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ABSTRACT
Fuzzing is a widely used automated testing technique that uses

random inputs to provoke program crashes indicating security

breaches. A difficult but important question is when to stop a

fuzzing campaign. Usually, a campaign is terminated when the

number of crashes and/or covered code elements has not increased

over a certain period of time. To avoid premature termination when

a ramp-up time is needed before vulnerabilities are reached, code

coverage is often preferred over crash count to decide when to

terminate a campaign. However, a campaign might only increase

the coverage on non-security-critical code or repeatedly trigger

the same crashes. For these reasons, both code coverage and crash

count tend to overestimate the fuzzing effectiveness, unnecessarily

increasing the duration and thus the cost of the testing process.

The present paper explores the tradeoff between the amount

of saved fuzzing time and number of missed bugs when stopping

campaigns based on the saturation of covered, potentially vulner-

able functions rather than triggered crashes or regular function

coverage. In a large-scale empirical evaluation of 30 open-source

C programs with a total of 240 security bugs and 1,280 fuzzing

campaigns, we first show that binary classification models trained

on software with known vulnerabilities (CVEs), using lightweight

machine learning features derived from findings of static applica-

tion security testing tools and proven software metrics, can reliably

predict (potentially) vulnerable functions. Second, we show that

our proposed stopping criterion terminates 24-hour fuzzing cam-

paigns 6–12 hours earlier than the saturation of crashes and regular

function coverage while missing (on average) fewer than 0.5 out of

12.5 contained bugs.

CCS CONCEPTS
• Security and privacy→ Software security engineering.
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1 INTRODUCTION
Context. Fuzz testing, aka fuzzing [51, 57], is a dynamic security

testing technique with great success over the past decade in finding

software vulnerabilities [61], especially in programs written in a

bug-prone programming language like C. For instance, Google

performs fuzzing at a very large scale (100 k+ CPU cores) on their

continuous fuzzing platform OSS-Fuzz [66] to secure widespread

open-source projects. OSS-Fuzz has reported over 40.5 k bugs in

650 codebases within the last seven years [10]. The idea of fuzzing

is simple: generate numerous random inputs (mechanized by so-

called fuzzers), feed them into a target program, and then observe

whether it crashes. Certain program crashes enable the execution of

malicious code, leakage of sensitive data, or provocation of denial-

of-service, and are therefore considered security vulnerabilities.

A barely studied area in fuzzing involves criteria that allow for

a more informed decision about when to stop a specific fuzzer exe-

cution on a target program (i.e., fuzzing campaign). Since security-

related software bugs are usually very sparse in programs [48, 60,

81] and thus large parts of the fuzzing resources are wasted on

non-security-critical source code, inaccurate stopping criteria can

easily lead to unnecessarily lengthy campaigns [16]. Hence, better

fuzzing stopping criteria would enable considerable time, hardware,

and energy savings, as well as more effective scheduling of fuzzer

ensembles [20] when run with a fixed time or hardware budget.

In summary, improving the stopping criteria would enhance the

economically and environmentally
1
sustainability of fuzzing.

State-of-Practice. A fuzzing campaign is usually stopped when no

progress is observed over a certain period of time, measured by the

number of triggered crashes or covered code elements (e.g., state-
ments, basic blocks, or functions). To avoid premature termination

of campaigns that need some time to reach vulnerable code, code

coverage is often preferred in practice. However, both code coverage

and crash count tend to overestimate the fuzzing effectiveness [39]

(as discussed in Section 2). Consequently, a fuzzing campaign is

kept alive even when it produces crashes with the same underlying

1
Initiative for sustainable digital infrastructure: https://sdialliance.org/roadmap
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Figure 1: Examples of under- and overestimation of fuzzing
effectiveness by crash count (top right and bottom left) and
overestimation by regular function coverage (bottom right).

vulnerability or increases the coverage of non-security-critical code,

respectively code that contains vulnerabilities that cannot be found

via fuzzing in the first place. These expended time and hardware

resources, if saved, could be invested in other security testing ef-

forts (such as static application security testing or manual code

inspections) to detect further vulnerabilities more efficiently [76].

Hypothesis and Approach. This study hypothesizes that valu-

able time resources can be saved with a low risk of missing bugs

by stopping fuzzing campaigns as soon as they stagnate on the

potentially vulnerable code regions. Such regions contain at least

one critical instruction that can cause a security violation if used

improperly; for example, a call to the memcpy function.

The proposed strategy is implemented as follows: (1) before

fuzzing, the target program is statically scanned for potentially vul-

nerable source code; (2) during fuzzing, the intersection between

the potentially vulnerable code regions and those previously cov-

ered by the fuzz inputs is calculated; (3) the campaign is terminated

if the set of covered potentially vulnerable code regions has not

increased for a certain time period. Otherwise, the strategy returns

to step 2 after a short timeout. So we are proposing a criterion with

a better cost-effectiveness, defined as the amount of saved fuzzing

time versus number of missed bugs, than saturation of crashes or

regular code coverage.

Empirical Evaluation. This study explores the cost-effectiveness

tradeoff of our approach for programs written in the C language.

To this end, we first combine proven static vulnerability indicators

(static application security testing (SAST) tools and software met-

rics) into a vulnerability prediction model using machine learning

(ML), which identifies potentially vulnerable code at the function

level.We thereby train and evaluate five differentMLmodels—based

on logistic regression, decision trees, and neural networks—on 22

open-source programs (44 k+ functions) with a total of 121 known

vulnerable functions, extracted from Common Vulnerabilities and

Exposures (CVE) reports. Second, we analyze the abovementioned

tradeoff in an empirical evaluation of eight subject programs (dis-

joint from the ML training set) with another 119 security bugs,

eight state-of-the-art greybox fuzzers, and 20 campaign repetitions

(i.e., 1,280 fuzzing campaigns), each running for 24 hours.

