution
speed, but a single aggregate statistic over several programs cannot capture this relationship. The methodology we
propose in the remainder of this paper can aggregate data from multiple programs and give a nuanced view of program
characteristics with a unified approach.

Dependence and Realism. Unlike the choice of seed origin, many benchmark properties are difficult or impossible to
manipulate independently. For example, it might not be possible to manipulate the size of the fuzzer seed inputs while
holding the seeds’ validity, the coverage of the corpus, or the execution time of the program constant. In answering
IRQ1, we manipulated execution time without otherwise modifying the instructions executed or control flow and
while holding all other properties constant. This allows us to make strong claims about execution speed specifically
having different effects on different tools. However, in practice, execution speed is often (but not always) a product of
the number of instructions and branches in a program. Additional instructions and branches translate into larger, more
complex formulae passed to an SMT solver for symbolic approaches. Thus, a program that is slower because of additional
complicated control flow could easily result in SymSan performing relatively worse than AFL – the exact opposite of the
results from our controlled experiment in IRQ1! Yet, increasing the number of instructions or branches in a program
while holding all other variables constant is, again, extremely challenging: What if the locations of the inserted code
has an impact? What if the inserted code impacts the reachability of parts of the existing program? Which instructions
or branch conditions should be inserted to make the setup “realistic”? Rather than attempt to construct a completely
controlled experiment that may end up being highly artificial or impractical, we give a secondary methodology for
these scenarios that allows us to assess the impact of variables without controlling their values. This also makes findings
by prior work (e.g. [34]) actionable, in that the influence of known or suspected covariates can be effectively subtracted

from experimental outcomes to obtain an unbiased view of fuzzer performance.

3 RANDOMIZATION: MEASURING THE DEPENDENCE ON MULTIPLE BENCHMARK PROPERTIES

When control is not practical or possible, our fuzzer evaluation methodology consists of a non-parametric regression

analysis of benchmarking data, using bootstrapped confidence intervals to test for statistical significance of results. By
constructing a regression model, one can account for the effects of multiple variables simultaneously with respect to a
Manuscript submitted to ACM
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performance metric. As our technique does not assume a particular error or data distribution, it is widely applicable in
tool evaluations, even on non-linear data with strong outliers. Finally, because regression models form the basis for
ANOVA and hypothesis testing, our approach can be used to make rigorous claims about the statistical significance
of results, in addition for being useful for exploratory analysis. To enable our holistic methodology, we propose to
randomize, rather than control, benchmark properties for each run of the evaluation and record the properties of
interest. For example, controlling initial corpus by holding it static across repetitions, as in traditional evaluation,
reduces variance. However, it excludes effects of the corpus on the benchmarking outcomes in doing so.

Randomization. Unlike in typical fuzzing evaluations, we recommend randomly varying properties of the benchmark
for each repetition of the experiment. For example, we can accomplish this for corpus properties by sampling each
starting corpus from a larger pool of seed inputs.2 We also suggest using a matched-pairs experimental design, such
that each fuzzer is run on each configuration (e.g. starting corpus) to allow for direct comparisons. Other benchmark
configuration parameters, such as the benchmark programs themselves, compilers used and architecture can also be
randomized or enumerated where practical.

Rank transformation. For holistic fuzzer evaluation, we recommend applying the rank transformation to our gathered
data, replacing each data value with its relative rank in the overall dataset. For example, the trial with the lowest
coverage on a given program would have a rank-transformed value of 1, the second lowest 2, etc.

There are several reasons for studying the ordinal association rather than the numeric association between benchmark
property and performance measure. First, we do not need to assume that the distribution of the data itself is normal or
that the relationship between our explanatory and response variables is linear. In fuzzing we often observe extreme
outliers or exponential effects which provide undue influence on a measure of the strength of the association (i.e.,
correlation). Secondly, we do not require value domains to substantially overlap across programs. For instance, we
observe that a low initial coverage for one program can be a high initial coverage for another. Hence, we conduct
our analysis on the the rank-transformed value within a program for corpus properies or across all programs w.r.t.
program properties. Finally, rank transformations are used in non-parametric methods when values vary widely in
scale [19, 35, 37, 42, 48]—like in automatic software testing. For instance, the Friedman test [37] describes a similar
regression analysis against the ranks.

Regression Analysis. To quantify the combined effect of benchmark properties and fuzzers on benchmarking outcome,
we propose a multiple linear regression of rank-transformed data as our holistic benchmarking technique. A linear
regression model represents a response variable, e.g. coverage or fuzzer ranking, as a linear combination of several
explanatory variables. Each regression coefficient can be considered as a measure of effect size for its corresponding
variable: it indicates the degree to which that explanatory variable contributes to the response variable.

In the case of fuzzer benchmarking, we can give a general formula for a generic set of fuzzers, benchmarks, and
properties. Let 𝑃 = {𝑝𝑖 }𝑛𝑖=1 be a set of 𝑛 benchmark properties and 𝐹 be a set of fuzzers. An example of 𝑝 ∈ 𝑃 is program
size. We first choose a reference configuration 𝐶 = ⟨𝑓 , {𝑣𝑖 }𝑛𝑖=1⟩ by selecting a reference fuzzer 𝑓 ∈ 𝐹 and reference values

𝑣𝑖 for every property 𝑝𝑖 ∈ 𝑃 . A multiple linear regression finds the intercept 𝛼 and the regression coefficients 𝛽𝑝 , 𝛾𝑓 ,
and 𝜔𝑝,𝑓 , such that

2In this case, Böhme and Falk [9] observed that a linear increase in coverage requires an exponential increase in the number of inputs. Hence, the average
corpus, if sampled uniformly, might still be saturated. Instead, we recommend to sample from an exponential distribution centered at a desired percentage
of the saturated corpus.
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𝑅 = 𝛼 +

