Artifact
Evaluated

ANDss

Available

Large Language Model guided
Protocol Fuzzing

Reproduced

Ruijie Meng*, Martin Mirchev*, Marcel Bohme' and Abhik Roychoudhury*
*National University of Singapore
fMPI-SP and Monash University
{ruijie, mmirchev, abhik} @comp.nus.edu.sg, marcel.boehme @ mpi-sp.org

Abstract—How to find security flaws in a protocol implemen-
tation without a machine-readable specification of the protocol?
Facing the internet, protocol implementations are particularly
security-critical software systems where inputs must adhere to a
specific structure and order that is often informally specified in
hundreds of pages in natural language (RFC). Without some
machine-readable version of that protocol, it is difficult to
automatically generate valid test inputs for its implementation
that follow the required structure and order. It is possible to
partially alleviate this challenge using mutational fuzzing on a
set of recorded message sequences as seed inputs. However, the
set of available seeds is often quite limited and will hardly cover
the great diversity of protocol states and input structures.

In this paper, we explore the opportunities of systematic
interaction with pre-trained large language models (LLMs),
which have ingested millions of pages of human-readable protocol
specifications, to draw out machine-readable information about
the protocol that can be used during protocol fuzzing. We use
the knowledge of the LLMs about protocol message types for
well-known protocols. We also checked the LLM’s capability
in detecting “states” for stateful protocol implementations by
generating sequences of messages and predicting response codes.
Based on these observations, we have developed an LLM-guided
protocol implementation fuzzing engine. Qur protocol fuzzer
CHATAFL constructs grammars for each message type in a pro-
tocol, and then mutates messages or predicts the next messages
in a message sequence via interactions with LLMs. Experiments
on a wide range of real-world protocols from PROFUZZBENCH
show significant efficacy in state and code coverage. Our LLM-
guided stateful fuzzer was compared with state-of-the-art fuzzers
AFLNET and NSFuzz. CHATAFL covers 47.60% and 42.69 %
more state transitions, 29.55% and 25.75% more states, and
5.81% and 6.74% more code, respectively. Apart from enhanced
coverage, CHATAFL discovered nine distinct and previously
unknown vulnerabilities in widely-used and extensively-tested
protocol implementations while AFLNET and NSFUZZ only
discovered three and four of them, respectively.

I. INTRODUCTION

The development of an automatic vulnerability discovery
tool for protocol implementations is particularly interesting
both, from a practical and from a research point of view.

From a practical point of view, protocol implementations
are the most exposed components of every software system

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA

ISBN 1-891562-93-2

https://dx.doi.org/10.14722/ndss.2024.24556
www.ndss-symposium.org

that is directly or indirectly connected to the internet. Protocol
implementations thus constitute a critical attack surface that
must be automatically and continuously rid of security flaws.
A simple arbitrary code execution vulnerability in a widely-
used protocol implementation renders even the most secure
software systems vulnerable to malicious remote attacks.

From a research point of view, protocol implementations
constitute stateful systems that are difficult to test. The same
input executed twice might give different outputs every time.
Finding a vulnerability in a specific protocol state requires
sending the right inputs in the right order. For instance, some
protocols require an initialization or handshake message before
other types of messages can be exchanged. For the receiver to
properly parse that message and progress to the next state, the
message must follow a specific format. However, by default,
we can assume neither to know the correct structure nor the
correct order of those messages.

Mutation-based protocol fuzzing reduces the dependence
on a machine-readable specification of that required message
structure or order by fuzzing recorded message sequences [1],
[2], [3], [4]. The simple mutations often preserve the required
protocol while still corrupting the message sequences enough
to expose errors. However, the effectiveness of mutation-based
protocol fuzzers is limited by the quality and diversity of the
recorded seed message sequences, and the available simple
mutations do not help in the effective coverage of the otherwise
rich input or state space.

To foster the adoption of a protocol among the participants
of the internet, almost all popular, widely-used protocols are
specified in publicly available documents, which are often
hundreds of pages long and written in natural language. What
if we could programmatically interrogate the natural language
specification of the protocol whose implementation we are
testing? How could we use such an opportunity to resolve
the challenges of existing approaches to protocol fuzzing?

In this paper, we explore the utility of large language models
(LLMs) to guide the protocol fuzzing process. Fed with many
terabytes of data from websites and documents on the internet,
LLMs have recently been shown to accurately answer specific
questions about any topic, at all. An LLM like ChatGPT 4.0
has also consumed natural-language protocol specifications.
The recent, tremendous success of LLMs provides us with the
opportunity to develop a system that puts a protocol fuzzer
into a systematic interaction with the LLM, where the fuzzer

can issue very specific tasks to the LLM.

We call this approach LLM-guided protocol fuzzing and
present three concrete components. Firstly, the fuzzer uses the
LLM to extract a machine-readable grammar for a protocol
that is used for structure-aware mutation. Secondly, the fuzzer
uses the LLM to increase the diversity of messages in the
recorded message sequences that are used as initial seeds.
Lastly, the fuzzer uses the LLM to break out of a coverage
plateau, where the LLM is prompted to generate messages to
reach new states.

Our results for all text-based protocols in the PRO-
FUzZBENCH protocol fuzzer benchmark [5] demonstrate the
effectiveness of the LLM-guided approach: Compared to the
baseline (AFLNET [1]) into which our approach was imple-
mented, our tool CHATAFL covers almost 50% more state
transitions, 30% more states, and 6% more code. CHATAFL
shows similar improvements over the state-of-the-art (NS-
Fuzz [2]). In our ablation study, starting from the baseline
we found that enabling (i) the grammar extraction, (ii) the
seed enrichment, and (iii) the saturation handler one by one
allows CHATAFL to achieve the same code coverage 2.0, 4.6,
and 6.1 times faster, respectively, as the baseline achieves in
24 hours. CHATAFL is highly effective at finding critical se-
curity issues in protocol implementations. In our experiments,
CHATAFL discovered nine distinct and previously unknown
vulnerabilities in widely-used and extensively-tested protocol
implementations.

In summary, our paper makes the following contributions:

o We build a large language model (LLM) guided fuzzing
engine for protocol implementations to overcome the
challenges of existing protocol fuzzers. For deeper behav-
ioral coverage of such protocols, on-the-fly state inference
is needed - which is accomplished by interrogating an
LLM, like ChatGPT, about the state machine and input
structure of a given protocol.

o We present three strategies for integrating an LLM into a
mutation-based protocol fuzzer, each of which explicitly
addresses an identified challenge of protocol fuzzing.
We develop an extended greybox fuzzing algorithm and
implement it as a prototype CHATAFL. The tool is
publicly available at

https://github.com/ChatAFLndss/ChatAFL

e We conducted experiments that demonstrate that our
LLM-guided stateful fuzzer prototype CHATAFL is
substantially more effective than the state-of-the-art
AFLNET and NSFuUzz in terms of the coverage of
the protocol state space and the protocol implementation
code. Apart from enhanced coverage, CHATAFL discov-
ered nine previously unknown vulnerabilities in widely-
used protocol implementations, the majority of which
could not be found by AFLNET and NSFUZzZ.

II. BACKGROUND AND MOTIVATION

We start by introducing the main technical concepts in
protocol fuzzing and elucidating the key open challenges that

Method E’ URL |I§| Version
CRLF

CRLF

Header Filed Name | :| Value

Header Filed Namel:l Value | CRLF
CRLF |

(a) Structure of RTSP client requests.

PLAY rtsp://127.0.0.1:8554/aacAudioTest/ RTSP/1.0\r\n

CSeq: 4\r\n

User-Agent: ./testRTSPClient (LIVE555 Streaming Media v2018.08.28)\r\n
Session: 000022B8\r\n

Range: npt=0.000-\r\n

\r\n

(b) Example of RTSP PLAY client request from Live555.

Fig. 1. Structure of RTSP client requests in (a), and a PLAY client request
from Live555 in (b).

we seek to address in this paper. We then provide some
background on large language models and our motivation.

A. Protocol Fuzzing

In order to facilitate the systematic and reliable exchange
of information on the Internet, all participants agree to use a
common protocol. Many of the most widely-used protocols
have been designed by the Internet Engineering Task Force
(IETF) and published as Request for Comments (RFC). These
RFCs are mostly written in natural language and can be
hundreds of pages long. For instance, the Real Time Streaming
Protocol (RTSP) 1.0 protocol is published as RFC 2326 and
is 92 pages long.! As internet-facing software components,
protocol implementations are security-critical. Security flaws
in protocol implementations have often been exploited to
achieve remote code execution (RCE).

A protocol specifies the general structure and order of
the messages to be exchanged. An example of the structure
of an RTSP message is shown in Figure 1: Apart from a
header specifying message type (PLAY), address, and protocol
version, the message consists of key-value pairs (key: value)
separated by carriage return and line feed characters (CRLF;
\r\n). The required order of RTSP messages is shown in
Figure 2: Starting from the INIT state, only a message of type
SETUP or ANNOUNCE would lead to a new state (READY).
To reach the PLAY state from the INIT state, at least two
messages of specific types and structures are required.

A protocol fuzzer automatically generates message se-
quences that ideally follow the required structure and order
of that protocol. We can distinguish two types of protocol
fuzzers. A generator-based protocol fuzzer [6], [7], [8] is given
machine-readable information about the protocol to generate
random message sequences from scratch. However, a protocol
implementation itself, the manually written generator often
only covers a small portion of the protocol specification, and
its implementation is tedious and error-prone [1].

'RFC 2326 (RTSP): https://datatracker.ietf.org/doc/html/rfc2326.

https://github.com/ChatAFLndss/ChatAFL
https://datatracker.ietf.org/doc/html/rfc2326

Teardown

Describe/ - Play/Setup/Options/
h Setup/Options/
Options/ GetParameter/
Teardown SetParamGetParameter SetParameter
Setup/ £\
Announce Play @
Teardown Pause
Record
Record /Setup/Options/

SetParameter/GetParameter

Fig. 2. The state machine for the RTSP protocol from RFC 2326.

A mutation-based protocol fuzzer [1], [2] uses a set of pre-
recorded message sequences as seed inputs for mutation. The
recording ensures that the message structure and order are
valid while mutational fuzzing will slightly corrupt both [1]. In
fact, all recently proposed protocol fuzzers, such as AFLNET
[1] and NSFuzz [2] follow this approach.

Challenges. However, as a state-of-the-art (SOTA) ap-
proach, mutation-based protocol fuzzing still faces several
challenges:

o (C1) Dependence on initial seeds. The effectiveness of
mutation-based protocol fuzzers is severely limited by the
provided initial seed inputs. The pre-recorded message
sequences will hardly cover the great diversity of protocol
states and input structures as discussed in the protocol
specification.

o (C2) Unknown message structure. Without machine-
readable information about the message structure, the
fuzzer cannot make structurally interesting changes to
the seed messages, e.g., to construct messages of unseen
types or to remove, substitute, or add an entire, coherent
data structure to a seed message.

¢ (C3) Unknown state space. Without machine-readable
information about the state space, the fuzzer cannot iden-
tify the current state or be directed to explore previously
unseen states.