Contributions. This paper presents the following contributions:

⋆ We posit and validate our hypothesis that valuable resources
can be saved while maintaining bug finding effectiveness by

stopping fuzzing campaigns once they stagnate on the poten-

tially vulnerable code.

⋆ We conduct an in-depth analysis of 25 vulnerability indicators

(ML features) derived from SAST-tool findings and software

metrics, showing that when combined via machine learning,

the resulting model(s) can effectively discriminate between

vulnerable and non-vulnerable functions (average ROC–AUC

scores of ~0.8; see Section 5.1).

⋆ We show in a large-scale empirical evaluation that when ter-

minating 24-hour fuzzing campaigns based on the saturation

of covered potentially vulnerable functions instead triggered

crashes or regular function coverage, 6–12 hours of fuzzing

can be saved, while missing fewer than 0.5 out of 12.5 bugs on

average (see Section 5.2).

⋆ We release all training and evaluation data, including the analy-
sis script and machine-learned vulnerability prediction models

to foster open science (see Section 10).

2 MOTIVATION
Using the number of crashes as an indicator of fuzzing effectiveness

is very prone to under- or overestimation [39]. Further, this can

lead to missed bugs or unnecessarily long campaigns when used

as a saturation-based stopping criterion. As code coverage reduces

the risk of underestimation, it is often preferred in practice. How-

ever, code coverage also tends to overestimate the effectiveness of

fuzzing campaigns because it assumes equal importance of each

code location. Hereafter, we discuss the shortcomings of these two

stopping criteria in concrete fuzzing campaigns and theoretically

demonstrate how our approach mitigates them.

Saturation of Crashes. Crash saturation can be a good fuzzing

stopping criterion if the course of the triggered crashes resembles

that of the unique bugs. However, it becomes inaccurate when the

fuzzing campaign (1) triggers crashes very late or (2) repeatedly

generates crashes for the same underlying bug(s) in the code. Sce-

nario (1) is evident in the top left graph of Fig. 1, where FairFuzz

has not triggered a single crash for almost 18 hours. Here, the cam-

paigns would be terminated prematurely, resulting in several bugs

being overlooked. Scenario (2) is demonstrated in the bottom left

graph, which shows that AFLSmart found all detectable bugs in

nm within ~16 hours of fuzzing, while the number of crashes con-

tinued to increase for approximately seven hours thereafter. The

large number of triggered crashes can create a false sense of fuzzing

progress, leading to unnecessarily long campaigns when used as

orientation to stop fuzzing.

Saturation of Code Coverage. Code coverage is therefore often
used as a (complementary) measure to allow for a more informed de-

cision about when to stop fuzzing. Returning to our size-FairFuzz
example, we find that although the campaigns triggered no crashes
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within the first ~18 hours of fuzzing, they constantly increased

the function coverage until they reached the vulnerable parts of

the program. Meanwhile, when nm was fuzzed with AFLSmart,

the campaigns began to saturate on the same functions around

the same time all detectable bugs were found, thus providing a

more accurate feedback about their effectiveness. In summary, us-

ing code-coverage saturation as the stopping criterion for fuzzing

campaigns can help avoid missing bugs and conserve fuzzing time.

However, as mentioned earlier, code coverage tends to overes-

timate the effectiveness of fuzzing. More specifically, a campaign

that increases the code coverage is considered as very effective (and

is consequently not terminated) even when no new security-critical

parts in the program have been reached. For example, AFLSmart

found all detectable bugs in size after ~7.5 hours of fuzzing, but

the function coverage continuous to increase on seemingly non-

security-critical functions for an additional ~11.5 hours. To termi-

nate such lengthy fuzzing campaigns much earlier, we propose to

check the coverage saturation of only the potentially vulnerable

code regions (identified by static vulnerability indicators) instead

of all code regions.

. . .

tk+1tktj

Figure 2: Visualization of our hypothesis at fuzzing time
points 𝑡 𝑗 , 𝑡𝑘 , and 𝑡𝑘+1. The gray and blue nodes are newly
covered code regions and the red-outlined nodes represent
potentially vulnerable regions.

Saturation of Covered, Potentially Vulnerable Code. A simpli-

fied example of our hypothesis is illustrated in Fig. 2. The (newly)

covered code regions in a control-flow- or call graph are shown

at three different time points 𝑡 𝑗 , 𝑡𝑘 (with 𝑗 < 𝑘), and 𝑡𝑘+1 within a

fuzzing campaign. In this example, the code coverage increased by

two code regions from 𝑡 𝑗 to 𝑡𝑘 and by one from 𝑡𝑘 to 𝑡𝑘+1, indicat-
ing that the campaign remained active and should not be stopped.

However, the coverage of the potentially vulnerable regions did not

increase at any time point. At 𝑡𝑘 , the fuzzing campaign appeared

to quickly cover the last potentially vulnerable code region (which

may not be reachable from the fuzz entry) but at 𝑡𝑘+1 the campaign

is moving in another direction, covering rather irrelevant code.

Thus, if we use coverage of potentially vulnerable code rather than

regular code coverage as a saturation-based stopping criterion, we

may already end the fuzzing campaign at 𝑡𝑘 or earlier, depending

on the specified duration a campaign must stagnate before it should

be terminated.

3 APPROACH
This section first describes our fuzzing stopping criterion, which

is independent of the selected vulnerability prediction technique.

Section 3.1 instantiates our criterion for a specific code granular-

ity and Section 3.2 presents a concrete approach for predicting

vulnerability that is based on machine learning (ML).

Definition 1 (Fuzzing Proxy Measure). A proxy measure 𝑆 is a

quantitative approximation of the overall effectiveness of a fuzzing

campaign in terms of bug finding. 𝑆 (𝑡) refers to the measured value

after 𝑡 time units in the campaign.