∑︁
𝑝𝑖 ∈𝑃

𝛽𝑖𝑋𝑖

 +

∑︁
𝑓 ∈𝐹

𝛾𝑓 𝑌𝑓

 +

∑︁
𝑝𝑖 ∈𝑃

∑︁
𝑓 ∈𝐹

𝜔𝑖,𝑓 𝑋𝑖𝑌𝑓

 (1)

where 𝑋𝑖 is the rank of the 𝑖-th property relative to the reference level 𝑣𝑖 ∈ 𝐶 , and where 𝑌𝑓 ∈ {0, 1} are indicator
variables such that 𝑌𝑓 = 1 if 𝑓 ∈ 𝐹 was used instead of the reference fuzzer 𝑓 ′ ∈ 𝐶 . By fitting the regression model on
benchmarking data, one obtains estimated values for each of the coefficients in the model, and the thus effect size of
each variable. For instance, if 𝛽𝑖 > 0, we say that an increase in 𝑋𝑖 by one unit gives an increase in fuzzer ranking by 𝛽𝑖 .
Similarly, the coefficient 𝜔𝑝𝑓 of an interaction term describes the additional contribution of the benchmark property 𝑋𝑝

if the fuzzer 𝑓 was used instead of the reference fuzzer (LibFuzzer).

Need for multiple regression. We recommend multiple-regression because it accomplishes our two primary goals:
(1) it provides a way to conduct hypothesis testing for statistical significance and a measure of effect size and (2) can
account for multiple variables in its analysis.

Regression analysis encompasses a wealth of techniques, such as a standard t-test or bootstrapping, which one can
use for hypothesis testing. Similarly, the regression coefficients themselves represent a measure of relative effect size
for their corresponding variables. Multiple regression also allows one to account for the effects of a variable as if all
other variables were held constant, even if this fine-grained control is not feasible in practice. This last point is crucial
in software evaluations where various aspects of the inputs and the programs cannot be manipulated in isolation from
each other.

Additionally, regression models and ANOVA are a well-understood and flexible group of techniques which are
standard in many fields for statistical analysis. While hypothesis testing is vital for researchers to establish empirical
differences between fuzzers, exploratory analysis may be of more interest to practitioners. Even without an a priori

hypothesis, a regression model and its corresponding coefficients can be used to approximately gauge the effects of
many variables using the same experimental setup and analysis.

Bootstrapped confidence intervals. As noted by Arcuri and Briand [7], the assumption that errors are distributed
normally is often violated in software engineering contexts because the data itself is not normally distributed. We address
this concern by using bootstrapping as a method for computing non-parametric confidence intervals. By repeatedly
regressing against sub-sampled data from our initial sample, we can obtain confidence intervals computationally, rather
than analytically (avoiding the normality assumption).

Assumptions. Linear regression models make several assumptions about the underlying data, such as linearity,
homoscedacity and independence. We outline how to check these assumptions in Section 3.3, and we guard against
violating them with two other core aspects of our methodology: the rank transformation and bootstrapping.

3.1 Randomization Instantiation

To showcase our randomized holistic evaluation methodology, we instantiate it on a set of reasonable benchmark
and initial corpus properties known or suspected to impact fuzzers. In doing so, we answer the following illustrative
research questions using the data from a leading fuzzer evaluation platform,

IRQ3 How is fuzzer ranking affected by varying a combination of properties? (Exploratory Analysis)
IRQ4 Does initial corpus coverage significantly affect the relative ranking of fuzzers? (Hypothesis Testing)
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Program Description
freetype2 Font Renderer
harfbuzz Text Shaping
libjpeg-turbo JPEG Image Codec
libpcap (fuzz_both) Packet Capture
libxslt (xpath) XML Transformation
libpng PNG Image Codec

Program Description
sqlite3 (ossfuzz) Embedded Database
vorbis Audio Encoding
woff2 Web Fonts
zlib (uncompress) Decompression
mbedtls (dtlsclient) Cryptographic

Primitives

Fig. 4. Benchmark Programs

3.1.1 Experimental Setup.

Hypothesis (IRQ4). Before running an experiment to test for a statistically significance, it is important to first formulate
testable hypotheses. In this case, we use a reframing of IRQ4 as our instantiating hypothesesH0.1-3, but any other
variable(s) in our model can be used.

H0: Changes in Initial Coverage have the same impact wrt. final coverage ranking on LibFuzzer as it does on...

(1) AFL,
(2) AFL++, and
(3) Entropic.

We recommend hypothesis testing on a single or small number of predetermined variable(s) to avoid Type I error
(Section 4). For IRQ3, as we are only using the model for exploratory analysis, no formal hypotheses are needed.

Benchmark. (Figure 4). We chose the FuzzBench [49] platform to apply our holistic evaluation methodology because
it is a leading tool with widespread usage among researchers and practitioners,3 and there is large industry support
from its corporate sponsor. Fuzzbench uses branch coverage as its measure of fuzzer performance. However, in principle
our methodology applies to any other benchmark framework or performance measure [32, 49, 52].

Fuzzers. We chose AFL [62], AFL++ [23], LibFuzzer [1], and Entropic [10] (extends LibFuzzer), representing the
state-of-the-art in general-purpose grey-box fuzzing.

Programs. To maximize the relevance of our findings, we use all programs directly integrated into FuzzBench4 (i) that
were already available in Commit 8858be7, (ii) that could be compiled and run within the local setup, and (iii) that
had an OSS-Fuzz corpus available in Fuzzbench. Our benchmark consists of 11 programs listed in Figure 4. For every
program, all experiments were conducted as FuzzBench local experiments on an AWS c6i.metal instance.

Benchmark properties. For our experiments, we select a set of reasonable properties, to instantiate our holistic
benchmarking framework. We hope that this illustrative example analysis can both provide direct insights on the
properties we evaluate and exemplify how future experiments can be conducted with new properties. We do not claim
that these properties are exhaustive; we only investigate a subset of interesting properties which have been identified by
prior work. As corpus properties, we measure the number of seeds, the initial LLVM branch coverage before the fuzzing
campaign, the mean execution time in nanoseconds, and the mean size of the seeds in bytes. As program properties,
we measure the size of the program, the proportion of equality and inequalities in comparison instructions, and the
proportion of shared library calls.