B. Large Language Models

Emerging pre-trained Large Language Models (LLMs) have
demonstrated impressive performance on natural language
tasks, such as text generation [9], [10], [11] and conversations
[12], [13]. LLMs have also been proven effective in translating
natural language specifications and instructions into executable
code [14], [15], [16]. These models have been trained on ex-
tensive corpora and possess the ability to execute specific tasks
without the need for additional training or hard coding [17].
They are invoked and controlled simply by providing a natural
language prompt. The degree to which LLMs understand the
tasks depends largely on the prompts provided by users.

The capabilities of LLMs have various implications for
network protocols. Network protocols are implemented in ac-
cordance with the RFCs, which are written in natural language

and available online. Since LLMs are pre-trained on billions
of internet samples, they should be capable of understanding
RFCs as well. Additionally, LLMs have already demonstrated
strong text-generation capabilities. Considering messages are
in text format to be transmitted between servers and clients,
generating messages for LLMs should be straightforward.
These capabilities of LLMs have the potential to address the
open challenges of mutation-based protocol fuzzing. More-
over, the inherently automatic and easy-to-use attributes of
LLMs align harmoniously with the design concept of fuzzing.

Motivation. In this paper, we propose to use LLMs to guide
the protocol fuzzing. To alleviate the dependence on initial
seeds (C1), we propose to ask the LLM to add a random
message to a given seed message sequence. But does this really
increase the diversity and the validity of the messages? To
combat the unknown structure of messages (C2), we propose
to ask the LLM to provide machine-readable information
about the message structure (i.e., the grammar) for every
message type. But how good are those grammars compared
to the ground truth and which message types are covered? To
navigate the unknown state space (C3), we propose to ask the
LLM, given the recent message exchange between fuzzer and
protocol implementation, to return a message that would lead
to a new state. But does this really help us transition to a new
state? We will investigate these questions carefully within the
following case study.

III. CASE STUDY: TESTING THE CAPABILITIES OF LLMSs
FOR PROTOCOL FUZZING

In our study, we selected the Real Time Streaming Pro-
tocol (RTSP), along with its implementation LIVE555? from
PrOFUZZBENCH [5]. RTSP is an application-level protocol
for control over the delivery of data with real-time properties.
LI1VE5S55 implements RTSP in accordance with RFC 2326,
functioning as a streaming server in entertainment and com-
munications systems to manage streaming media servers. It
is included in PROFUZZBENCH, a widely-used benchmark
for stateful fuzzers of network protocols [1], [3], [2]. PRO-
FuzzZBENCH comprises a suite of representative open-source
network servers for popular protocols, with LIVE5S55 being
among them. Therefore, the study results on LIVES55 would
be a strong indication of whether LLMs can effectively guide
protocol fuzzing. Our study was carried out in the state-of-the-
art ChatGPT model >. In this section, we mainly demonstrate
the capabilities of LLMs. Our approach and the corresponding
prompts will be discussed more precisely in Section IV.

A. Lifting Message Grammars: Quality and Diversity

We ask the LLM to provide machine-readable informa-
tion about the message structure (i.e., the grammar), and
we evaluate the quality of the generated grammars and the
diversity of message types covered w.rt. the ground truth.
To establish the ground-truth grammar, two authors spent a
total of 8 hours in reading the RFC 2326, and manually

2LIVESSS available at http://www.live555.com/
3 Available at https:/platform.openai.com/docs/models/gpt-3-5

http://www.live555.com/
https://platform.openai.com/docs/models/gpt-3-5

PLAY <Value> RTSP/1.0\r\n
CSeq: <Value>\r\n
User-Agent: <Value>\r\n
Session: <Value>\r\n

Range: <Value>\r\n

\n\n

Fig. 3. Grammar for the RTSP PLAY client request.

and individually extracting the corresponding grammar with
the perfect agreement. We finally extracted the ground-truth
grammar for 10 types of client requests specific to the RTSP
protocol, each consisting of about 2 to 5 header fields. Figure 3
shows the PLAY message grammar, corresponding to the
grammar of the PLAY client request shown in Figure 1. The
PLAY grammar includes 4 essential header fields: CSeq, User-
Agent, Session, and Range. Additionally, certain request types
have specific header fields. For example, Transport is specific
to SETUP requests, Session applies to all types except SETUP
and OPTIONS, and Range is specific to PLAY, PAUSE, and
RECORD requests.

To obtain the LLM grammar for analysis, we randomly
sampled 50 answers from the LLM for the RTSP protocol and
consolidated them into one answer set. * As shown in Figure 4,
the LLM generates grammars for all ten message types that
we expected to see appear in over 40 answers from the LLM.
Additionally, the LLM occasionally generated 2 random types
of client requests, such as “SET_DESCRIPTION”; however,
each random type only appeared once in our answer set.

Furthermore, we examined the quality of the LLM-
generated grammar. For 9 out of the 10 message types, the
LLM produced a grammar that is identical to the ground-
truth grammar extracted from RFC for all answers. The only
exception was the PLAY client request, where the LLM
overlooked the (optional) “Range” field in some answers.
Upon further examination of the PLAY grammar in the entire
answer set, we discovered that the LLM accurately generated
the PLAY grammar, including the “Range” field, in 35 answers
but omitted it in 15 answers. These findings demonstrate the
LLM’s ability to generate highly accurate message grammar,
which motivates us to leverage grammar to guide mutation.

The LLM generates machine-readable information for the
structures of all types of RTSP client requests that match
the ground truth, although there is some stochasticity.

B. Enriching the Seed Corpus: Diversity and Validity

We ask the LLM to add a random message to a given seed
message sequence and evaluate the diversity and validity of
the message sequences. In PROFUZZBENCH, the initial seed
corpus of LIVES5S5 comprises only 4 types of client requests
out of 10 present in the ground truth: DESCRIBE, SETUP,
PLAY, and TEARDOWN. The absence of the remaining 6
types of client requests leaves a significant portion of the

4We discuss the prompt engineering in Section IV-A.

00 00D N 4

50 A 43 42
25
1 1
0 =
$ O ¢ A S SO S &
QQ§) «\0% < ?9, Q\}?' éo& QO$ GQQ- é‘o & §© \Q&\O O\%
& & S TP S P ® S
< &Qv A g %@
) 7 &S
& & &7 &7

Fig. 4. Types of client requests in the answer set and the corresponding
occurrence times for each type.

RTSP state machine unexplored, as shown in Figure 2. While
it is possible for the fuzzers to generate the missing six
types of client requests, the likelihood is relatively low. To
validate this observation, we examined seeds generated by
state-of-the-art fuzzers AFLNet and NSfuzz, and none of these
missing message types were generated. Therefore, it is crucial
to enhance the initial seeds. Can we use the LLM to generate
client requests and augment the initial seed corpus?

It would be optimal if the LLM could not only generate
accurate message contents but also insert the messages into
the appropriate locations of the client-request sequence. It
is known that the servers of network protocols are typically
stateful reactive systems. This feature determines that for a
client request to be accepted by servers, it must satisfy two
mandatory conditions: (1) it appears in the appropriate states,
and (2) the message contents are accurate.

To investigate this capability of the LLM, we requested
it to generate 10 messages for each of the 10 types of
client requests, resulting in a total of 100 client requests.’
Subsequently, we verified whether the client requests were
placed in the appropriate locations within a given client-
request sequence. For this purpose, we compared them against
the RTSP state machine shown in Figure 2, because the
message sequences should transit based on the state machine.
Once we ensured that a sequence of client requests was
accurate based on the state machine, we sent it to the LIVES55
server. By examining the response code from the server, we
could determine if the message content was accurate, thereby
double-checking the message order as well.

Our study results demonstrate that LLM is capable of
generating accurate messages and enriching the initial seeds.
99% of the collected client requests were placed in the accurate
positions. The only exception is that a “DESCRIBE” client
request was inserted after the “SETUP” client requests. As
only one exception appeared, we consider the LLM perfor-
mance to be acceptable. We sent the client-request sequences
to the LIVESSS server and the processed results were shown in
Table I. Approximately 55% of client requests can be directly

SWe discuss the detailed model prompt in Section IV-B.

Table 1. Processed results of client requests after being sent to the server.

Status \ Accepted Unsupported Session-Mismatch
Ratio \ 55.1% 20.4% 24.5%

accepted by the server with the successful response code
“2xx”. However, unsuccessful cases are not due to lacking
capability of the LLM. In the unsuccessful set, 20.4% of
the messages happened because LIVESSS does not support
the functionality for “ANNOUNCE” and “RECORD”, despite
being included in its RFC. The remaining cases were attributed
to incorrect session IDs in the “PLAY”, “TEARDOWN”,
“GET_PARAMETER” and “SET_PARAMETER” requests. A
session ID is dynamically assigned by the server and included
in the server response. Since the LLM lacks this context
information, it is not able to generate a correct session ID.
However, when we replaced the session ID with the correct
one, all of these messages were accepted by the server.

For our approach, we developed two methods to improve the
LLM’s capability of incorporating correct session IDs when
provided with additional context information. We first included
the server’s responses in the prompt and then requested the
LLM to generate the same types of messages. At this time,
the generated client requests were directly accepted by the
server. Furthermore, we attempted to include the session IDs
into the given client-request sequence, and then the LLM also
accurately inserted the same values into these messages and
produced correct results.

The LLM is able to generate accurate messages and has
the capability to enrich the initial seeds.

C. Inducing Interesting State Transitions

We give the LLM the message exchange between fuzzer and
the protocol implementation and ask it to return a message that
would lead to a new state. We evaluate how likely the message
induce a transition to a new state. Specifically, we provide the
LLM with existing communication history, enabling a server
respectively to reach each state (i.e., INIT, READY, PLAY,
and RECORD). Afterward, we query the LLM to determine
the next client requests that can affect the server’s state. To
mitigate the influence of the LLM’s stochastic behavior, we
prompted the LLM 100 times for each state.

Figure 5 shows the results. Each pie chart demonstrates the
results for each state. Each segment in each pie chart represents
a distinct type of client request. The gray portion represents the
percentage of client-request types that can lead to state change.
The orange ones represent the message types that appear in
the appropriate states but do not trigger any state transition (so
there is no state change). The blue ones represent the types
that appear in the inappropriate state that would be directly
rejected by the server. From Figure 5, we can see that there
are 81%, 74%, 89%, and 69% client requests, respectively, that
can induce state transitions to different states. Additionally,

16%

N

74%

81%

17%

S

2%

(@) In the INIT state (b) In the READY state

1% 1%
10%
30%
89% 69%

(c) In the PLAY state (d) In the RECORD state

State transition No transition I Inappropriate

Fig. 5. The next types of client requests generated by the LLM in each state.
The types in gray induce state transitions, the ones in orange appear in the
suitable state but do not trigger state transitions, and the ones in blue appear in
the inappropriate states. Each segment represents one distinct message type.

approximately 17%, 16%, 10%, and 30% client requests can
still be accepted and processed by the server although they
do not trigger the state change. These messages are still
potentially useful to cover more code branches although they
failed to cover more states. Besides, there is also a small
percentage of inappropriate messages, which account for about
2%, 10%, 1%, and 1% in our case study. These results
demonstrate that the LLMs have the capability to infer the
protocol states albeit with extremely occasional mistakes.
Moreover, the generated types of client requests exhibit
diversity. The LLM successfully generated client requests
that encompass all state transitions for each individual state.
Besides, the LLM also generated 2 to 5 appropriate types of
client requests. These results further demonstrate the potential
of the LLM to guide fuzzing, enabling it to surpass the
coverage plateau and explore a wide range of state transitions.