Definition 2 (Saturation Window). A saturation window 𝛿 de-

notes the time period during which the effectiveness of a fuzzing

campaign (measured by a proxy metric 𝑆) must stagnate before the

campaign is allowed to be terminated.

Definition 3 (Saturation-based Stopping Criterion). The criterion

employed to stop fuzzing campaigns can formally be defined as a

triple (𝑆, 𝛿, 𝜖), in which

• 𝑆 denotes the (proxy) measure for quantifying fuzzing effective-

ness,

• 𝛿 the saturation window, and

• 𝜖 the allowable deviation of 𝑆 within 𝛿 .

After 𝑡𝑘 time units, a campaign is stopped if and only if 𝑡𝑘 − 𝑡 𝑗 = 𝛿 ,

where 𝑗 < 𝑘 and 𝑡 𝑗 denotes the time since the campaign began to

stagnate, and 𝑆 (𝑡𝑘 ) − 𝑆 (𝑡 𝑗 ) ≤ 𝜖 .

Let 𝑐 be a fuzzing campaign launched on a target program consist-

ing of the code regions 𝑅 (i.e., statements, basic blocks, or functions).

To check whether a region 𝑟 ∈ 𝑅 was covered within the first 𝑡 time

units of 𝑐 , we define the function covered : 𝑅 ×𝑇 → {true, false},
which returns

covered(𝑟, 𝑡) B


true, if 𝑟 was covered by at least one

fuzz input within 𝑡,

false, otherwise.

(1)

As our approach focuses on the covered code regions that are

potentially vulnerable according to a (static) vulnerability predic-

tion model𝑀 ∈ M, we additionally define the function pot_vuln :

𝑅 ×M → {true, false}. For a given code region 𝑟 ∈ 𝑅, this function

returns

pot_vuln(𝑟, 𝑀) B


true, if 𝑟 contains one or more lines

considered vuln. by𝑀,

false, otherwise.

(2)

An example of a potentially vulnerable C instruction is an un-

guarded array access arr[i] with 𝑖 ∈ N0, where a security-critical
program crash (segmentation fault) may be triggered if 𝑖 exceeds

the array bounds, i.e., 𝑖 ≥ len(arr).

Definition 4 (Coverage of Potentially Vulnerable Code). Given a

vulnerability prediction model 𝑀 , we define the coverage of poten-

tially vulnerable codes as

𝑆 (𝑡, 𝑀) B
card

(
{ 𝑟 | 𝑟 ∈ 𝑅 ∧ covered(𝑟, 𝑡) ∧ pot_vuln(𝑟, 𝑀) }

)
card

(
{ 𝑟 | 𝑟 ∈ 𝑅 ∧ pot_vuln(𝑟, 𝑀) }

)
where card(·) returns the cardinality of the set.

Definition 4 restricts the regular code coverage to only those

covered code regions that were flagged as potentially vulnerable

by the prediction model.
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3.1 Function-Level Coverage
In general, the coverage granularity level (i.e., statements, basic

blocks, or functions) used for our saturation-based criterion to stop

fuzzing campaigns mainly depends on the available ground truth

data for training the vulnerability prediction models (discussed in

Section 3.2). Here, we used a dataset built from CVE reports [44],

which are validated descriptions of security bugs that have been

found in the past. However, the accuracy of these descriptions varies

immensely across different reports [58]. Whereas some reports

pinpoint the exact vulnerable code line(s), others name only the

affected function(s). For this reason, we chose the code granularity

of functions in this study.

3.2 ML-based Vulnerability Prediction
3.2.1 Motivation. Different vulnerability indicators (such as SAST-

tools and software metrics) are differently effective in finding se-

curity bugs [45, 69]. To combine these indicators into a single vul-

nerability prediction model that adequately leverages the strengths

of each indicator, we adopt an ML-based approach. This way, the

model automatically learns the effectiveness of each indicator and

further its weight on the prediction from codebases with known

vulnerabilities. This approach was selected because—especially in

C programs—similar vulnerabilities to those found in the past are

often re-introduced in the source code [1, 79]. Hence, indicators

that have found known vulnerabilities are likely to also find new

ones and should therefore have a stronger impact on the model’s

prediction.

3.2.2 Feature Engineering. The quality of the selected features

greatly affects the performance of the final ML model [23]. Inspired

by Pereira et al. [63], we use 25 function-level ML features that

can semantically be grouped into software metric- and SAST-based

feature classes. We thereby focused to compile a set of lightweight

features that can be easily extracted from the source code using

freely available tools, or already exist as test artifacts (e.g., are gener-
ated whenever a software change is committed), yet are indicative

enough to reliably predict vulnerable code.

Software Metric Features. In general, the features in this class

can be statically computed from the source code.

Heuristic 1: The higher the code complexity of a function, the

more difficult it is to understand, and hence the more likely it is to

introduce vulnerabilities.

• Lines of code (LoC) in a function

• Cyclomatic complexity number of a function (absolute number

and relative to LoC)

Cyclomatic aka McCabe code complexity [53] is computed as

the number of possible linearly independent paths through the

control-flow graph of a function. Various studies [24, 55, 69, 70]

have thereby already shown that code complexity is a good indicator

of vulnerable functions.

Heuristic 2: The more central a function is in terms of incoming

and outgoing function calls, the larger the input and output space

to be considered, and therefore the more prone the function is to

vulnerabilities.

• Number of incoming calls of a function (both absolute and

relative to LoC)

• Number of outgoing calls of a function (both absolute and

relative to LoC)

The numbers of incoming and outgoing function calls can simply

be calculated by counting the respective edges in the program’s

call graph. These metrics have already been successfully applied

for defect prediction [80] and fault localization [78].