We chose seed size and execution time as covariates as the documentation for AFL claims that each have a strong
impact on performance [27][5]. We also record the number of shared library calls because instrumentation is the

3More than 140,000 CPU-days of public experiments run in 2022.
4Rather than adding additional programs or harnesses through the OSS-Fuzz Integration. Programs already added to Fuzzbench are widely used and thus
results on these subjects are more directly relevant to evaluators
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Program Size

Fig. 5. Multiple Linear Regression with LibFuzzer as reference level (Fuzzer Ranking ∼ Fuzzer × Properties) [Eqn. 1].

defining characteristic of grey-box fuzzing techniques, shared libraries are not instrumented by default and are even
recommended to leave uninstrumented [4]. We examine the impact of initial corpus size based off of observed effects in
prior published work. For example, Klees et al. [41] show a difference between the empty and non-empty seed sets, but
not for more granular changes in the size of the seed corpus. Additionally, some fuzzers like AFLFast have known issues
with very large working corpora [63]. We measure initial coverage because it is well established that the performance
characteristics change at different stages in a fuzzing campaign [9]. Similarly, we include program size as it impacts
both the search space itself and how the fuzzer represents that space, which can lead to other performance issues such
as those highlighted by CollAFL [25].

Instrumentation. To measure shared library calls and constraints in each program, we used objdump to extract the
corresponding static instructions and their characteristics. We then used a binary instrumentation tool [21] to count
these calls and constraints at runtime on the initial corpus. For program size, we report the size of the text segment in
the program binary given by objdump.

Sampling configuration. For every {fuzzer, program}-pair, we conducted 24 trials of 24 hours. For each trial, we create
the initial seed corpus by randomly sampling from a saturated seed corpus that was generated over many years by
the OSS-Fuzz continuous fuzzing platform [2].5 This highly saturated corpus approximates the “universe” of seed
inputs. For the 𝑥𝑡ℎ-trial (𝑥 : 1 ≤ 𝑥 ≤ 24) of each program, all fuzzers start from the same initial corpus. Notably,
we opt for a single trial per benchmark configuration. Running multiple trials per benchmark configuration would
allow us to estimate the variance not associated with the benchmark properties themselves and compare to the variance
when those properties are changed. This additional capability, however, comes at the cost of substantial additional
computational resources (e.g. a factor of 20 for 20 trials per configuration). Using a single trial per configuration, we can
still determine statistically significant results in terms of our response with respect to the overall variance. Given that
fuzzer evaluations are already extremely costly, we believe that a single trial per configuration is likely to be preferred
by most evaluators and thus choose this as our experimental setup.

3.2 Results

To analyze the results of our experiment, we instantiate the regression model introduced in Section 3 with our selected
corpus properties and response variable (Eqn. 1). We define the following reference configuration 𝐶 . As reference levels

5We use the FuzzBench option –oss-fuzz-corpus and minimize with afl++-cmin.
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Benchmark Config 1 Benchmark Config 2 Benchmark Config 3 Benchmark Config 4 Official FB Config
↓ Low Initial Coverage ↓ Low Initial Coverage − Median Initial Coverage ↑ High Initial Coverage · Static seed set
↓ Small Programs ↑ Large Programs − Median Sized Programs ↑ Large Programs used by Fuzzbench
↓ Small and Fast Seeds ↓ Small and Fast Seeds − Median Size and Speed Seeds ↑ Large and Slow Seeds in all prior work

1. Entropic 1. AFL++ 1. AFL++ 1. AFL++ 1. / 2. AFL++ / Entropic
LibFuzzer Entropic 2. Entropic 2. Entropic 2. / 3. Entropic / AFL

3. AFL++ 3. AFL 3. LibFuzzer AFL
4. AFL LibFuzzer 4. AFL 4. LibFuzzer 4. LibFuzzer

Fig. 6. (left) Benchmarking outcomes at various levels of program and corpus properties (significant at bootstrapped 95% CI), (right)
Benchmarking outcome from the Fuzzbench default corpora (significant at p < 0.05, Mann-Whitney U-test)

{𝑣𝑖 }𝑛𝑖=1 ∈ 𝐶 we choose: for all corpus properties the lowest rank and for program size to the median rank. As reference
fuzzer 𝑓 ∈ 𝐶 , we choose LibFuzzer.

Figure 5 shows the coefficients as point estimates and the non-parametric bootstrapped 95%-confidence intervals
(CIs), adjusted for family-wise error rate as described in Section 4. If the CI does not include the origin (0), we can
conclude that there is a statistically significant effect from the corresponding benchmark property relative to the
reference levels at that level of confidence. The left side of Figure 5 shows the change in fuzzer rank if a different fuzzer
is chosen and all other covariates (i.e., properties) are held constant at the reference level. The last four whiskers in
Figure 5 (right side) show the change in fuzzer rank if one of the four considered properties increase by one rank and
the fuzzer is held constant (LibFuzzer). The remaining whiskers show the additional change in fuzzer rank if both fuzzer
and benchmark property are changed simultaneously — interaction terms in equation (1) presented earlier.

IRQ3: Exploratory Analysis of Properties in Combination

Looking at Figure 5, we see several substantial effects from our explanatory variables. On the left, we see that AFL
appears to be outperformed by LibFuzzer, our reference fuzzer, at the reference levels for each of our covariates – its
confidence interval is entirely above zero. Examining results on the right for corpus properties, we see that all three
other fuzzers perform better with higher initial coverage corpora, as the confidence intervals are each below zero.
Additionally, increasing mean execution time has a negative association with the performance of LibFuzzer relative to
AFL++ (and possibly AFL as well). Finally, each other fuzzer appears to perform better than LibFuzzer as program size
increases.