Of the LLM-generated client requests, 69% to 89% induced
a transition to a different state, covering all state transitions
for each individual state.

IV. LLM-GUIDED PROTOCOL FUZZING

Motivated by the impressive capabilities demonstrated by
the LLMs in the case study (Section III), we develop LLM-
guided protocol fuzzing (LLMPF) to tackle the challenges of
existing mutation-based protocol fuzzing (EMPF).

Algorithm 1 (without the gray-shaded text) specifies the
general procedure of the classical EMPF approach. The input
is the protocol server under test Fy, the corresponding protocol
p, the initial seed corpus C, and the total fuzzing time 7. The
output consists of the final seed corpus C and the seeds Cx

Algorithm 1: LLM-guided Protocol Fuzzing

Input: Py: protocol implementation
Input: p: protocol name
Input: C': initial seed corpus
Input: T: total fuzzing time
Output: C: final seed queue
Output: Cx: crashing seeds
1 Py < INSTRUMENT (Fp)
Grammar G <— CHATGRAMMAR (p)
C < C U ENRICHCORPUS (C, p)

Plateaulen < 0

StateMachine S <

repeat

State s <~ CHOOSESTATE (.5)

Messages M, response R <— CHOOSESEQUENCE (C, s)

(Mq, Ma, M3) < M (i.e., split M in subsequences,
s.t. M1 is the message sequence to drive Py to arrive
at state s, and message Mo is selected to be mutated).

10 for i from 1 to ASSIGNENERGY (M) do

2
3
4
5
6
7
8
9

11 if Plateaulen < MaxPlateau then

12 if UNIFORMRANDOM () < € then

13 My’ < GRAMMARMUTATE (M>, G)
14 Ml <— (Ml, le, M3>

15 else

16 | M' <+ (M1, RANDMUTATE (M2), M3)
17 end

18 else

19 My’ < CHATNEXTMESSAGE (Mi, R)
20 M’ &= <M1, Mgl, M3>

21 Plateaulen < 0

22 end

23 R’ + SENDTOSERVER (Py, M")

24 if ISCRASHES (M’, Py) then

25 Cx < Cx U {M/}

26 Plateaulen < 0

27 else if ISINTERESTING (M, P, S) then
28 C+ CU{M', RH}

29 S < UPDATESTATEMACHINE (S, R')
30 Plateaulen < 0

31 else

32 Plateaul.en < Plateaulen + 1

33 end

34 end

35 until timeout 7' reached or abort-signal

that crash the server. In each fuzzing iteration (lines 7-34),
EMPF selects a progressive state s (line 7), and the sequence
M (line 8) that exercises s to steer the fuzzer in exploring the
larger space. To ensure that the selected state s is exercised, M
is split into three parts (line 9): M, the sequence to reach s;
Mo, the portion selected for mutation; and M3 is the remaining
subsequence. Subsequently, EMPF assigns the energy for M
(line 10) to determine mutated times and then mutates it into
M’ with (structure-unaware) mutators (line 16). This mutated
sequence is then sent to the server (line 23). EMPF saves
M’ that lead to crashes (lines 24-25) or increase code or
state coverage (lines 27-28). If the latter, it updates the state
machine (line 29). This process is repeated until the assigned
energy runs out (line 10), at which point the next state is

selected.

For our LLMPF approach, we augment the baseline logic of
EMPF by incorporating the grayed components: (1) Extract
the grammar by prompting the LLM (line 2) and utilize
the grammar to guide the fuzzing mutation (lines 12-14)
(Section IV-A); (2) query the LLM to enrich the initial seeds
(line 3) (Section I'V-B); and (3) leverage the LLM’s capability
to break out of a coverage plateau (lines 4, 19-21, 26, 30 and
32) (Section IV-C). Now we will introduce each component.

A. Grammar-guided Mutation

In this section, we will introduce the approach to extracting
grammar from the LLM and then leveraging the grammar to
guide the structure-aware mutation.

1) Grammar Extraction: Before the fuzzer can ask the
LLM to generate a grammar for structure-aware mutation [18],
we encountered one immediate challenge: How to obtain a
machine-readable grammar for the fuzzer? The fuzzer operates
on a single machine and is restricted to parsing a predeter-
mined format. Unfortunately, the responses generated by the
LLM typically are in a natural language structure with con-
siderable flexibility. If the fuzzer is to understand the LLM’s
responses, the LLM should consistently answer queries from
our fuzzer in a predetermined format. An alternative option
would involve manually converting the LLM’s responses to
the desired format. However, this approach would compromise
the fuzzer’s highly automated nature, which is less desirable.
Therefore, the issue at hand is how to make the LLM answer
questions in the desired format.

One common paradigm involves fine-tuning models to
achieve proficiency in a specific task [19]. Similarly, when it
comes to the LLM, fine-tuning the prompt becomes necessary.
This is because the LLM can perform specific tasks by simply
providing natural language prompts, without the need for
additional training or hard coding. Hence, the fuzzer prompts
the LLM to generate the message grammar of the protocol
under test. However, the scope for prompt fine-tuning is
extensive.

To make the LLM generate a machine-readable grammar,
we ultimately employ in-context few-shot learning [9], [20]
within the domain of prompt engineering. With the increasing
understanding of LLMs, many prompt engineering approaches
have been proposed [9], [21], [22]. In-context learning serves
as an effective approach to fine-tuning the model. Few-shot
learning is utilized to enhance the context with a few examples
of desired inputs and outputs. This enables the LLM to
recognize the input prompt syntax and output patterns. With
in-context few-shot learning, we prompt the LLM with a
few examples to extract the protocol grammar in the desired
format.

Figure 6 illustrates the model prompt used to extract the
RTSP grammar. In this prompt, the fuzzer provides two
grammar examples from two different protocols in the desired
format. In this format, we retain the message keywords in the
grammar, which we consider to be immutable, and replace the
mutable regions with the “(Value)”. Notice that, to guide the

Instruction:

For the RTSP, protocol, all of client
request grammar is:

Desired Format:

Shot-1:

For the RTSP protocol, the PLAY

client request grammar is:

PLAY: {PLAY <Value> RTSP/1.0\r\n,
Cseq: <Value>\r\n,
User-Agent: <Value>\r\n,
Session: <Value>\r\n,

Range: <Value>\r\n,
\r\n}

Shot-2:

For the HTTP protocol, the GET client

request grammar is:

\GET: {GET <Value>\r\n}

Model Output

1. DESCRIBE:
{ DESCRIBE <Value> RTSP/1.0\r\n,
Cseq: <Value>\r\n,
User-Agent: <Value>\r\n,
Accept: <Value>\r\n,
\r\n}

2.SETUP:

{ SETUP <Value> RTSP/1.0\r\n,
Cseq: <Value>\r\n,
User-Agent: <Value>\r\n,
Transport: <Value>\r\n,

\r\n}

AN J

Fig. 6. Example of the model prompt and the responding response for
extracting the RTSP grammar.

LLM in properly generating grammar, we utilize two shots
instead of relying on a single example. This helps prevent
the LLM from strictly adhering to the given grammar and
potentially overlooking important facts.

In addition, another issue was revealed in our case study:
the LLM may occasionally generate stochastic answers, such
as “SET_DESCRIPTION”. Fortunately, these instances are
rare. To address the stochastic nature of the minority-sampled
generation, we engage in multiple conversations with the
LLM and consider the majority of consistent answers as the
final grammar. This approach shares similarities with self-
consistency checks [21] in the domain of prompt engineering,
but it does not occur in chain-of-thought prompting.

Through these approaches, the fuzzer is able to effectively
obtain accurate grammar from the LLM across various pro-
tocols. The model output shown in Figure 6 demonstrates
a portion of the RTSP grammar derived from the LLM. In
practice, the LLMs are occasionally not sensitive to the word
“all” in this prompt, resulting in them generating only part of
grammar types. To resolve this issue, we just simply prompt
the LLMs again to ask about the remaining grammar.

Before commencing the fuzzing campaign (see line 2 of
Algorithm 1 in the overview), our LLMPF approach engages
in a conversation with the LLM to obtain the grammar.
Subsequently, this grammar is saved into the grammar corpus
G, which is utilized for structure-aware mutation throughout
the entire campaign. This design is intended to minimize
the overhead of interacting with the LLM while ensuring
optimal fuzzing performance. Following that, we elaborate on
the approach to provide guidance for structure-aware fuzzing
based on the extracted grammar.

2) Mutation based on Grammar: Using the grammar cor-
pus extracted from the LLM, LLMPF conducts structure-
aware mutations of the seed message sequences. In previous
work [23], researchers employed the LLM to generate variants
of given inputs by tapping into their ability to comprehend
input grammar. However, the limitation posed by the conver-

PLAY <Value> RTSP/1.0 \r\n
CSeq: <Value>\r\n
User-Agent: <Value>\r\n
Session: <Value>\r\n

Range: <Value>\r\n

\r\n PLAY Grammar

Grammar Corpus

=L

(DMatch
Grammar

(@Mark mutable
regions

PLAY rtsp://127.0.0.1:8554/aacAudioTest/ RTSP/1.0\\n
CSeq: 4\r\n

User-Agent: ./testRTSPClient (LIVES55 Streaming Media v2018.08.28)\r\n
Session: 000022B8\r\n
Range: npt=0.000-\r\n

PLAY Request
\r\n

Fig. 7. Workflow of the grammar-based mutation using the PLAY request of
the RTSP protocol as the example.

sation overhead restricts the frequency of interactions with
the LLM. In our approach, we adopt a different strategy.
LLMPF utilizes the extracted grammar to guide the mutations.
The fuzzer extracts the grammar just once, enabling it to
incorporate the grammar throughout the entirety of the fuzzing
campaign. We leave opportunities to escape the coverage
plateau in Section IV-C. Here, we proceed to introduce the
workflow of mutation based on the extracted grammar.

In line 9 of Algorithm 1, the fuzzer chooses the message
portion M, for mutation as part of the algorithm design.
Let us assume M consists of multiple client requests, one
of which is the PLAY client request of the RTSP protocol.
Our mutation approach guided by grammar is illustrated in
Figure 7. It shows the workflow for mutating one single
RTSP PLAY client request. Specifically, when presented with
the PLAY client request, LLMPF first matches it with the
corresponding grammar. To expedite the matching process, we
maintain the grammar corpus in the map format: G = {frype —
grammar}. Here, type represents the types of client requests.
LLMPF uses the first line of each grammar as the label
for message types. The grammar corresponds to the concrete
message grammar. Using the message type, LLMPF retrieves
the corresponding grammar. Subsequently, we employ regular
expressions (Regex) to match each header field in the message
with the grammar, marking regions as mutable falling under
“(Value)”. In Figure 7, these mutable regions identified are
highlighted in blue. During mutation, LLMPF only selects
these regions, ensuring the messages retain valid formats.
However, if no grammar match is found, we consider all
regions mutable.