SAST-based Features. The tools used in this work include five

state-of-the-art open-source static analyzers: CodeChecker [4],

CodeQL [5], Cppcheck [6], Flawfinder [7], and Infer [9]). A re-

cent study [45] confirmed that they are capable of finding C vulner-

abilities in real-world programs, especially when used in combina-

tion. To reduce the likelihood of missing vulnerable functions, we

additionally use a modified version
2
of the (memory) error detector

AddressSanitizer (ASAN)
3
[67]. Similar to Österlund et al. [82],

we consider each instrumented code location (i.e., function) as po-
tentially vulnerable. We thereby chose AddressSanitizer because

it covers the most common C vulnerabilities, such as buffer over-

flows, memory leaks, and freed memory usages.

Heuristic 3: The more lines in a function are flagged as poten-

tially vulnerable by one or more SAST-tools, the more likely that

function is to be actually vulnerable.

• Number of lines in a function flagged as potentially vulnerable

by CodeChecker, CodeQL, Cppcheck, Flawfinder, Infer,

and AddressSanitizer (both absolute and relative to LoC)

• Number of lines in a function flagged as potentially vulnera-

ble by all SAST-tools (with/without ASAN; both absolute and

relative to LoC)

Pereira et al. [63] employed in their work similar features to

those above. Moreover, they show that using them in combination

with software metrics leads to better prediction of vulnerable files

than using only one of the two feature classes.

Heuristic 4: The likelihood of identifying a vulnerable function

increases with the number of different SAST-tools that flag that

function as problematic.

• Number of different SAST-tools (with/without ASAN) that flag

a function as potentially vulnerable

3.2.3 Supervised Machine Learning. Different training algorithms

exist that allow to create machine-learned classificationmodels𝑀 ∈
M that predict the probability of a binary output class C B {𝐴, 𝐵}
based on the probability distribution learned through the training

dataset. Hereby, the actual classification is performed through the

function predict : F ×M × R[0,1] → C, which for a given list of

feature values 𝐹 ∈ F , prediction model 𝑀 ∈ M, and cutoff value

𝜃 ∈ R[0,1] returns

predict(𝐹,𝑀, 𝜃 ) B
{
𝐴, if𝑀 (𝐹 ) ≥ 𝜃 ,

𝐵, otherwise.

(3)

2
https://github.com/tum-i4/llvm-project

3
AddressSanitizer instruments the target program at compile-time with additional

security checks (assertions) to enforce a program crash once a security-violating

program state is encountered at runtime [71].

https://github.com/tum-i4/llvm-project
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In this work, we selected the following five supervised classifi-

cation algorithms/models supported in the caret R package [41]:

Generalized linear model (GLM), multi-layer perceptron (MLP),

random decision forest (RDF), gradient boosted machine (GBM),

and support vector machine (SVM). Using these algorithms, we

train the models on codebases with known vulnerabilities (CVEs)

so that they later predict if a function is (potentially) vulnera-

ble, i.e. C B {vuln, non-vuln}. Now, we can define pot_vuln :

F ×M × R[0,1] → {true, false} as follows:

pot_vuln(𝐹,𝑀, 𝜃 ) B
(
predict(𝐹,𝑀, 𝜃 ) = vuln

)
(4)

The parameters 𝐹 ,𝑀 , and 𝜃 introduce a certain degree of free-

dom in terms of configuration. This means, they can be fine-tuned

towards a specific software project to reliably find potentially vul-

nerable functions, while flagging as few code as possible.

3.2.4 Application in Practice. First the vulnerability prediction

model must be trained on a dataset with known vulnerabilities,

preferably on older, vulnerable versions of the program(s) to be

fuzzed. If no ground truth is available, the pre-trained models pro-

vided with this paper can be used at first. Next, the software metrics

and SAST-tools must be extracted from/run on the target program

to derive the respective feature values of each contained function.

Prior to fuzzing, these values must be passed to the ML model with

the selected cutoff to determine the potentially vulnerable functions.

After that, the fuzzing campaign can be launched. In this process,

the campaign is terminated if the coverage of the problematic func-

tions stagnates over the specified time window, otherwise fuzzing

continues, repeating this check at certain intervals.

4 EXPERIMENTAL SETUP
4.1 Research Questions
The proposed stopping criterion only works if the prediction model

reliably identifies potentially vulnerable code regions. If vulnerable

code is overlooked, the campaign is perceived to saturate earlier

and will more likely to be terminated before bugs can be reached

or triggered. If too much non-security-critical code is flagged, little

to no time savings may be achieved. These considerations led to

the following research questions:

RQ.1 Vulnerability Prediction Performance. How effectively can

machine-learned vulnerability prediction models identify

vulnerable functions after being trained on known real-

world security bugs using features derived from SAST-tool

findings and software metrics?

RQ.2 Stopping Criterion Tradeoff. What is the tradeoff between

the saved fuzzing time and missed security bugs when

using coverage of potentially vulnerable functions instead

of (a) crash count or (b) regular function coverage as a

saturation-based stopping criterion?

4.2 Model Training and Testing
4.2.1 Subject Programs. For training and testing the vulnerabil-

ity prediction models, we created two sets of real-world C pro-

grams containing a diverse set of well-documented vulnerabili-

ties detectable via fuzzing. Here, we used the dataset provided

by Lipp et al. [44], which consists of the Binutils suite and the

Table 1: Subjects for machine learning.

(a) Training set

Subject Version LoC # Functions # Vuln. Funcs.