In light of these findings, we can gain some informal intuition about which fuzzers to use under which circumstances
or formulate new, targeted hypotheses to focus on in future experiments. We might use AFL++ and Entropic and AFL
over LibFuzzer for programs of size comparable to the medium and larger programs in Fuzzbench (median of 4917
instructions, max of 14452 instructions). However, on smaller programs with lower initial coverage and smaller or
faster seeds, this gap in performance (coverage achieved) narrows significantly, and Entropic performs best, followed
by AFL++ and LibFuzzer. However, for such conclusions to be empirically confirmed, we would need to run a new
experiment to test each hypothesis, as will be exemplified in IRQ4.

Our holistic fuzzer evaluation methodology also allows us to put the negative impact of a benchmark property in

relation to the impact of the choice of fuzzer at a reference level. Keeping all other covariates constant at their reference
levels, a switch from LibFuzzer to AFL is roughly equivalent to increasing the program size from median size programs
to the largest programs in our benchmark set. Comparing the coefficients for the fuzzer/corpus-property interactions,
AFL++’s seem to be of similar magnitude to other fuzzers, suggesting that it is not excessively overfit to a particular
starting corpus relative to other fuzzers.
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Figure 6 shows the rankings given by our models at varying values of our measured corpus and program properties.6

These rankings can easily be obtained from our model by adjusting the reference levels and fuzzers of Figure 5. The
rankings are notably different depending on the values of our measured properties. LibFuzzer ranges from being among
the best fuzzers (Figure 6, far left) to the worst (Figure 6, right). Similarly, AFL++, which has been highly optimized
against the static Fuzzbench corpus falls as low as third. Furthermore, these rankings are only slices at discrete points
in the space of possible evaluation configurations. One of the strengths of our holistic model is that it can produce such
rankings at any point in the space, along with confidence intervals to gauge the significance of these results.

In contrast, the traditional evaluation setup can only give rankings for precisely one point in the space of configura-
tions. We show the Fuzzbench [49] rankings for the four fuzzers we tested on the right of Figure 6. We compute the
fuzzer rankings from the average run of each fuzzer across all our benchmark programs in existing experimental data,
using the Mann-Whitney U-Test for significance (p < 0.05) [3]. The Fuzzbench rankings only represent the relative
performance of these fuzzers for one initial corpus per program – the default seeds provided by Fuzzbench. The choices
of initial corpora utilized by Fuzzbench are not explained, and seem to be arbitrary. Several target programs such as
jsoncpp and libjpeg start with only a single input, yet others like sqlite3 start with more than one thousand inputs.
Given that we observe corpus properties have a significant effect on evaluation outcomes, this heavy usage of a single
configuration is likely to introduce bias into the results. Indeed, we can see from the far right of Figure 6, that the
rankings output by Fuzzbench are not the same as the rankings for representative median values of the properties that
we observed in our study (Figure 6, middle). One could say that the Fuzzbench results (and thus fuzzers tuned on these
results) may be overfitted to the Fuzzbench default seed set. The potential for this bias reinforces the need for evaluation
platforms to utilize a wide variety of sampled starting corpora and benchmark programs as in this paper, rather than
arbitrarily choosing a single evaluation configuration.

Our holistic model shows potential effects from the program size and initial coverage of the seed corpus, as well as
some effects from the execution time of the seeds in the starting corpus on some fuzzers. These effects indicate how the

final ranking of a fuzzer would change holding all other variables constant. Large variances in these properties appear

to be enough to change fuzzer rankings in practice.

IRQ4: Hypothesis Testing

Instead of an exploratory analysis, we can leverage our holistic model to do hypothesis testing. In this case, we use
H0.1-3 as our instantiating hypotheses, however the impact of any property could be tested in this way. Before testing
multiple individual hypotheses, we first run ANOVA for our model to see if any variable effects are significant. Here we
see a P-value of far less than our chosen significance level of 0.05 (Figure 5, left) and so we conclude that at least one of
the variables in our model contributes significantly to our response variable.

To run a post-hoc test for a hypothesis using our holistic model, we can simply see if the confidence interval for
the coefficient of the corresponding variable overlaps with zero. In this case we are looking at the relative effect of
the initial coverage of the seed corpus for each fuzzer against LibFuzzer, which is captured by the interaction terms
of (fuzzer*seed size). Looking at Figure 5, we can see that none of the confidence intervals reach zero. Thus we can
reject the null hypothesis for H0.1-3 and claim that initial coverage has a significantly different effect on other fuzzers
relative to LibFuzzer.

6Differences in rankings is determined by the bootstrapped 95% confidence intervals, adjusted for multiplicity (c.f. Section 4)
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Model Acc. (%) 𝑅2 Adj. 𝑅2 DoF

Atomistic (static rankings) 49.6 0.484 0.485 (3, 790)
Holistic [Eqn. 1] 59.5 0.669 0.661 (19, 774)

Extended Holistic [Eqn. 2] 67.6 0.780 0.763 (59, 734)

Fig. 7. Prediction accuracy and model statistics

To test other hypotheses between other fuzzers (e.g. AFL vs. Entropic), we could simply replot the data such that e.g.
AFL, rather than LibFuzzer is the reference fuzzer.

The bootstrapped confidence intervals from our holistic regression model can be used to test individual hypotheses for

significance. In our instantiating experiment, we would reject the null hypotheses and conclude that initial coverage
has a statistically significant relative impact on AFL, AFL++, and Entropic relative to LibFuzzer.

3.3 Assumptions and Model Validation

To ensure the correctness of our approach, we examine the fit and prediction accuracy of our regression model. We also
check the general assumptions of regression analysis.