To preserve the fuzzer’s capability of exploring some corner
cases, we continue to employ the structure-unaware mutation
approach from the classical EMPF, as demonstrated in line
16 of Algorithm 1. Nonetheless, LLMPF conducts structure-
aware mutations with a higher likelihood, considering that
valid messages hold a greater potential for exploring a larger
state space.

Model Output

DESCRIBE rtsp://...

For the/RTSP, protocol, the following
is one sequence of client requests:

DESCRIBE rtsp://....
SETUP rtsp://...
SETUP rtsp://...
PLAY rtsp://...
PLAY rtsp://...

SET_PARAMETER rtsp://...

Please add the]SET PARAMETER
and TEARDOWN client requests in
the accurate locations, and the

modified sequence of client request is:

_ / J

TEARDOWN rtsp://...

Fig. 8. Example of the model prompt and the responding response for
enriching initial seed corpus (we omit the details of messages).

B. Enriching Initial Seeds

Motivated by the ability of the LLM to generate new
messages and insert them into the appropriate positions within
the provided message sequence (cf. Section III-B), we propose
to enrich the initial seed corpus used for fuzzing (line 3 of
Algorithm 1). However, there are several challenges that our
approach must first tackle: (i) How to generate new messages
that carry the correct context information (e.g., the correct
session ID in the RTSP protocol)? (ii) How to maximize the
diversity of the generated sequences? (iii) How to prompt the
LLM to generate the entire modified message sequence from
the given seed message sequence?

As for Challenge (i), we found that the LLM can au-
tomatically learn the required context information from the
provided message sequence. For instance, for our experiments,
PROFUZZBENCH already possesses some message sequences
as initial seeds (although they lack diversity). The initial seeds
of PROFUZZBENCH are constructed by capturing the network
traffic between the tested servers and the clients. Thereby,
these initial seeds contain correct and sufficient context in-
formation from the servers. Hence, when prompting the LLM,
we include the initial seeds from PROFUZZBENCH to facilitate
the acquisition of the necessary context information.

As for Challenge (ii), the fuzzer determines which types
of client requests are missing in the initial seeds, i.e., what
types of messages should be generated by the LLM to enrich
the initial seeds. In Section IV-A, we have obtained the
grammar for all types of client requests; thus, identifying
the missing types in initial seeds is not a difficult issue.
Let us revisit the grammar prompt shown in Figure 6. The
prompt includes the names of message types (i.e., PLAY
and GET), and correspondingly, the message names are also
included in the model output (e.g., DESCRIBE and SETUP).
We utilize this information to maintain a set of message types:
AllTypes = {messageType}, and one map from grammars to
the corresponding type: G2T = {grammar — type}.

While detecting the missing message types, we first utilize
the grammar corpus G obtained in Section IV-A and the
grammar-to-type map G2T to obtain existing message types

/—[Prompt Template } ~

In the [protocol-name] protocol, the communication history between
the [protocol-name] client and the [protocol-name] server is as follows:
Communication history:

[Put the communication history here]

The next client request that can induce the server’s state transition to
other states is:

Desired format of one real client request:

[Put one real message example from the initial seed corpus here]

- J

Fig. 9. The prompt template for obtaining the next client request that can
induce the server’s state transition to other states.

and maintain them into a set (i.e., ExistingTypes). Conse-
quently, the missing message types are in the complement:
MissingTypes = (AllTypes - ExistingTypes). We then instruct
the LLM to generate the missing types of messages and insert
them into the initial seeds; thereby, our approach is based on
existing initial seeds but enriches them. To avoid excessively
long initial seeds, we evenly select and add two missing types
at a time in a given message sequence. This allows us to
control the length and diversity of the initial messages.

As for Challenge (iii), to ensure the validity of the generated
message sequence, we design our prompt in the continuation
format (i.e., “the modified sequence of client requests is:”). In
practice, the obtained responses can be directly utilized as the
seeds, with the exception of removing the newline character
(\n) at the beginning or adding any missing delimiters (\r\n)
at the end. An illustrative example is presented in Figure 8. In
this case, we instruct the LLM to insert two types of messages,
“SET_PARAMETER” and “TEARDOWN?”, into the given
sequence. The modified sequence is shown on the right.

C. Surpassing Coverage Plateau

Exploring unseen states poses a challenge for stateful
fuzzers. To better understand this challenge, let us revisit the
RTSP state machine illustrated in Figure 2. Assume the server
is currently in the READY state after accepting a sequence of
client requests. If the server intends to transition to different
states (e.g., the PLAY or RECORD state), the client must send
corresponding PLAY or RECORD requests. In the context of
the fuzzing design, the fuzzer assumes the role of the client.
While the fuzzer possesses the capability to generate messages
that induce state transitions, it requires the exploration of a
considerable number of seeds. There is a high likelihood that
the fuzzer may fail to generate suitable message orders to cover
the desired state transitions [1], [3]. Consequently, a substantial
portion of the code space remains unexplored. Therefore, it is
important to explore additional states in order to thoroughly
test stateful servers. Unfortunately, accomplishing this task
proves challenging for existing stateful fuzzers.

In this paper, when the fuzzer becomes unable to explore
new coverage, we refer to this scenario as the fuzzer en-
tering a coverage plateau. Motivated by the study results
in Section III-C, we utilize the LLM to assist the fuzzer
in surpassing the coverage plateau. This occurs when the
fuzzer is unable to generate interesting seeds within a given
time period. We quantify this duration based on the number
of uninteresting seeds continuously generated by the fuzzer.
Specifically, throughout the fuzzing campaign, we maintain a
global variable called PlateauLen to keep track of the number
of uninteresting seeds continuously observed thus far. Before
commencing the fuzzing campaign, PlateauLen is initialized
to 0 (Line 4 of Algorithm 1). During each fuzzing iteration,
PlateauLen is reset to 0 if we encounter a seed that crashes the
program (line 26) or when the coverage increases (line 30).
Otherwise, if the seed is deemed uninteresting, PlateaulLen is
incremented by 1 (line 32).

Based on the value of PlateauLen, we determine whether the
fuzzer has entered the coverage plateau. If PlateauLen does
not exceed MaxPlateau, the predefined maximum length of
the coverage plateau (line 11), our LLMPF mutates messages
using the strategy introduced earlier. The value of MaxPlateau
is specified by users and provided to the fuzzer. However,
when PlateauLen surpasses MaxPlateau, we consider the
fuzzer to have entered the coverage plateau. In such case,
LLMPF will utilize the LLM to overcome the coverage
plateau (lines 19-21). To achieve this, we employ the LLM
to generate the next suitable client requests that may induce
state transitions to other states. The prompt template is shown
in Figure 9. We provide the LLM with the communication
history between servers and clients; i.e., the client requests and
the corresponding server responses. To ensure that the LLM
generates an authentic message rather than message types or
descriptions, we demonstrate the desired format by extracting
any message from the initial seed corpus. Subsequently, the
LLM infers the current states and generate the next client
request M,'. This request acts as a mutation of the original
My and is inserted into the message sequence M', which is
then sent to the server.

Let us reconsider the RTSP example. Initially, the server is
in the INIT state. Upon receiving the message sequence M,
= {SETUP}, it responds with R; = {200-OK}, transitioning
to the READY state. Subsequently, the fuzzer encounters a
coverage plateau, where it fails to generate interesting seeds.
Upon noticing this, we stimulate the LLM by presenting the
communication history H = {SETUP, 200-OK}. In response,
the LLM is highly likely to reply a PLAY or RECORD
message, as indicated by the study results in Section III-C.
These messages lead the server to transition to a different state,
overcoming the coverage plateau.

D. Implementation

We implemented this LLM-guided protocol fuzzing (cf:
Algorithm 1) into AFLNET [1], called CHATAFL, to test
protocols written in C/C++. AFLNET is one of the most popu-

lar mutation-based open-source protocol fuzzers®. It maintains
an inferred state machine and uses state and code feedback
to guide the fuzzing campaign. The identification of the
current state involves parsing the response codes from servers’
response messages. A seed is considered interesting if it
increases state or code coverage. CHATAFL continues to
utilize this approach while seamlessly integrating the three
aforementioned strategies into the AFLNET framework.

V. EXPERIMENTAL DESIGN

To evaluate the utility of Large Language Models (LLMs)
for tackling the challenges of mutation-based protocol fuzzing
of text-based network protocols, we seek to answer the fol-
lowing questions:

RQ.1 State coverage. How much more state coverage does
CHATAFL achieve compared to baseline?

RQ.2 Code coverage. How much more code coverage does

CHATAFL achieve compared to baseline?
RQ.3 Ablation. What is the impact of each component on

the performance of CHATAFL?

RQ.4 New bugs. Is CHATAFL useful in discovering previ-
ously unknown bugs in widely-used and extensively-

tested protocol implementations?

To answer these questions, we follow the recommended
experimental design for fuzzing experiments [24], [25].

A. Configuration Parameters

In order to decide saturation, we set the maximum length
of the coverage plateau (MaxPlateau) to 512 non-coverage-
increasing message sequences. This value was determined
through a heuristic screening approach. In preliminary exper-
iments, we found 512 to be a reasonable setting for Max-
Plateau, achieved within approximately 10 minutes. Setting
the value too small would cause CHATAFL to overly query
the LLM, while setting it too large would lead CHATAFL
to remain stuck for too long instead of benefiting from our
optimization (cf. Section IV-C). Once the coverage plateau is
reached, CHATAFL prompts the LLM to generate message
sequences that surpass the coverage plateau (Section IV-C). To
limit the cost of LLM prompts, we set a quarter of MaxPlateau
as the maximum number of ineffective prompts.

As a large language model (LLM), we used the gpt-3.5-
turbo model. In accordance with the recommendation to em-
ploy a low temperature for precise and factual responses [26],
[21], a temperature of 0.5 was used to extract the grammar
and enrich the initial seeds (c¢f. Section IV-A & Section IV-B).
To generate new messages, J. Qiang et al. [23] found for
greybox fuzzing, a temperature of 1.5 is optimal. Hence, we
set a temperature of 1.5 to break out of the coverage plateau
(cf: Section IV-C). When extracting the grammar, for the self-
consistency check [21], we use five repetitions. As confirmed
in our case study (cf. Section III-A), we found five repetitions
sufficient to filter out incorrect cases.

6Available at https://github.com/afinet/aflnet; 689 stars at the time of
writing.

https://github.com/aflnet/aflnet

Table II. Detailed information about our subject programs.