Binutils1 2.29 45,243 1,378 15

FFmpeg n3.3.2 486,774 17,759 23

Libpng 1.6.38 10,184 398 9

OpenSSL 3.0.0 165,274 13,036 30

PHP 8.0.0-dev 101,531 4,759 8

Poppler 0.88.0 61,081 4,458 20

SQLite3 3.32.0 53,327 2,296 16

Total 923,414 44,084 121

1
We exclude nm, objdump, and size, as well as all shared functions in the other

Binutils programs.

(b) Testing set

Subject Version LoC # Functions # Vuln. Funcs.

LibTIFF 4.1.0 19,527 826 23

Libxml2 2.9.10 85,466 2,982 21

nm
2.29 90,566 2,792 50objdump

size

Total 195,561 6,600 94

video/audio processing tool FFmpeg (older versions with known

bugs), as well as of subjects from the Magma dataset [36]. Magma

utilizes a technique called bug front-porting, by which previously

found vulnerabilities (i.e., validated CVE reports) are reinserted into

newer versions of the same program. These two sets, with a com-

bined total of 215 functions affected by at least one vulnerability,

are overviewed in Table 1.

4.2.2 Feature Elimination. To ensure the reliability and discrimi-

native ability of the machine learning models, we omitted all re-

dundant and uninformative features. To this end, we first identified

pairs of highly correlated features (with Pearson’s 𝑟 ≥ 0.8) and then

eliminated
4
one from each pair [38]. We also excluded features with

zero and near-zero variance, as they barely discriminate between

vulnerable and non-vulnerable functions.

4.2.3 Training Control. Before training, we normalized each fea-

ture value between 0 and 1 (using a min-max scaler) to avoid dis-

tortions in training algorithms that utilize distance computations.

Because our dataset is imbalanced (containing 121 vulnerable versus

43,963 non-vulnerable functions; see Table 1), we downsampled5 the
feature data of the majority class such that both classes were equally

prevalent in the training set. Following the best practices [12] in

ML-based vulnerability prediction, we trained and evaluated the

different models using 10-fold cross-validation over all functions in

the training set. Each fold was stratified, meaning that both classes

occurred in each fold with the same probability as in the original

non-downsampled dataset. Furthermore, each cross-validation was

conducted five times and averaged to provide a robust estimate of

the models’ performance.

4
The exact list of removed features can be found in the provided analysis script.

5
We obtained nearly identical evaluation results after upsampling the dataset.
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Table 2: Subjects for the tradeoff analysis.

Subject Version LoC # Functions # Crashes # Bugs

Gif2png 2.5.3 988 27 3,620 4

JasPer 1.900.0 17,385 720 9,853 77

Libpcap 1.9.0 12,076 497 595 7

LibTIFF 4.1.0 19,527 826 17,701 7

Libxml2 2.9.10 85,466 2,982 50,907 9

nm 2.29 68,667 2,126 58 4

objdump 2.29 89,961 2,701 4,014 5

size 2.29 68,115 2,101 77 6

Total 362,185 11,980 86,825 119

4.2.4 Evaluation Metrics. To measure the effectiveness of the vul-

nerability prediction models, we use the true positive rate (TPR) aka
recall and false positive rate (FPR)6 aka fall-out. TPR is the ratio of

marked vulnerable functions to all vulnerable functions; that is, the

model’s reliability at detecting security bugs. FPR is the ratio of

marked non-vulnerable functions to all non-vulnerable functions,

which determines the model’s tendency to falsely mark functions.

4.2.5 Infrastructure. All vulnerability prediction experiments were

performed on a machine with an Intel(R) Core(TM) i7-6700 proces-

sor containing eight logical cores running at 3.4GHz, with 16GB

main memory access and GNU/Linux Ubuntu 20.04 (64-bit) as op-

erating system. Depending on the training algorithm, building the

ML models in parallel on all cores took 30–120 seconds.

4.3 Tradeoff Analysis
4.3.1 Dataset. To explore the tradeoff between the saved fuzzing

time and number of missed bugs, we selected the FuzzTastic

dataset [46] because it provides extensive crash and code coverage

data of multiple state-of-the-art fuzzers executed across several

subject programs. To extend the number of security bugs, we also

fuzzed LibTIFF and Libxml2 from Magma.

4.3.2 Subject Programs. Our extended FuzzTastic dataset con-

tains various large open-source applications and libraries from

different domains that are widely used in practice. For the included

libraries, FuzzTastic uses the fuzz harnesses provided byOSS-Fuzz

orMagma, respectively. Note that for our tradeoff analysis we only

used those programs where at least one security bug could be trig-

gered by the fuzzers, resulting in the eight subjects shown in Table 2.

These programs are completely disjoint from those used for training

the vulnerability prediction models.

4.3.3 Crash Deduplication. The launched fuzzing campaigns trig-

gered a total of 86,825 program crashes. As this number is too large

for manual deduplication, we approximated unique security bugs

using ClusterFuzz’s [3] approach: Two crashes are considered to

have the same underlying vulnerability if the top 𝑁 ∈ N0 stack
frames (irrespective of the function arguments) of the program

execution trace are identical. After manually reviewing a random

sample of ~50 crash traces, we found that 𝑁 = 3 provides the most

6
For our purposes, FPR is more appropriate than precision because the model’s accuracy

in terms of identifying vulnerable functions is less important than the actual number

of flagged non-vulnerable functions. Given the relatively few vulnerable functions in

our dataset, the FPR increases the more functions are flagged.

accurate approximation of unique bugs. The automatic deduplica-

tion ultimately yielded 119 unique bugs (see Table 2).

4.3.4 Selected Models and Cutoffs. In practice, the machine learn-

ing models would be trained, optimized, and evaluated on older,

vulnerable versions of the same program(s) as to be fuzzed later.