3.3.1 Model Validation. To evaluate the fit of our model we examined the prediction accuracy and mean-squared error
relative to an atomistic model. The atomistic model predicts that a fuzzer’s ranking on the training set will correspond
to its ranking on the holdout set. This atomistic model represents the current state-of-the-practice in fuzzer evaluation
– i.e. the average rank shown at the top of a Fuzzbench report.7 We use a 75%-25% train-test split of the data from
the previous section for evaluating prediction accuracy of our response variable, with 5-fold cross-validation on the
training set.

Figure 7 shows the holdout-set prediction accuracy, goodness of fit (𝑅2), and degrees of freedom (DoF) for the
traditional atomistic approach and our proposed holistic model. The traditional approach in the first row mirrors how
users choose fuzzers today. This model chooses a ranking for unseen data based only on the overall rankings on prior
data (the best fuzzer overall is always predicted to have ranking 1, the second best 2, etc.). For the holistic model in the
second row, our multiple linear regression model (fitted on the seen benchmark configurations) predicts the benchmark
outcome on an unseen configuration. We use the extended holistic model in the third row of Figure 7 to assess variance
from program-specific effects, and will explain its precise nature in the coming section.

Given an unseen benchmark configuration, our holistic model can predict the correct ranking of a fuzzer roughly
60% of the time. In contrast, an atomistic model can only predict a fuzzer’s ranking correctly less than half of the time
on the unseen configurations. The holistic perspective thus gives users a substantially better chance of selecting a
fuzzer that best fits their use case.

Our holistic methodology is nearly 20% more accurate in predicting the correct ranking of a fuzzer than a traditional

evaluation (10 percentage points).

Looking at the goodness-of-fit (𝑅2), we see the holistic model is substantially better than the traditional approach
(+0.18 units). We can also remove the benchmark properties from our holistic model to assess their cumulative impact
on evaluation outcomes in terms of 𝑅2 value. Doing so creates a “fuzzer-only” regression model, which has an 𝑅2 of
7https://www.fuzzbench.com/reports/sample/index.html
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0.604 units. In other words, the properties explored in our investigation explain an additional 6.5 percentage points of
the total variance in fuzzer rankings. However, 33% of the total variance in predicting the fuzzer ranking 𝑅 remains
unexplained by our model.

From the remaining variance, we hypothesize that there are significant program-specific effects not measured in our
study, and thus not captured in our holistic model. By adjusting our model to take into account the benchmark program
as a categorical variable, we can incorporate some of these effects in the aggregate. Let 𝐵 be the set of programs. For
each 𝑏 ∈ 𝐵 and 𝑓 ∈ 𝐹 , let 𝜇𝑏 and 𝜌𝑏,𝑓 be additional coefficients. Given reference level 𝐶 ′ = ⟨𝑓 , 𝑏, {𝑝𝑖 }𝑛𝑖=1⟩, the fuzzer
rank 𝑅 is

𝑅 = 𝛼 +

∑︁
𝑝∈𝑃

𝛽𝑝𝑋𝑝

 +

∑︁
𝑓 ∈𝐹

𝛾𝑓 𝑌𝑓

 +

∑︁
𝑝∈𝑃

∑︁
𝑓 ∈𝐹

𝜔𝑝,𝑓 𝑋𝑝𝑌𝑓

 (2)

+
[∑︁
𝑏∈𝐵

𝜇𝑏𝑍𝑏

]
+

∑︁
𝑏∈𝐵

∑︁
𝑓 ∈𝐹

𝜌𝑏,𝑓 𝑍𝑏𝑌𝑓


Here, 𝑍𝑏 is an indicator variable, s.t. 𝑍𝑏 = 1 if 𝑏 was used instead of the reference program, and 𝑍𝑏 = 0 otherwise.

We trained and evaluated this extended holistic model on our split data-set. In terms of prediction accuracy, the
extended model beats the traditional methodology by almost 20 percentage points, up to 67.6% on unseen data. Adding
the program to the regression model explains an additional 6.4 percentage of variance over our initial holistic model,
nearly 13% more variance than the “fuzzer-only” model.

These improvements indicate that there are still substantial program-specific effects that are not captured by the
program properties recorded we recorded for this instantiating study. In other words, the coefficients depicted in Figure 5
give us a sense of the net effect of the corpus properties across programs, but individual effects vary substantially. For
example, overall, Initial Corpus Coverage may have a significant effect on the relative performance of Libfuzzer vs. AFL
as found in IRQ4. However, for some programs, this relationship may be somewhat weaker or stronger. Thus, it is
crucial for benchmarking frameworks to maintain a large, representative sample of target programs to avoid systematic
bias with respect to program and corpus properties.

This observation further motivates our proposed methodology in future work, as exploratory regression analysis
(IRQ3) can identify pertinent benchmark properties and hypothesis testing (IRQ4) can confirm their effects. Because
regression analysis is a sufficiently general technique, it is easy to incorporate additional benchmark properties—numeric,
ordinal or categorical—as researchers identify them. We look forward to future holistic investigations, which examine
additional properties to further explain these differences across programs.

3.3.2 Assumptions. To apply multiple linear regression, we require five assumptions to be met: (i) a linear association
between explanatory and response variables [linearity], (ii) no high correlation among explanatory variables [no
multicolinearity], (iii) a constant variance of residuals [homoscedasticity], (iv) normality of the residuals [normality] and
(v) independence of observations [independence].

Linearity. For a multiple linear regression model to be accurate, the relationship between the explanatory and
response variables must be correctly modeled with a linear formula. By using the rank transformation, we eliminate
monotonic non-linearity, typically observed in fuzzing evaluations [9], from the model. We observe that all of our
transformed predictors appear to be linear with respect to the fuzzer ranking in our supplementary materials (Section 7).
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Fig. 8. Correlation matrix for Overall Impact Across Benchmarks and Fuzzers (Spearman’s 𝜌).
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Fig. 9. Model Diagnostics

Multicolinearity. If some explanatory variables are highly correlated, it becomes difficult to interpret the model as
the joint effect can be arbitrarily spread among correlated predictors. In Figure 8, we can only see one association that
is not weak or negligible, i.e., a very strong correlation between the size and coverage of the initial seed corpus. As a
result, we exclude the corpus size from our model. For reasons of model parsimony, we also exclude the proportion of
equalities, inequalities, and calls to shared library from the multiple linear regression model. These program properties
have no discernible independent impact on individual or relative performance of our fuzzers.