Subject Protocol #LOC #Stars Version
Live555 RTSP 57k 631 31284aa
ProFTPD FTP 242k 445 6le62le
PureFTPD FTP 29k 572 10122d9
Kamailio SIP 939k 1,915 a220901
Exim SMTP 118k 662 d6a5a05
forked-daapd | DAAP 79k 1,718 2cal0d9

B. Benchmark and Baselines

Table II presents the subject programs that are used in our
evaluation. Our benchmark consists of six text-based network
protocol implementations, including five widely-used network
protocols (i.e., RTSP, FTP, SIP, SMTP, and DAAP). These
subject programs cover all text-based network protocols in
PROFUZZBENCH, a widely-used benchmark for evaluating
stateful protocol fuzzers [1], [4], [2], [27]. The protocols cover
a wide range of applications, including streaming, messaging,
and file transfer. The implementations are mature and widely
used both in enterprises and by individual users. For each
protocol, we selected implementations that are popular and
suitable for use in real-world applications. Security flaws in
these projects can have wide-reaching consequences.

As baseline tools, we selected AFLNET and NSFuUzz-v.
Since our tool CHATAFL has been implemented into
AFLNET, every observed difference between CHATAFL and
AFLNET can be attributed to our changes to implement LLM
guidance. AFLNET [1] is a popular open-source, state-of-the-
art, mutation-based, code- and state-guided protocol fuzzer.
NSFuzz-v [2] extends AFLNET to get a better handle on the
protocol state space. It identifies state variables through static
analysis and uses state variable values as fuzzer feedback to
maximize the coverage of the state space. The underlying idea
is very similar to that of SGFuUzz [3] which was published
around the same time but implemented into LibFuzzer [28].
SGFuzz also uses the sequence of state variable values to
implicitly capture the coverage of the protocol state space.
Other protocol fuzzers, like STATEAFL [4] and BooFuzz [7]
have previously been (unfavourably) compared to AFLNET
or NSFuzz-v, i.e., the tools that we use as baselines.

C. Variables and Measures

In order to evaluate the effectiveness of CHATAFL versus
the baseline fuzzers, we measure how well the protocol fuzzers
cover the state space of the protocol and the code of the
protocol implementation. The key idea is that a protocol
fuzzer cannot find bugs in uncovered code or states. However,
coverage is only a proxy measure for the bug-finding ability
of a fuzzer [24], [25]. Hence, we complement the coverage
results with bug-finding results.

Coverage. We report the coverage of both, the code and the
state space. To evaluate code coverage, we measure the branch
coverage achieved using the automated tooling provided by the
benchmarking platform PROFUZZBENCH [5]. To evaluate the

10

coverage of the state space, we measure (i) the number of
distinct states (state coverage) and the number of transitions
between these states (fransition coverage) using automatic
tooling provided by the benchmarking platform. Like the
authors of AFLNET and PROFUZZBENCH, in the absence
of ground truth state machines for the tested protocols, we
define distinct states traversed by a message sequence the
set of unique response codes that are returned by the server.
To mitigate the impact of randomness, we report the average
coverage achieved across 10 repetitions of 24 hours.

Bugs. To identify bugs, we execute the tested programs
under the Address Sanitizer (ASAN). CHATAFL stores the
crashing message sequences, and then we use the AFLNet-
replay utility provided by AFLNET to reproduce the crashes
and debug the underlying causes. We distinguish different bugs
by analyzing stack traces reported by ASAN. Finally, we re-
port these bugs to their respective developers for confirmation.

D. Experimental Infrastructure

All experiments were conducted on a machine equipped
with an Intel(R) Xeon(R) Platinum 8468V CPU. This machine
has 192 logical cores running at 2.70GHz. It operates on
Ubuntu 20.04.2 LTS with 512GB of main memory.

VI. EXPERIMENTAL RESULTS
RQ.1 State Space Coverage

Transitions. Table III shows the average number of state
transitions covered by our tool CHATAFL versus the two base-
lines AFLNET and NSFUZz-v. To quantify the improvement
of CHATAFL over the baselines, we report the percentage
improvement in terms of transition coverage achieved in 24
hours (Improv), how much faster CHATAFL can achieve the
same transition coverage as the baseline in 24 hours (Speed-
up), and the probability that a random campaign of CHATAFL
outperforms a random campaign of the baseline (Ara, Vargha-
Delaney measure of effect size [29]).

Compared to both baselines, CHATAFL exercised a greater
number of state transitions and significantly sped up the
state exploration process. On average, CHATAFL exercised
48% more state transitions than AFLNET. Specifically, in
the LIVESSS5 subject, CHATAFL increased the number of
state transitions by 91% compared to AFLNET. Furthermore,
CHATAFL explored the same number of state transitions 48 x
faster than AFLNET, on average. In comparison to NSFUzz,
CHATAFL covered 43% more state transitions on average
and achieved the same number of state transitions 16X faster.
For all subjects, the Vargha-Delaney effect size Ay > 0.86
indicates a substantial advantage of CHATAFL over both
AFLNET and NSFUZZ in exploring state transitions.

States. Table IV shows the average number of states covered
by our tool CHATAFL versus the two baselines AFLNET and
NSFuzz-v and the corresponding percentage improvement.
Clearly, CHATAFL outperformed both AFLNET and NS-
Fuzz. Specifically, CHATAFL covered 30% more states than
AFLNET and 26% more states than NSFUzz, respectively.
To put the number of covered states in the context of the total

Table III. Average number of state transitions for our CHATAFL and the baselines AFLNET and NSFuUZz in 10 runs of 24 hours.

Subject CHATAFL Transition comparison with AFLNET Transition comparison with NSFuzz
AFLNET Improv Speed-up A;2 | NSFuzz Improv Speed-up Aj:
Live555 160.00 83.80 90.98% 228.62x 1.00 90.20 77.38% 63.09x 1.00
ProFTPD 246.70 172.60 4291% 7.12x 1.00 181.20 36.11% 497x 1.00
PureFTPD 281.80 21690 2991% 5.61x 1.00 206.10 36.72% 7.94x 1.00
Kamailio 130.00 99.90 30.14% 5.53x 1.00 105.30 23.42% 4.58x 1.00
Exim 108.40 62.70 72.98% 40.27x 1.00 69.50 55.97% 13.25x 1.00
forked-daapd 25.40 2140 18.65% 1.58x 1.00 20.10 26.52% 1.79x 0.86
AVG - - 47.60% 48.12x - \ - 42.69% 15.94x -

Table IV. Average number of states and the improvement of CHATAFL
compared with AFLNET and NSFuzz.

Subject CHATAFL |AFLNET Improv|NSFuzz Improv |Total
Live555 14.20 10.00 41.75% 11.70 21.16% 15
ProFTPD 28.70 22.60 26.84%| 24.30 17.81%| 30
PureFTPD 27.90 2550 9.37%| 24.00 16.20%| 30
Kamailio 17.00 14.00 21.43% 15.10 12.50%| 23
Exim 19.50 14.10 38.19% 14.40 3542%| 23
forked-daapd 12.10 8.70 39.74% 8.00 51.39% 13
AVG \ -] - 29.55%] - 2575%] -

number of reachable states, the last column of Table IV shows
the total number of states that have been covered by any of the
three tools in any of the ten runs of 24 hours. We can see that
the average fuzzing campaign of CHATAFL covers almost
all reachable states. For instance, in the case of LIVESSS,
CHATAFL covers an average of 14.2 out of 15 states, while
AFLNET and NSFUzz only manage to cover 10 states and
11.7 states, respectively. Only for Kamailio CHATAFL covers
a smaller proportion of the reachable state space (avg. 17; max.
20 of 23 states). Nevertheless, CHATAFL still outperforms the
baselines in terms of state coverage.

In terms of state coverage, on average, CHATAFL cov-
ers 48% and 43% more state transitions than AFLNET
and NSFuzz, respectively. Compared to the baseline,
CHATAFL covers the same number of state transitions 48
and 16 times faster, respectively. In addition, CHATAFL
also explores a substantially larger proportion of the reach-
able state space than both AFLNET and NSFuzz.

RQ.2 Code Coverage

Table V shows the average branch coverage achieved by
CHATAFL and the baselines AFLNET and NSFuzz across 10
fuzzing campaigns of 24 hours. To quantify the improvement
of CHATAFL over the baselines, we report the percentage im-
provement in terms of branch coverage in 24 hours (Improv),
how much faster CHATAFL can achieve the same branch
coverage as the baseline in 24 hours (Speed-up), and the
probability that a random campaign of CHATAFL outperforms
a random campaign of the baseline (Alg).

As we can see, for all subjects, CHATAFL covers more
branches than both baselines. Specifically, CHATAFL covers
5.8% more branches than AFLNET with a range from 2.4%
to 8.0%. When compared to NSFuzz, CHATAFL covers
6.7% more branches. In addition, CHATAFL covers the same
number of branches 6x faster than AFLNET and 10x faster
than NSFuzz. For all subjects, the Vargha-Delaney effect
size Alg > 0.70 demonstrates a substantial advantage of
CHATAFL over both baselines in terms of code coverage
achieved.

In terms of code coverage, on average, CHATAFL cov-
ers 5.8% and 6.7% more branches than AFLNET and
NSFuzz, respectively. In addition, CHATAFL achieves
the same number of branches 6 and 10 times faster than
AFLNET and NSFUZz, respectively.

RQ.3 Ablation Studies

CHATAFL implements three strategies to interact with the
LLM to overcome the challenges of protocol fuzzing:

¢ S4) grammar-guided mutation,
¢ Sp) enriching initial seeds, and
* Sc) surpassing coverage plateau.
To evaluate the contribution of each strategy towards the
increase in coverage, we conducted an ablation study. For this
purpose, we developed four tools:

e CLO: AFLNET, i.e., all strategies all are disabled,

e CL1: AFLNET plus grammar-guided mutation (S4),

¢ CL2: AFLNET plus grammar-guided mutation (S 4) and
enriching initial seeds (Sp), and

¢ CL3: AFLNET plus all strategies (S4 + Sp + S¢),
i.e.,,CL3 is CHATAFL.

Table VI shows the results in terms of branch coverage in
a similar format we have used previously (Improv, Speed-up,
and A;,). However, compared to previous tables, crucially the
results in terms of improvement, speed-up, and Ay effect
size are shown in the inverse direction. For instance, for
ProFTPD, the configuration CL3 (i.e., CHATAFL) achieves 8%
more branch coverage than the baseline configuration CLO
(i.e., AFLNET). The difference in improvement between two
neighboring configurations (shown in parenthesis) quantifies
the effect of the strategy that is enabled. For instance, for

11

Table V. Average number of branches covered by our CHATAFL and the baselines AFLNET and NSFuzz in 10 runs of 24 hours.