The most effective model would then be selected for our stopping

criterion. However, as our dataset contains relatively few vulnera-

bilities per program, we trained and applied the prediction models

on different sets of programs. To evaluate our criterion under real-

istic conditions, we selected for each subject program the model

plus cutoff value that found at least 90% of the bug-triggering and

thus vulnerable functions, while also flagging the fewest functions

reachable
7
from the fuzz entry. We chose this detection rate thresh-

old because it is a realistic value, as shown by our evaluation (see

Section 5.1) and related studies [40, 54, 55].

4.3.5 Fuzzers, Seeds, and Campaign Length. Our dataset contains
the crash and coverage data of eight state-of-the-art greybox fuzzers:

AFL [2],AFLFast [18],AFL++ [25],AFLSmart [64], FairFuzz [42],

Honggfuzz [8],MOpt-AFL [49], andMOpt-AFL++ [25]. All fuzzers

have been published at top-tier research conferences and/or are

widely used among practitioners (cf. their GitHub stars [14]). As for
the initial seeds, we used a (non-empty) corpus provided by AFL’s

GitHub repository or theMagma suite, respectively. Furthermore,

each {subject × fuzzer}-pair was executed for 24 hours with 20

campaign repetitions.

tS.1

tS.2

Pe
rfo

rm
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Fuzzing Time (t)

S.1: Baseline Metric

S.2: Cov. pot. vuln. Code

Saturation Window

t

Figure 3: Approach of the tradeoff analysis.

4.3.6 Evaluation Metrics. We evaluate the ratio of (1) saved fuzzing

time and (2) missed bugs (see Fig. 3) of our stopping criterion rel-

ative to the saturation of crashes and regular function coverage

(baseline criteria) on the same fuzzing campaigns. For a given satu-

ration window 𝛿 (grey area) and allowable deviation 𝜖 (zero in this

example), we compute (1) by dividing Δ𝑡 by the overall campaign

length (24 hours). As for (2), we divide the number of bugs found

between 𝑡𝑆1 and 𝑡𝑆2 by all bugs found in the respective subject

program while generating the (extended) FuzzTastic dataset (see

Table 2). We perform this analysis with 𝛿 ∈ {2 h, 4 h, 6 h, 8 h} and
𝜖 ∈ {0, 1, 2} (i.e., the number of functions/crashes allowed to be

exercised within 𝛿). For both measures, we report the arithmetic

means and standard deviations over 20 campaign repetitions to

account for the randomness in fuzzing.

7
For this reachability analysis, we used the static analysis framework SVF [72].
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Figure 4: Performance comparison of the machine-learned vulnerability prediction models. The dots indicate the cutoff values
𝜃 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, with the highest 𝜃 at the far left.

5 EVALUATION
5.1 RQ.1: Vulnerability Prediction Performance
Interpretation. Figures 4a and 4b show the evaluation results of

the five machine-learned vulnerability prediction models in the

form of receiver operating characteristic curves (ROCs). The base-

line model randomly classifies functions based on the relative fre-

quencies
8
of vulnerable and non-vulnerable functions in our train-

ing set, i.e., 𝑃 (𝑣𝑢𝑙𝑛) ≈ 0.003 and 𝑃 (𝑛𝑜𝑛-𝑣𝑢𝑙𝑛) ≈ 0.997 (see Table 1).

As a rule of thumb, the larger the area under the curve (AUC),

the better the model’s discrimination between vulnerable and non-

vulnerable functions [37]. Note that in Fig. 4b, the Binutils subjects
nm, objdump, and size are treated as one program because they

share many functions.

Cross-validation Performance. As shown in Fig. 4a, the base-

line model indicates insufficient discrimination between vulnerable

and non-vulnerable functions (ROC–AUC = 0.5). Despite the small

number of vulnerable functions in our dataset, most of them are

missed when randomly flagging functions. In contrast, all machine-

learned models outperform the random classification, achieving

excellent discrimination scores (~0.84 on average). Interestingly,

although the GBM yields the highest ROC–AUC score, the per-

formance differences between these models are not statistically

significant, suggesting that the selected machine learning features

are robust with respect to different training algorithms.

Adjusting the cutoff value guides the models toward specific

objectives. For example, when assigning a relatively low cutoff

(𝜃 = 0.3), all five machine-learned models achieve a true positive

rate of 0.9 or higher, indicating that they effectively detect the

vulnerable functions. For the same cutoff value, the false positive

rate of all models, except the support vector machine, is less than

0.5, showing that when the number of vulnerable functions is small,

roughly half of the models’ findings are false positives. In other

8
Similarly low ROC–AUC scores were obtained in 50:50 random classification.

words, only half of the functions ought to be tested to find nearly

all the included security bugs.

Testing-Set Performance. Figure 4b shows that the effectiveness
of the vulnerability prediction models is slightly reduced when ap-

plied on the testing-set programs. For nm, objdump, and size, the
performance of the machine-learned models is very similar with

ROC–AUC scores ranging from 0.74 to 0.76, confirming decent dis-

crimination between vulnerable and non-vulnerable functions. The

performance variations among the models are larger on Libxml2.
Whereas MLP, RDF, and GBM achieve excellent ROC–AUC scores

(0.81–0.85), GLM and SVM perform only moderately (ROC–AUC

= 0.78 and 0.73, respectively). Similarly for LibTIFF, where GLM,

MLP, and RDF reliably differentiate between vulnerable and non-

vulnerable functions (ROC–AUC = 0.7–0.78) but GBM and SVM

are rather ineffective, with ROC–AUC scores below the acceptable

threshold of 0.7 [37].

Summary (RQ.1). Our machine-learned vulnerability predic-
tion models accurately discriminate between vulnerable and non-
vulnerable functions. During cross-validation on the training set,
the models achieve (on average) a ROC–AUC score of 0.84. On
the testing set, they are less effective with an average score of 0.75,
yet capable of reliably identifying vulnerable functions, albeit at
the cost of more false positives.