Normality. To determine statistical significance of regression coefficients analytically, the residual errors of a linear
regression model must be approximately normally distributed. Instead, we obtain confidence intervals computationally

using a non-parametric bootstrap.

Homoscedacity. Linear regression models assume that the variance of the residuals is constant over the predicted
values of the response variable. We can assess homoscedacity by examining the residual plot or the scale-location plot
of the square root of the standardized residuals against the fitted values. In the latter, we should see a flat line if our data
is homoscedastic. However, Figure 9 (left) shows that this might not be the case for our data. There seems to be greater
variance around the middle ranks, likely due to ties in fuzzer performance (which we break by assigning the average
rank). We therefore use the wild bootstrap to reduce the impact of heteroscedasticity on our confidence intervals [61]
[46]. Intuitively, the wild bootstrap repeatedly resamples the residuals of a linear model fitted to the original and scales
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them by a random variable to give additional data-points without making assumptions that the residuals are similarly
distributed.

Independence. Regression models also assume that the individual samples of data are not dependent on each other.
We use Fuzzbench for our testing setup, which should not introduce any dependence between trials. We validate the
independence of the residuals of our data with the Durbin-Watts test [22], obtaining a p-value of 0.794.

3.3.3 Variable Selection and Model Parsimony. When constructing a statistical model for sample data, it is generally
desirable to minimize model complexity when attempting to maximize the explanatory power of the model. Doing so
makes the model more interpretable and also reduces the chances of overfitting to the sample data. Adding variables to
a model will typically increase its effectiveness on the sample data, but this comes at the cost of making the model more
complex. Balancing these two requirements is an inherent tradeoff in regression analysis.

Thus, in constructing our multiple regression model, we picked a small subset of properties that (1) we reasonably
expected to have an impact on fuzzer effectiveness to demonstrate our approach (2) were easily measurable, (3) that were
independent of each other to avoid issues with multicollinearity and overfitting and (4) that were well represented in our
sample population of programs integrated with Fuzzbench. We identify several properties in Section 3.1.1 satisfying (1).
To ensure (2), we omit other difficult-to-measure properties such as “seed validity” [34]. In pursuit of (3), we discarded
several properties which were expected or that we found empirically to be highly correlated with others.8 Specifically,
we excluded the number of memory-unsafe accesses, cyclomatic complexity, and test suite size which are all known or
expected to correlate strongly with program size [60]. We measured other program and corpus properties, including
the quantiles of the execution times, quantiles of seed sizes in the initial corpus, as well as the number and types of
constraints covered by the initial corpus [32]. However, we found these to be of negligible individual impact and thus
excluded them from the final model. We refer the interested reader to the rich literature on variable selection [33].
Finally, we omit other variables –such as whether or not the program has an input “dictionary”– due to the small
number of representatives in our sample population (4); without a significantly larger number of representatives, we
cannot make any statistical claims about the impact of these variables.

What about important benchmark properties that are not explicitly modeled? These typically appear as additional
unexplained variance in the fitted model (assuming the sample is representative). Like all statistical methods, our
methodology can only account for variables present in the model and observed in the sample data. If the additional
variables were included, the resulting model would have a greater explanatory power, but there would be a corresponding
increase in model complexity and thus increased risk of overfitting our sample data. While there will almost always
be some unexplained variance after fitting a model, researchers can make incremental improvements and reduce this
unexplained variance by running new experiments and measuring new properties. When they do, they can use our
methodology to determine whether these newly measured properties have a significant impact on evaluation outcomes
independently of other variables.

4 THREATS TO VALIDITY

Like other empirical studies, our instantiating studies have several potential threats to validity which we have attempted
to mitigate.

8We note that the discarded properties which are strongly correlated with others, such as cyclomatic complexity, may still have value in the model, but a
much larger sample size would be necessary to separate out the smaller, individual effects of these variables.
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Threats to internal validity. are aspects of our study that may introduce systemic bias. We minimize experimenter
and confirmation bias in our experiment design by utilizing Fuzzbench, an existing benchmarking tool prepared by
independent practitioners and researchers, for our experimental setup. We reduced the chance of selection bias in our
choice of fuzzers by only choosing from state-of-the-art fuzzers with widespread adoption. Additionally, because we
are not attempting to make claims about the performance of any particular fuzzer but rather potential covariates in
benchmarking runs, impact of selection bias is reduced. Another possible source of bias was our use of AFL++’s corpus
minimization tool to reduce our seed pool for each experiment, which could bias the initial minimized corpora. We
mitigate this risk by only reducing with respect to edge-coverage, which we believe to be an uncontroversial criteria for
corpus reduction across grey-box instrumentation tools. Alternative tools using LLVM coverage data were orders of
magnitude slower, to the point that they are not practical for fuzzing practitioners. Additionally, prior work [34] has
outlined the importance of corpus reduction for fuzzing effectiveness, and thus running experiments without minimized
corpora would have threatened the external validity of our study. Finally, it is important to compare research claims to
a baseline to demonstrate that these claims represent an improvement over existing alternatives. We are not aware
of any alternative evaluation frameworks that incorporate and account for covariates in a non-parametric analysis.
However, we do compare with the existing state-of-the-practice for fuzzer evaluations in Section 3.3.