Subject CHATAFL Branch comparison with AFLNET Branch comparison with NSFuUzz
AFLNET Improv Speed-up A;2 | NSFuzz Improv Speed-up Aj:
Live555 2,928.40 | 2,860.20 2.38% 9.61x 1.00 2,807.60 4.30% 21.60x 1.00
ProFTPD 5,143.30 | 4,763.00 7.99% 4.04x 1.00 4421.80 16.32% 21.96x 1.00
PureFTPD 1,134.30 | 1,056.30 7.39% 1.60x 091 1,041.10 8.96% 1.60x 1.00
Kamailio 10,064.00 | 9,404.10 7.02% 12.69x 1.00 9,758.70 3.13% 295x 1.00
Exim 3,789.40 | 3,647.60 3.89% 4.27x 1.00 3,564.30 6.32% 11.33x 0.77
forked-daapd 2,364.80 | 2,227.10 6.18% 4.63x 1.00 2,331.30 1.43% 1.66x 0.70
AVG - - 5.81% 6.14x - - 6.74% 10.18x -

Table VI. Improvements in terms of branch coverage compared with baseline if we enable each strategy one by one.

Subject CLO Enable strategy Sa4 (CL1) | Enable strategies S4 and Sg (CL2) Enable all strategies (CL3)
Improv Speed-up A2 Improv Speed-up A1z Improv Speed-up Ajs
Live555 2,860.20 | 0.28% 1.60x 0.89 | 1.49% (1.21pp) 8.45x% 1.00 | 2.38% (0.89pp) 9.61x 1.00
ProFTPD 4,763.00 | 3.63% 245x 0.60 | 5.27% (1.64pp) 3.69x 0.63 | 7.99% (2.72pp) 4.04x 1.00
PureFTPD 1,056.30 | 6.67% 1.34x 0.61 | 6.70% (0.03pp) 1.36x 0.86 | 7.39% (0.69pp) 1.60x 091
Kamailio 9,404.10 | 0.60% 1.75x 0.96 | 2.24% (1.64pp) 8.92x 1.00 | 7.02% (4.78pp) 12.69x 1.00
Exim 3,647.60 | 2.36% 248x 0.52 | 2.54% (0.18pp) 2.36x 0.58 | 3.89% (1.35pp) 427x 1.00
forked-daapd | 2,227.10 | 4.67% 248x 0.68 | 4.93% (0.26pp) 2.98x 1.00 | 6.18% (1.25pp) 4.63x 1.00
AVG \ -] 3.04% 2.02x - | 3.86% (0.82pp) 4.63x -] 5.81% (1.95pp) 6.14x -

ProFTPD, the configuration CL2 only achieves a 5.3% im-
provement, which is 2.7 percentage points (pp) less than CL3,
demonstrating the effectiveness of strategy Sc which was
enabled from CL2 to CL3.

Overall. All the strategies contributed to the improvement
of branch coverage, and none of the strategies had a negative
impact on branch coverage. Specifically, CL1 resulted in an
average increase of 3.04% in branch coverage compared to
CLO0. CL2 exhibited an average increase of 3.9%, while CL3
showed the highest average increase of 5.9% in branch cov-
erage. Furthermore, CL1 achieved the same branch coverage
2x faster than CLO, CL2 achieved the same branch coverage
with a 5x speed-up, and CL3 demonstrated a 6x faster
achievement. Therefore, enabling all three strategies proved
to be the most effective approach.

Strategy S,. We evaluated the impact of strategy S4 (i.e.,
grammar-based mutation). In ProFTPD, PureFTPD, Exim, and
forked-daapd, CL1 increased the branch coverage by 2.4% to
6.7%. However, in the remaining two subjects Live555 and
Kamailio, although CL1 also improved the branch coverage,
it only increased by 0.28% and 0.60%, respectively. Upon
investigating the implementations of these two subjects, we
discovered that their implementations do not strictly adhere to
the message grammar. The messages with missing or incorrect
header fields can still be accepted by their servers.

Strategy Sp. When compared to CL1, which only enabled
strategy S4, we observed the contribution of strategy Sp. On
average, enabling the strategy led to 0.82% more branches
covered. Strategy Sp significantly increased branch coverage
in Live555, ProFTPD, and Kamilio by 1.21% to 1.64%,
while it only increased branch coverage by about 0.03% to

12

0.26% in the other three subjects. For the latter three subjects,
PROFUZZBENCH included nearly all types of client requests;
therefore, there is not much chance to increase seed diversity.

Strategy S¢. When comparing CL3 to CL2, we can
observe that enabling strategy S¢ significantly increased the
branch coverage by 0.69% to 4.78%. Specifically in ProFTPD
and Kamailio, strategy Sc helps increase 2.72% and 4.78%
branch coverage, respectively.

Overall, every strategy contributes to varying degrees of
improvement in branch coverage. Enabling strategies S4,
Sp, and Sc one by one allows us to achieve the same
branch coverage 2.0, 4.6, and 6.1 times faster, respectively.

RQ.4 Discovering New Bugs

In this experiment, we evaluate the utility of CHATAFL by
checking whether it is able to discover zero-day bugs in our
subject programs. For this purpose, we utilized CHATAFL on
the latest versions of our subjects, running 10 repetitions over
24 hours. In the course of the experiment, CHATAFL produced
promising results, as demonstrated in Table VII.

A total of nine (9) unique and previously unknown vul-
nerabilities were discovered by CHATAFL, despite extensive
testing conducted by AFLNET and NSFuzz. Vulnerabilities
were found in three of the six tested implementations and
encompass various types of memory vulnerabilities, including
use-after-free, buffer overflow, and memory leaks. Moreover,
these bugs have potential security implications that can result
in remote code execution or memory leakage. We reported
these bugs to the respective developers. Out of the 9 bugs, 7
have been confirmed by the developers, and 3 have already

Table VII. Statistics of 9 zero-day vulnerabilities discovered by CHATAFL in widely-used and extensively-tested protocol subjects.

ID|Subject Version |Bug Description Potential Security Issue|Status

1 |Live555 2023.05.10|Heap use after free in handling PLAY client requests Remote code execution |CVE-requested, fixed
2 |Live555 2023.05.10|Heap use after free in handling SETUP client requests Remote code execution |CVE-requested, fixed
3 |Live555 2023.05.10|Use after return in handling DESCRIBE client requests Remote code execution |[CVE-requested

4 |Live555 2023.05.10|Use after return in handling SETUP client requests Remote code execution |CVE-requested

5 |Live555 2023.05.10|Heap buffer overflow in handling stream Remote code execution |[CVE-requested

6 |Live555 2023.05.10|Memory leaks after allocating memory for stream parameters Memory leakage Reported

7 |[Live555 2023.05.10|Heap use after free in calling RTPInterface::sendDataOverTCP Remote code execution |CVE-requested

8 |ProFTPD 61e62le |Heap buffer overflow while parsing FTP commands Remote code execution |CVE-requested, fixed
9 |Kamailio a220901 |Memory leaks after allocating memory in parsing config files Memory leakage Reported

been fixed by now (the time of paper submission). We have
requested CVE IDs for the confirmed bugs.

We utilized AFLNET and NSFUzz to detect these 9 vulner-
abilities. Both AFLNET and NSFuzz were configured with
the same subject versions to run an equal duration (i.e., 10
repetitions over 24 hours) as CHATAFL. However, AFLNET
was only able to discover three of them (i.e., bugs #5, #6, and
#9), and NSFuzz was able to discover four of them (i.e., bugs
#5, #6, #7, and #9). In addition, AFLNET and NSFuzz did
not find any additional bugs.

To understand the contributions of the LLM guidance,
we conducted a more detailed investigation of Bug #1, a
heap-use-after-free vulnerability. This bug occurs when the
allocated memory for the usage environment of a particular
track is deallocated during processing PAUSE client requests.
Subsequently, this memory is overwritten upon receiving the
PLAY client request, leading to a heap-use-after-free issue.

In order to trigger this bug, it is necessary to involve several
types of client requests: SETUP, PLAY, and PAUSE. However,
the PAUSE client requests were not included in the initial
seeds used in previous works. While it is theoretically possible
for fuzzers to generate such client requests, it is unlikely. We
examined all the seeds generated by AFLNET and NSFuzz
in our experiments and found that none of them produced the
PAUSE client requests in any of the runs. However, CHATAFL
prompts the LLM to add the PAUSE client requests during the
enrichment of the initial seeds (cf. Section IV-B).

Once the required client requests are available, triggering
this bug necessitates sending specific messages to the server
that cover particular states and state transitions. Specifically,
these messages should cover three states as shown in Fig-
ure 2: INIT, READY, and PLAY. Additionally, several state
transitions need to be covered: INIT — READY, READY —
PLAY, PLAY — READY, and then READY — PLAY again.
The fuzzer itself has the potential to cover these states and
state transitions with diverse seeds. Additionally, the LLM can
provide guidance to the fuzzer in order to cover them. For
instance, during the PLAY states, the LLM can generate the
next client request, PAUSE, to execute the PLAY — READY
transition (cf. Section IV-C).

Lastly, we should not ignore the contribution of structure-
aware mutation. To trigger this bug, a minimal message

13

sequence is required: SETUP — PLAY — PAUSE — PLAY.
Omitting any of these messages will render the bug untrig-
gerable. Existing mutation-based fuzzers, with their structure-
unaware mutation approach, have a high likelihood of breaking
the message structures and rendering them invalid. In contrast,
by utilizing the grammar derived from the LLM, structure-
aware mutation efficiently maintains the validity of messages.

CHATAFL discovered 9 distinct, previously unknown bugs
while AFLNET and NSFuzz only discovered 3 and 4 of
those, respectively. AFLNET and NSFuzz did not find
any additional bugs, either. Seven of the nine bugs (7/9)
are potentially security-critical.

Experience on Manual Effort

During the CHATAFL’s usage, no manual effort was needed
to run the experiments for all protocols shown in Table II.
Specifically, when extracting grammar from the LLM, we
utilize the prompt shown in Figure 6. During protocol testing,
only the protocol name (e.g., RTSP) in the Instruction part
is changed. Under Desired Format, Shot-1 and Shot-2 serve
as examples for the LLM to print the grammar in the given
machine-readable structure so that CHATAFL can parse the
printed grammar. We spent an hour obtaining these exemplary
shots, but this setup is a one-time effort; subsequent testing
of other protocols requires no additional manual effort. With
the grammar obtained from the LLM, the structure-aware
mutations are fully automatic (cf: Section IV-A).

To enrich initial seeds, we utilize the prompt template in
Figure 8. The entire prompt is automatically generated from
this prompt template when utilizing CHATAFL for protocol
testing. The protocol name and an existing message sequence
are automatically pasted into this template. In addition, the
names for the message types under generation are sourced
from the model output in Figure 6. In soliciting the LLM’s
assistance to overcome coverage plateaus, we generate the
complete prompt using the template in Figure 9. Therefore,
there is no manual effort needed to utilize CHATAFL.

CHATAFL is designed to test text-based protocols with
publicly available RFCs. The specifications for most protocols
are documented in these publicly available RFCs, which are
included as training data for the LLM. However, for certain

proprietary protocols, whose RFCs are not included in the
LLM training data, CHATAFL may not perform optimally
when testing them.