5.2 RQ.2: Stopping Criterion Tradeoffs
Interpretation. Figures 5 and 7 show the tradeoff results of our

stopping criterion relative to the saturation of crashes and regular

function coverage. For example, the LibTIFF-AFLFast cell in Fig. 5

reads as follows: Using a saturation window of 𝛿 = 4 h and an

allowable deviation of 𝜖 = 0 functions/crashes, our criterion termi-

nates the fuzzing campaigns on average 12 hours (50 percentage

points) earlier, while missing relative to the baseline criterion (i.e.,
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Figure 5: Tradeoff results of our stopping criterion relative to the saturation of crashes.

crash saturation) not more than one out of seven bugs. Note that

negative values in this plot indicate additional time expenditures

and further bugs found by our criterion. Furthermore, Figs. 6 and 8

show the time savings with respect to the number of missed bugs

of our stopping criterion relative to the respective baseline. These

two plots only consider the 1,020 (out of 1,280) fuzzing campaigns

that triggered at least one bug.

Baseline: Crash Saturation. For the subjects Gif2png, JasPer,
LibTIFF, and Libxml2, Fig. 5 shows that our stopping criterion

terminates (on average) the fuzzing campaigns 6–12 hours ear-

lier than the crash saturation criterion (time savings of 25%–50%),

while missing on average about 0.5 bugs (4%). For MOpt-AFL and

MOpt-AFL++ executed on LibTIFF, even time savings of up to 18

hours (75%) could be achieved. In contrast, on Libpcap, nm, and size,
our criterion stops the campaigns around 2.4–4.8 hours (10%–20%)

later than crash saturation, however, often finding one additional

bug. Only on objdump, when fuzzed with AFL, AFL++, AFLFast,

and Honggfuzz, our criterion extends the time expenditures by

roughly 6–12 hours (25%–50%).

As shown in Fig. 6, our stopping criterion is more cost-effective

than crash saturation for most (10/12) of the {𝜖 × 𝛿}-parameters

studied. Across the different parameters and ranges of missed bugs,

our criterion allows for 4.1 hours (17.2 percentage points) time

savings when compared to crash saturation. Among the 1,020 bug-

triggering campaigns stopped under our criterion, 84.2% miss zero

bugs, 6.6% one, and 4.9% two or more bugs on average. Vice versa,

one additional bug is found (on average) using our criterion in 4%

of these campaigns and two or more in 0.3%.

Summary (RQ.2-a). Our stopping criterion is more cost-effective
than the saturation of crashes, reducing (on average) the termina-
tion time by 4.1 hours (17.2 percentage points) in 24-hour fuzzing
campaigns across the studied {𝜖 × 𝛿}-parameters. Thereby, our
criterion misses bugs in 11.5% of the 1,020 bug-triggering cam-
paigns but also finds bugs that are missed by crash saturation in
4.3% of the same campaigns.
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Figure 6: Fuzzing time savings with respect to the number of
missed bugs of our stopping criterion relative to the satura-
tion of crashes.

Baseline: Function Coverage Saturation. As shown in Fig. 7
9
,

our stopping criterion terminates (on average) the campaigns 4.8–

9.6 hours earlier than regular function-coverage saturation (time

savings of 20%–40%) for many of the examined {subject × fuzzer}-
pairs, while missing 0.2 bugs (2.7%). On some subjects—for example,

the AFLFast campaigns launched on size—our criterion saves up

to 12 hours (50%) of the fuzzing time. In contrast, no real time

savings could be achieved on JasPer. This is because JasPer, with 77

known security bugs, contains many vulnerable functions, which

are also identified as such by the prediction model. The campaigns

then continuously increase coverage of these problematic functions,

which is why our criterion does not terminate them earlier.

Figure 8 displays the time savings with respect to the number of

missed bugs over the range of studied {𝜖 × 𝛿}-parameters. Across

these parameters, our stopping criterion reduces the fuzzing time

by 1.7 hours (7%) on average in campaigns where no bugs were

missed. In campaigns where bugs are missed, average time savings

of 9.6 hours (40.1%) could be achieved. Among the 1,020 campaigns

stopped with our criterion, 94.3% miss zero bugs (on average), 4.6%

one, and 1.1% two or more bugs compared to regular function-

coverage saturation.

Summary (RQ.2-b). Our stopping criterion is more cost-effective
than the saturation of regular function coverage, reducing (on
average) the termination time by 4.8–9.6 hours in 24-hour fuzzing
campaigns at the cost of missing 0.2 out of 7.4 contained bugs.
Furthermore, across the examined range of {𝜖 × 𝛿}-parameters,
our criterion misses one or more bugs in only 5.7% of the 1,020
bug-triggering campaigns. In these campaigns, the average saving
increased to 9.6 hours.

9
We omitted Gif2png from this graph as both criteria yielded identical results.

6 DISCUSSION
ML-based Vulnerability Prediction. Depending on the training

algorithm, the importance of the selected features and thus their

impact on the final prediction can vary. Interestingly, the features

derived from software metrics, such as the cyclomatic complexity

number and number of incoming/outgoing function calls (both

absolute and relative to lines of code), were in our setup often more

predictive of vulnerable functions than the SAST-based features.

This observation might be explained (at least partly) by the many

false positives that even state-of-the-art SAST-tools output [45, 82].

Nonetheless, both feature classes were required for the best possible
prediction in our evaluation. In general, the more effective the

vulnerability prediction is, the more accurate is our criterion in

deciding when to stop a fuzzing campaign.