Threats to external validity. could harm the generality of these results beyond the scope of our study. For our two
controlled experiments, we only seek to demonstrate that certain specific properties can influence the outcomes of
benchmarking runs. While we chose hypotheses for these experiments that we reasonably believe may generalize,
we cannot say that our results for IRQ1 and IRQ2 will hold for other fuzzers or subject programs without additional
experiments. Our holistic methodology in Section 3 describes how to account for these and other properties in practice
on arbitrary other programs. For the third instantiating experiment in Section 3.2, we attempt to minimize this risk
with respect to our benchmark programs by utilizing the Fuzzbench benchmark suite, which is broadly representative
of open source software available to the fuzzing community [49]. There is a risk that by using an existing fuzzer
benchmarking suite, our sample population only includes projects which have been previously subjected to heavy
fuzzing; this may not be representative of general software programs, many of which have not been fuzzed. However,
creating a new benchmark with programs that have never been fuzzed would greatly increase the cost of our study
and risk introducing other biases in the benchmark (i.e. there may be reasons why these projects have not been fuzzed
– e.g. they are very small or not widely used). As such, we opt to use a well-established benchmark for our initial
study, with the hope that this methodology can be applied to other benchmarks and programs in future research.
Additionally, we follow the recommendation of Böhme et al. [13], that ≥10 benchmark programs should be sufficient
for coverage-based benchmarking, spending over 1000 CPU-hours gathering data for our analysis. We also make our
data and experimental setup available for replication. We attempt to minimize external validity risk with respect to
our fuzzers by choosing what we believe to be a representative set of state-of-the-art fuzzers. AFL and LibFuzzer are
the baseline implementations for 10/11 state-of-the-art fuzzers supported in Fuzzbench’s main experiment. AFL++
and Entropic are among the latest and highest performing variants of our two baseline implementations in recent
benchmarking runs. Similarly, SymSan and Eclipser are both recently published tools at top research venues, with
promising experimental results.

Threats to construct validity. concern whether or not the data collected in our study measure what we claim. The
execution speed parameter assessed in IRQ1 must be interpreted with caution. We fixed all other variables for this
experiment, but in many real-world programs, execution time is correlated with other variables. Our results may
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reasonably hold when other variables such as the number of instructions remain constant as execution time increases
(e.g. if there is increased blocking on I/O resources).

In this study, we are examining the impact of various variables on “fuzzer effectiveness”. The measure we used,
code-coverage, has long been used as proxy for fuzzer performance, but there is a risk that our results do not translate
to bug-finding effectiveness. However [13] found that coverage based benchmarking is correlated with bug finding
ability. Additionally, because of the sparsity of bugs, using even the largest bug-based benchmarks available (around
200 bugs) as our metric for fuzzer effectiveness would threaten external validity of our study.

Threats to conclusion validity. may lead to misinterpretations of our data. We mitigate the risk by checking the
assumptions of each technique used. In the case of our regression models, we also use the non-parametric wild bootstrap
[61] to obtain confidence intervals, rather than analytical methods dependent on the distribution of the residuals.

Another potential threat to conclusion validity is our use of the rank transformation. We did so to reduce the impact
of outliers, scale the data for each program such that it is comparable, and eliminate the impact of any monotonic
non-linearity on our regression analysis. Indeed, without the rank transformation, our data appears to be non-linear
with no obvious higher order pattern, in addition to having several strong outliers, and thus would not be amenable
to regression analysis. While the rank transformation is a common statistical technique for non-parametric analysis
[19, 35, 37, 42, 48], this transformation introduces a layer of indirection to our analysis; where we report correlations
and trends in the ranked data, and not the underlying raw data.

Finally, testing multiple hypotheses can increase the probability of Type I error, known as the issue of multiplicity.
While our holistic evaluation methodology can provide confidence intervals for an arbitrary number of effects, we
advocate only formally testing a single or small number of hypothesis per experiment with our holistic methodology,
as in 3.2. However, any time multiple tests are conducted, it is important to at least consider adjusting for multiplicity.
Unfortunately, most adjustments typically decrease statistical power, often substantially so, and thus should not be
applied blindly [51, 56]. As such, whether to conduct such a correction depends on the context and whether false
negatives or false positives are more important to avoid. For academic research, usually false positives are less desirable
than false negatives, so we use the Bonferroni correction for claims of significance in experiments for IRQ 1 and IRQ 2.
Note that because of our experimental setup, the loss in statistical power for these experiments is of minimal impact.
For IRQ 4, we adjust the alphas for each regression coefficient’s confidence interval using the Holm–Bonferroni [36]
method, which is strictly more powerful than the standard Bonferroni correction.

5 RELATEDWORK

In disciplines of computer science which often utilize empirical evaluations, the impact of the evaluation setup on
its outcome has previously been noted, but—to the best of our knowledge—not systematically studied. We could not
find other methodologies that account for or quantify the impact of the benchmark on the benchmarking outcome
during the evaluation. For instance, Kudela recently found that 47 of 90 evolutionary algorithms exhibit a strong
bias towards the center of the search space due to prominent benchmarks in that field having solutions at or near
the center [43]. In machine learning, Japkowicz [39] warns that focus on performance measures in research might
obscure important behaviors of the algorithms under consideration. In computer architecture, Panda et al. [53] study
the characteristics of the SPEC2017 CPU benchmark suite primarily to identify a subset of benchmark programs and
inputs that can approximate the results of the entire benchmark suite. These works all acknowledge an impact of the
choice of benchmark on the outcome of the evaluation, but provide no guidance to account for these effects in practice.
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Similarly, in automated software testing, Herrera et al. [34] found that the properties of the seed corpus had a
substantial impact on the performance of a fuzzer. For example, they found that running fuzzers on the readelf

program using i.e. an empty corpus, a single valid ELF file, and a large corpus of valid ELF files gave completely
different results. This is an example of a controlled experiment where one variable, the corpus size, is changed while
others are held constant. However, the control Herrera et al. exercise in their experiments is incomplete – the corpus
size may be correlated or even confounding other important variables which cannot be held constant. Indeed, in the
third instantiating study of our framework, we find that corpus size and the initial coverage of the corpus are highly
correlated, both confirming and shedding additional light on their experiments. As a key takeaway from their work,
Herrera et al. recommend that evaluators vary corpora to see how they impact the fuzzers being assessed. However,
they not provide a methodology to investigate properties other than corpus size. Our work gives a concrete workflow
that evaluators can use for arbitrary properties of the corpus or benchmark to make this recommendation actionable.