VII. RELATED WORK

Grammar-based fuzzing: Generation-based fuzzing gener-
ates messages from scratch based on manually constructed
specifications [30], [8], [6], [7], [31], [32]. These specifications
typically include a data model and a state model. The data
model describes the message grammar, while the state model
specifies the message order between servers and clients. How-
ever, constructing these specifications can be a laborious task
and requires large human efforts. In contrast, large language
models (LLMs) are pre-trained on billions of documents and
possess extensive knowledge about protocol specifications. In
CHATAFL, we leverage LLMs directly to obtain specification
information, eliminating the need for additional manual efforts.

Dynamic Message Inference: To reduce the reliance on
prior knowledge and manual work before fuzzing, several
existing works have been proposed to dynamically infer mes-
sage structures, including blackbox fuzzers [33], [34] and
whitebox fuzzers [35], [36], [37]. Blackbox fuzzers such as
TREEFUZZ [34] employ machine learning techniques over
the seed corpus to construct probabilistic models that are
subsequently used for input generation. Whereas the whitebox
fuzzers, such as POLYGLOT [35], extract the message structure
through dynamic analysis techniques over systems under test,
such as symbolic execution and taint tracking. However, these
approaches can only infer message structures based on the
observed messages. As a result, the inferred structure may
deviate significantly from the actual message structures.

Dynamic State Inference: Mutation-based fuzzing is one
of the primary categories within fuzzing protocol implemen-
tations. Mutation-based fuzzers [38], [39], [18], [28], [40],
[41], [42] generate new inputs by randomly mutating existing
seeds selected from a corpus of seed inputs and utilize
coverage information to systematically evolve this corpus.
Guided by branch coverage feedback, they have been proven
to be effective in fuzzing stateless programs. However, when
fuzzing stateful programs, branch coverage alone is a useful
but insufficient metric for guiding the fuzzing campaign as
elucidated in existing works [43]. Therefore, state coverage
feedback is employed to work with branch coverage to guide
the fuzzing campaign. However, identifying states presents
a significant challenge. A series of works [3], [1], [4], [2]
proposes various state representation schemes. AFLNET [1]
utilizes the response code as states, constructs a state machine
during the fuzzing campaign, and employs it as state-coverage
guidance. STATEAFL [4], SGFuzz [3], and NSFuzz [2] pro-
pose distinct state representation schemes based on program
variables. In this paper, we do not attempt to answer what
states are. Instead, we delegate this task to the LLM, allowing
it to infer states. This approach has proven effective.

Fuzzing based on Large Language Models: Following
the remarkable success of pre-trained large language mod-
els (LLMs) in various natural language processing tasks,

14

researchers have been exploring their potential in diverse
domains, including in fuzzing. For instance, CODAMOSA [44]
was the first to apply LLMs to fuzzing (i.e., the automatic gen-
eration of test cases for Python modules). Later, TITANFUZZ
[45] and FuzzGPT [46] used an LLM to automatically gener-
ate test cases for Deep Learning software libraries, specifically.
While these works were taking a generational approach to
fuzzing, CHATFUZZ [23] takes a mutational one by asking
the LLM to modify human-written test cases. Ackerman et al.
[47] leverages the ambiguity of format specifications and
employs the LLM to recursively examine a natural language
format specification to generate instances for use as strong
seed examples to a mutation fuzzer. In contrast to these
techniques, CHATAFL separates the information extraction
from the fuzzing. CHATAFL first extracts information about
the structure and order of inputs from the LLM in machine-
readable format (i.e., via grammars and state machines) before
running a highly efficient fuzzer that is fed with this informa-
tion. For efficiency, CHATAFL uses the LLM for a mutational
approach (similar to CHATFUZZ) only whenever the coverage
saturates during fuzzing.

VIII. CONCLUSION

Protocol fuzzing is an inherently difficult problem. As
compared to file processing applications, where the inputs to
be fuzzed are given as file(s), protocols are typically reactive
systems that involve sustained interaction between system and
environment. This poses two separate but related challenges: a)
to explore uncommon deep behaviours leading to crashes, we
may need to generate complex sequences of valid events and
b) since the protocol is stateful, this also implicitly involves
on-the-fly state inference during fuzz campaign (since not all
actions may be enabled in a state). Moreover, the effectiveness
of fuzzing heavily depends on the quality of the initial seeds,
which serve as the foundation for fuzzing generation.

In this work, we have demonstrated that for protocols
with publicly available RFCs, LLMs prove to be effective in
enriching initial seeds, enabling structure-aware mutation, and
aiding in state inference. We evaluated CHATAFL on a wide
range of protocols from the widely-used PROFUZZBENCH
suite. The results are highly promising: CHATAFL covered
more code and explored larger state space in significantly less
time compared to the baseline tools. Furthermore, CHATAFL
found 9 zero-day vulnerabilities, while the baseline tools only
discovered 3 or 4 of them.

ACKNOWLEDGMENT

This research is supported by the National Research Foun-
dation, Singapore, and Cyber Security Agency of Singapore
under its National Cybersecurity R&D Programme (Fuzz
Testing NRF-NCR25-Fuzz-0001). Any opinions, findings and
conclusions, or recommendations expressed in this material are
those of the author(s) and do not reflect the views of National
Research Foundation, Singapore, and Cyber Security Agency
of Singapore.

[1

—

[2

—

[3]

[4

=

[5

[ty

[6

=

[8]
[9]

[10]

(11]

(12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

V. Pham, M. Bohme, and A. Roychoudhury, “Aflnet: A greybox fuzzer
for network protocols,” in Proceedings of the 13th IEEE International
Conference on Software Testing, Verification and Validation: Testing
Tools Track. New York: IEEE, 2020.

S. Qin, E. Hu, Z. Ma, B. Zhao, T. Yin, and C. Zhang, “Nsfuzz: Towards
efficient and state-aware network service fuzzing,” ACM Transactions
on Software Engineering and Methodology, 2023.

J. Ba, M. Bohme, Z. Mirzamomen, and A. Roychoudhury, “Stateful
greybox fuzzing,” in Proceedings of the 31st USENIX Security Sympo-
sium. USENIX Association, 2022, pp. 3255-3272.

R. Natella, “Stateafl: Greybox fuzzing for stateful network servers,”
Empirical Software Engineering, vol. 27, no. 7, p. 191, 2022.

R. Natella and V.-T. Pham, “Profuzzbench: A benchmark for stateful
protocol fuzzing,” in Proceedings of the 30th ACM SIGSOFT interna-
tional symposium on software testing and analysis. ACM, 2021, pp.
662-665.

D. Aitel, “The advantages of block-based protocol analysis for security
testing,” Immunity Inc., February, vol. 105, p. 106, 2002.

Jtpereyda, “Boofuzz: A fork and successor of the sulley fuzzing
framework.” [Online]. Available: https://github.com/jtpereyda/boofuzz
M. Eddington, “Peach fuzzer platform.” [Online]. Available: https:
//gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877-1901, 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi,
S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer,
V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury,
J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghe-
mawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fe-
dus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov,
R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai,
M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee,
Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei,
K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel, “Palm:
Scaling language modeling with pathways,” 2022.

R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T.
Cheng, A. Jin, T. Bos, L. Baker, Y. Du et al., “Lamda: Language models
for dialog applications,” arXiv preprint arXiv:2201.08239, 2022.
OpenAl, “Gpt-4 technical report,” 2023.

Z. Fan, X. Gao, A. Roychoudhury, and S. H. Tan, “Automated
repair of programs from large language models,” arXiv preprint
arXiv:2205.10583, 2022.

N. Jain, S. Vaidyanath, A. Iyer, N. Natarajan, S. Parthasarathy, S. Ra-
jamani, and R. Sharma, “Jigsaw: Large language models meet program
synthesis,” in Proceedings of the 44th International Conference on
Software Engineering, 2022.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, 1. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,
M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew,
D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating
large language models trained on code,” 2021.

S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Ka-
mar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T.
Ribeiro, and Y. Zhang, “Sparks of artificial general intelligence: Early
experiments with gpt-4,” 2023.

V.-T. Pham, M. Bohme, A. E. Santosa, A. R. Céciulescu, and A. Roy-
choudhury, “Smart greybox fuzzing,” IEEE Transactions on Software
Engineering, vol. 47, no. 9, pp. 1980-1997, 2021.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436444, 2015.

15

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

S. Sun, Y. Liu, D. Iter, C. Zhu, and M. Iyyer, “How does in-context
learning help prompt tuning?” arXiv preprint arXiv:2302.11521, 2023.
X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdh-
ery, and D. Zhou, “Self-consistency improves chain of thought reasoning
in language models,” in Proceedings of the 11th International Confer-
ence on Learning Representations, 2023.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou,
“Chain of thought prompting elicits reasoning in large language models,”
arXiv preprint arXiv:2201.11903, 2022.

J. Hu, Q. Zhang, and H. Yin, “Augmenting greybox fuzzing with
generative ai,” arXiv preprint arXiv:2306.06782, 2023.

G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 25th ACM SIGSAC Conference on
Computer and Communications Security, 2018.

M. Bohme, L. Szekeres, and J. Metzman, “On the reliability of coverage-
based fuzzer benchmarking,” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE °22, 2022, pp. 1-13.
A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al.,
“Language models are unsupervised multitask learners,” OpenAl blog,
vol. 1, no. 8, p. 9, 2019.

S. Schumilo, C. Aschermann, A. Jemmett, A. Abbasi, and T. Holz,
“Nyx-net: network fuzzing with incremental snapshots,” in Proceedings
of the 17th European Conference on Computer Systems, 2022, pp. 166—
180.

“libfuzzer — a library for coverage-guided fuzz testing,” LLVM.
[Online]. Available: https://llvm.org/docs/LibFuzzer.html

A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software
Testing, Verification and Reliability, vol. 24, no. 3, pp. 219-250, 2014.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.
1486

J. Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,” Cybersecurity, vol. 1,
no. 1, pp. 1-13, 2018.

H. J. Abdelnur, R. State, and O. Festor, “Kif: a stateful sip fuzzer,” in
Proceedings of the Ist international Conference on Principles, Systems
and Applications of IP Telecommunications, 2007, pp. 47-56.

G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, and
G. Vigna, “Snooze: toward a stateful network protocol fuzzer,” in
Proceedings of the 9th International conference on information security,
vol. 4176. Springer, 2006, pp. 343-358.

C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,” in
Proceedings of the 21st USENIX Security Symposium, 2012, pp. 445—
458.

J. Patra and M. Pradel, “Learning to fuzz: Application-independent
fuzz testing with probabilistic, generative models of input data,” TU
Darmstadt, Department of Computer Science, Tech. Rep. TUD-CS-2016-
14664, 2016.

J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: Automatic
extraction of protocol message format using dynamic binary analysis,”
in Proceedings of the 14th ACM conference on Computer and commu-
nications security, 2007, p. 317-329.

W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz, “Tupni:
Automatic reverse engineering of input formats,” in Proceedings of the
15th ACM conference on Computer and communications security, 2008,
p. 391-402.

Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic protocol format
reverse engineering through context-aware monitored execution.” in
Proceedings of the 16th Annual Network & Distributed System Security
Symposium, vol. 8, 2008, pp. 1-15.