In terms of guidelines for the evaluation of automatic software testing tools (i.e., fuzzers), most recommendations
are concerned with the sound statistical analysis of effect size and statistical significance. Arcuri and Briand [6] [7]
provide an in-depth discussion of statistical, non-parametric measures that are particularly applicable in the context of
automatic software testing. Klees et al. [41] later drew on these guidelines to identify specific issues with experimental
design for fuzzer evaluations, such as lack of repetition, too few target programs, and lack of consideration for the
impact of initial corpora. However, none of the previous guidelines provide clear steps for an evaluation methodology
that incorporates these covariates, as presented in this paper.

Several works have emerged establishing benchmarks for fuzzing tools both generally, as in the case of Fuzzbench
[49] and for specific classes of applications such ProFuzzBench [52]. UNIFUZZ [44] attempts to provide a comprehensive
evaluation platform by studying the impact of fuzzer-specific factors like instrumentation methods and crash analysis
tools. However it does not study the impact of benchmark properties. In fact, like other fuzzing benchmarks, UNIFUZZ
uses a static seed set for each benchmark program. As a result it does not study the differences in fuzzer evaluation
results that arise from the choice of benchmark properties. Magma [32] focuses on a suite of real-world bugs. Other
projects have gathered data-sets of real-world bugs for the evaluation of various testing and debugging strategies [40]
[31]. All of these works use methodology similar to Klees et al. [41] or Arcuri and Briand [7], thereby, neglecting the
influence of benchmark properties on testing outcomes.

Synthetic benchmarks [20] [55] [57] [58] provide an alternative path for more holistic benchmarking. For example,
Zhu et al. [63], propose creating artificial target programs with large numbers of features known or suspected to be
problematic for fuzzers. They compare relative performance of two fuzzers on one such program in terms of artificial
“bugs” found, observing a difference in behavior between AFL and AFLFast [11]. This approach, however, cannot account
for different effects from the seed corpora for such artifical programs. Additionally, there remain doubts as to whether
results from such synthetic benchmarks are representative of behavior in typical real-world programs [14] [26] [12].
Recent work by Lyu et al. [47] suggests program senstive energy allocation procedure to determine the power schedule
of a fuzzer.

While our study focused on coverage as the primary metric for fuzzer performance, we expect program and corpus
properties to have impacts beyond increased coverage. Another metric commonly used to evaluate testing tools is
mutant injection [54]. The ground truth for testing effectiveness is bug-finding ability. Inozemtseva et al. [38] first
investigated the correlation between code coverage and bugs found by Java unit testing suites. Böhme et al. [13] more
recently found coverage to be a good objective function for fuzzers, given the sparsity of real-world bugs. We believe
there are future research opportunities in assessing the impact of covariates with respect to these alternative metrics.
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Ensemble Fuzzing. Ensemble fuzzing (a.k.a. collaborative fuzzing or fuzzer composition) is a related subfield of
research. The goal of an ensemble is to select the best performing set of fuzzer(s) for a given workload. Our multiple-
linear regression model could, in theory, be used to predict a set of fuzzers that perform best for a workload (indeed we
use prediction accuracy to validate our model in Section 3.3), but this is not the primary purpose of our framework. We
aim to provide developers and researchers with the tools to conduct nuanced evaluations of fuzzer performance; in
essence to understand which variables contribute to a particular fuzzer performing best on a given benchmark, and
account for the impacts of those variables. Additionally, existing ensemble fuzzers are more focused on characteristics

of the fuzzers themselves rather than the properties of benchmark programs discussed in this work. For example,
autofz [24] dynamically picks the fuzzer(s) making the best progress during an ongoing fuzz campaign, but cannot
explain why those particular fuzzers are performing well (or why other fuzzers are not) on that particular workload.
The EnFuzz [17] authors compose fuzzers looking for diversity in their broad characteristics, such as seed selection
strategy or mutation strategy. Similarly, Cupid [30] empirically assesses which fuzzer pairs are most complementary in
terms of code-coverage. One possible application of our methodology could be to shed further light into which program
or corpus properties each individual fuzzer is leveraging in a successful ensemble.

6 PERSPECTIVE: BEYOND FUZZING

Benchmarking allows researchers and practitioners to make empirical claims about the properties of a newly proposed
technology—fuzzers included. In this paper, we study how to assess the degree to which the outcome of an evaluation
depends on the specific properties of the benchmark that is used for the evaluation. In particular, we propose using
control and randomization to assess the effects of benchmark properties on the evaluation outcome. Our approach can
be used to study arbitrary variable effects, both in isolation and in combination with each other. While we describe our
approach in the context of fuzzing, this methodology can be applied to other evaluations in other domains.

Within our domain of expertise, we showcase three instantiating studies leveraging this methodology, finding several
examples of statistically significant effects not accounted for in current evaluations. Fuzzing benchmarks should be
diverse and randomized with respect to properties like program execution time, program size, seed origin, and initial
coverage. Furthermore, we hope researchers will use holistic methods to identify additional properties of benchmarks
which impact evaluation outcomes. Benchmarks such as Fuzzbench can incorporate our changes, randomizing initial
corpora and other parameters to provide more robust outcomes. Finally, fuzzer developers can adopt our methodology
to account for previously identified covariates in their evaluations.

7 DATA AVAILABILITY

We include our infrastructure, data, and analysis at:

https://figshare.com/s/de961f6206f786997e87

We will make these artifacts publicly available upon acceptance.
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