M. Zalewski, “Afl.” [Online]. Available: https://Ilcamtuf.coredump.cx/afl/
M. Bohme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 24th ACM SIGSAC Conference
on Computer and Communications Security, 2017, pp. 2329-2344.

A. Fioraldi, D. Maier, H. Eififeldt, and M. Heuse, “AFL++: Combining
incremental steps of fuzzing research,” in Proceedings of the 14th
USENIX Workshop on Offensive Technologies, 2020.

S. Schumilo, C. Aschermann, A. Abbasi, S. Worner, and T. Holz, “Nyx:
Greybox hypervisor fuzzing using fast snapshots and affine types.” in
Proceedings of the 29th USENIX Security Symposium, 2021, pp. 2597—
2614.

A. Andronidis and C. Cadar, “Snapfuzz: high-throughput fuzzing of
network applications,” in Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2022, pp.
340-351.

https://github.com/jtpereyda/boofuzz
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce
https://llvm.org/docs/LibFuzzer.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1486
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1486
https://lcamtuf.coredump.cx/afl/

[43]

[44]

[45]

[46]

(471

C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz, “Ijon: Explor-
ing deep state spaces via fuzzing,” in Proceedings of the 41st IEEE
Symposium on Security and Privacy. 1EEE, 2020, pp. 1597-1612.

C. Lemieux, J. Priya Inala, S. K. Lahiri, and S. Sen, “Codamosa:
Escaping coverage plateaus in test generation with pre-trained large
language models,” in Proceedings of the 45th International Conference
on Software Engineering, 2023.

Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large language
models are zero-shot fuzzers: Fuzzing deep-learning libraries via large
language models,” in Proceedings of the 32nd ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, 2023.

Y. Deng, C. S. Xia, C. Yang, S. D. Zhang, S. Yang, and L. Zhang,
“Large language models are edge-case fuzzers: Testing deep learning
libraries via fuzzgpt,” arXiv preprint arXiv:2304.02014, 2023.

J. Ackerman and G. Cybenko, “Large language models for fuzzing
parsers (registered report),” in Proceedings of the 2nd International
Fuzzing Workshop, 2023, pp. 31-38.

16

APPENDIX A
ARTIFACT APPENDIX

CHATAFL is a protocol fuzzer guided by large language
models (LLMs). This artifact contains the source code of
CHATAFL and all the subjects utilized in the experimental
sections of the paper. This document outlines the steps to
retrieve the artifact and provides guidance on using it to
reproduce the experiments.

A. Description & Requirements

In this section, we introduce how to obtain the artifact,
including fuzzers and benchmarks, along with the software
and hardware requirements to run it.

1) How to access: We provide public access to our code
and experiment setups through the following Zenodo link:

https://zenodo.org/record/10115151
You can also access it in Github:
https://github.com/ChatAFLndss/ChatAFL

The artifact is licensed under the Apache License 2.0.

2) Hardware dependencies: For a single execution of
CHATAFL on a subject, standard commodity machines are
sufficient to meet our requirements. These machines should
have a minimum of a 1-core CPU, 8GB RAM, and a 32GB
hard drive. However, when simultaneously running multiple
fuzzing sessions, it is necessary to ensure that each fuzzing
instance receives similar resource allocations.

3) Software dependencies: For running the artifact, a work-
ing Docker installation is required. The fuzzers execute
within Docker containers, but they are controlled by scripts
running outside the container on the host system. All scripts
on the host system are tested on Ubuntu 20.04. How-
ever, they are expected to work on any Linux distribu-
tion. To run these scripts successfully, the host machines
should have Python-3 installed along with the pandas and
matplotlib libraries.

4) Benchmarks: All the benchmarks required for evaluation
are located within the benchmark directory of the Zenodo
and Github repository.

B. Artifact Installation & Configuration

We now set up the artifact, and the entire process is
estimated to take 40 minutes.
(1) Download the artifact from Github:

$ git clone https://github.com/ChatAFLndss/
ChatAFL.git

(2) Set OpenAl API Key:

$ export KEY=<OPENAT_API_KEY>
We require users to use their own OpenAl API key here.
(3) Install the dependencies Docker and Python-3 along

with the pandas and matplotlib required on the host
machine:

$ cd ChatAFL && ./deps.sh

(4) Set up the docker image for each subject with all fuzzers:

17

$./setup.sh

After these, no further configuration is needed, and we
can proceed with a basic run to verify that everything is
functioning correctly. For example, to use CHATAFL for
fuzzing pure-ftpd for a duration of 5 minutes in a single
run, we execute the following command:

$./run.sh 1 5 pure-ftpd chatafl

This command encompasses instructions for running the
fuzzer and collecting data. Once this process is completed
(approximately 5 minutes later), we will observe the output
in the same terminal:

$ <FUZZER>: I am done!

Then we can locate the results—-pure—ftpd folder, hous-
ing the fuzzing results, in the benchmark directory.

C. Experiment Workflow

Our experiments consist of two primary phases: (1) execut-
ing fuzzers on subjects to gather data, and (2) analyzing this
data to compare the performance of CHATAFL with that of
baseline tools.

1) Gather code and state coverage: We leverage the fol-
lowing command to run fuzzers on subjects:

$

./run.sh <container_number> <fuzzed_time>
<subjects> <fuzzers>

Where container_number specifies how many containers
are created to run a single fuzzer on a particular subject (each
container runs one fuzzer on one subject). fuzzed_time
indicates the fuzzing time in minutes. subjects is the list
of subjects under test, and fuzzers is the list of fuzzers
that are utilized to fuzz subjects. For example, the command
above (run.sh 1 5 pure-ftpd chatafl) would cre-
ate 1 container for the fuzzer CHATAFL to fuzz the subject
pure-ftpd for 5 minutes.

Once the allocated time reaches, the fuzzer is terminated,
and the data is subsequently gathered. The data gathered
from the fuzzing campaign (i.e., code and state coverage,
seed corpus, generated grammar corpus, stall messages, and
enriched seeds) are archived and compressed. This archive is
then extracted from the container and placed into a host folder
results—-<subject> in the benchmark directory.

2) Analyze data: After all data is gathered, the script
analyze.sh can be employed to construct plots illustrating
the average code and state coverage over time for fuzzers
on each subject. The script is executed using the following
command:

$

./analyze.sh <subjects> <fuzzed_time>

The script takes in 2 arguments - the list of subjects
under test and the duration of the run to be analyzed.
For example, executing the command (./analyze.sh
pure—ftpd 240) generates plots illustrating state and
code coverage over 240 minutes for fuzzers running
on pure-ftpd. The command processes the results fold-
ers, producing cov_over_time_<subject>.png and
state_over_time_<subject>.png visualizations.

https://zenodo.org/record/10115151
https://github.com/ChatAFLndss/ChatAFL

Finally, after completing the evaluation, we can execute the
clean. sh script to remove all docker containers and images
from the system, leaving only the artifact folder.

D. Major Claims

o CIl: CHATAFL covers more states and achieves the same
state coverage faster than baselines. This is proven by
experiment (E1), whose results are reported in [Table III
and Table IV].

C2: CHATAFL covers more code and achieves the same
code coverage faster than baselines. This is proven by
experiment (E1), whose results are reported in [Table V].
C3: Each strategy proposed in the paper contributes to
varying degrees of improvement in code coverage. This
is proven by experiment (E2), whose results are reported
in [Table VI].

E. Evaluation

To conduct the experiments outlined in the paper, we
utilized a vast amount of resources. We executed a 24-hour
fuzzing session using 5 fuzzers on 6 subjects, each iterated 10
times. Consequently, it is impractical to replicate all the exper-
iments within a single day using a standard desktop machine.
To facilitate the evaluation of the artifact, we downsized our
experiments, employing fewer fuzzers, subjects, and iterations.

1) Experiment (EI): [Improvement of state and code cov-
erage] [5 human-minutes + 180 compute-hours]: CHATAFL
outperforms AFLNET in state coverage and code coverage
(present results for claims C1 and C2).

[How to] Run two fuzzers, CHATAFL and AFLNET, on
the three subjects kamailio, pure—-ftpd, and 1ive555,
respectively, iterating the process 5 times. Each execution takes
place within a container and spans a duration of 360 minutes.
Consequently, this experiment involves a total of 30 containers,
with each container running fuzzing for 240 minutes and
coverage collection for 120 minutes.

[Preparation] Ensure that the artifact installation is com-
plete, meaning setup.sh has been executed.

[Execution] Execute the following commands:

$./run.sh 5 240 kamailio,pure-ftpd, live555
chatafl,aflnet
$./analyze.sh kamailio,pure-ftpd, live555 240

[Results] Upon completion of the commands, a folder
prefixed with res_ will be generated. This folder contains
PNG files illustrating the state and code covered by two fuzzers
over time as well as the output archives from all the runs. It
will be placed in the root directory of the artifact.

2) Experiment (E2): [Ablation Study] [5 human-minutes +
180 compute-hours]: Each strategy in CHATAFL contributes
to enhancing code coverage (present results for the claim C3).

[How to]: Run the CHATAFL fuzzer and two different
ablations - CHATAFL-CL1, CHATAFL-CL2, over the two
subjects proftpd and exim, respectively, iterating the pro-
cess 5 times. Each execution takes place within a container
and spans a duration of 360 minutes. Consequently, this ex-
periment involves a total of 30 containers, with each container

18

running fuzzing for 240 minutes and coverage collection for
120 minutes.

[Preparation] Ensure that the artifact installation is com-
plete, meaning setup.sh has been executed.

[Execution] Execute the following commands:

$./run.sh 5 240 proftpd,exim chatafl,chatafl-
cll,chatafl-cl2
$./analyze.sh proftpd,exim 240

[Results] Upon completion of the commands, a folder
prefixed with res_ will be generated. This folder contains
PNG files illustrating the code covered by three fuzzers over
time as well as the output archives from all the runs. It will
be placed in the root directory of the artifact.

F. Customization

We have the flexibility to choose the fuzzers for compar-
isons and the subjects to undergo fuzzing. Additionally, we
can define the fuzzing duration and extend our benchmarks
by incorporating new subjects. For instance, we included a
new subject, Lighttpdl, in our benchmarks.

	Introduction
	Background and Motivation
	Protocol Fuzzing
	Large Language Models

	Case Study: Testing the Capabilities of LLMs for Protocol Fuzzing
	Lifting Message Grammars: Quality and Diversity
	Enriching the Seed Corpus: Diversity and Validity
	Inducing Interesting State Transitions

	LLM-Guided Protocol Fuzzing
	Grammar-guided Mutation
	Grammar Extraction
	Mutation based on Grammar

	Enriching Initial Seeds
	Surpassing Coverage Plateau
	Implementation

	Experimental Design
	Configuration Parameters
	Benchmark and Baselines
	Variables and Measures
	Experimental Infrastructure

	Experimental Results
	Related Work
	Conclusion
	References
	Appendix A: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Gather code and state coverage
	Analyze data

	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)

	Customization