Although the machine-learned vulnerability prediction models

reliably detected (potentially) vulnerable functions in programs

outside the training set, we recommend training such models on

the same but older vulnerable versions of the codebase(s) later to be

fuzzed. In our evaluation, the ROC–AUC scores where higher on the

training set (cross-validation) than on the testing set, indicating that

in-project training improves the prediction accuracy. If no ground

truth is available, our pre-trained models can be used as a starting

point with a conservative cutoff value of 0.3–0.5 to minimize the

risk of overlooking vulnerable functions. As more data about bugs

become available, the models and thus the accuracy of our stopping

criterion can be improved over time, which is also not possible with

the currently available criteria.

Saturation-based Fuzzing Stopping Criteria. Although satu-

ration of crashes has proven to be a good stopping criterion for

some of the examined fuzzing campaigns, we argue that coverage-

based criteria are more reliable. Böhme and Falk [16] empirically

found that each new bug discovery requires exponentially more

fuzzing resources. Hence, with a fixed number of machines, bugs

will be detected later and later via fuzzing over time. As a result,

the crash saturation criterion becomes impractical at some point,

because campaigns are very likely of being stopped too early. Here,

coverage-based criteria are oftentimes the better choice, as they

reflect the effectiveness/progress of a campaign more accurately.

Overall, using the machine-learned models to predict potentially

vulnerable functions for our stopping criterion allowed terminating

fuzzing campaigns substantially earlier than under typical stopping

criteria (saturation of crashes or regular function coverage) with

very few bugs missed. In a realistic setting, when the latest soft-

ware builds are fuzzed overnight for 10 hours after each of the five

workdays across hundreds of CPUs, a 50% time reduction saves

1,200 hours of fuzzing in one year, 2,400 hours in two years, 6,000

hours (~250 days) in five years.

One limitation of our approach is that fuzzing campaigns may be

terminated too early, which in turn can lead to bugs being missed.

This is the case when the campaign stagnates on the same poten-

tially vulnerable code for too long before it actually manages to

trigger a bug in the same or another vulnerable part of the program.

This problem can be mitigated to some extent by using longer sat-

uration time windows. Furthermore, overlooking a small number

of security bugs can be an acceptable tradeoff for large time sav-

ings, because software testing generally cannot prove the absence of
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Figure 7: Tradeoff results of our stopping criterion relative to the saturation of regular function coverage.
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Figure 8: Fuzzing time savings with respect to the number of
missed bugs of our stopping criterion relative to the satura-
tion of regular function coverage.

bugs and will therefore always miss one or another vulnerability.

Returning to the above example, additional fuzzing campaigns can

be executed once or twice a month with a fixed time budget (e.g.,

24 or 48 hours) during weekends. This action would further reduce

the likelihood of missing vulnerabilities while still saving a lot of

time and hardware resources.

7 THREATS TO VALIDITY
External Validity. This threat category refers to the degree to

which our results can be generalized to and across different pro-

grams, machine learning models for vulnerability prediction, and

fuzzing tools outside of those in the present study.

To mitigate this threat, we evaluated our approach on 30 dif-

ferent real-world programs with a total of 240 security bugs. The

programs were split into different sets to train and test the machine-

learned models for vulnerability prediction, as well as to assess the

tradeoffs of the proposed fuzzing stopping criterion. The vulnerabil-

ity prediction models were built using five widely used supervised

classification algorithms. In the tradeoff evaluation, we used eight

different greybox fuzzers to demonstrate that our findings are not

limited to one specific fuzzing tool.

Internal Validity. This threat category concerns the degree to

which our study minimizes potential methodological mistakes.

As vulnerabilities are usually sparse in real-world software, our

dataset for model training is rather imbalanced. To reduce the po-

tential bias of over- or under-fitting the models to a specific output
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class, we applied the best practices also used in related studies,

namely downsampling and repeated stratified cross-validation.

Furthermore, the large number of triggered program crashes

provided by the (extended) FuzzTastic dataset forced us to mecha-

nize the process of deduplicating crashes into unique security bugs.

For this purpose, we applied a well-established heuristic from the

fuzzing domain, in which crashes with the same top 𝑁 stack trace

(disregarding the function arguments) presumably have the same

underlying vulnerability. To find the most accurate approximation,

we determined 𝑁 by manually analyzing a subset of randomly

sampled stack traces of crashing program executions.

Finally, in all computations involving fuzzing data, we adhered

to the guidelines of Klees et al. [39] and averaged the coverage and

bug detection rates over multiple experiment repetitions to account

for the inherent randomness of fuzzing. Specifically, 20 campaign

repetitions were performed on each {subject × fuzzer}-pair such
as Google’s FuzzBench service [56].

8 RELATEDWORK
ML-based Vulnerability Prediction. Vulnerability prediction us-

ing machine learning is a very active research area, with numerous

papers published each year [28, 30, 52].

Most of the existing studies onML-based vulnerability prediction

consider one specific class of features instead of several. Such stud-

ies usually adopt software metrics (such as complexity, code churn,

and developer activity) [34, 54, 55, 59, 73], text mining [21, 73, 77],

or static code analysis (e.g., data/control-flow and/or taint check-

ing) [40, 62, 68]. Interestingly, some of these studies have also found

that the comparably simple features can compete with and some-

times even outperform the more complex ones. According to these

papers, the trained ML models detect around 70%–90% of the vul-

nerabilities included in their benchmark, which is similar to what

we observe with our models. However, they differ from our work

in that: (1) they predict the vulnerabilities at different code granu-

larities (line-, function-, and file levels); (2) they train and evaluate

the ML models on different datasets (artificial or real-world) with

different quantities of labeled data (e.g., 100 or 100,000 data points);
(3) they focus on specific vulnerability types (e.g., SQL injections or

memory-related bugs); (4) they have different training objectives.

Regrading point (4), most of the related works optimize the mod-

els for precision and recall, whereas we adopted the vulnerability
extrapolation approach of Yamaguchi et al. [77] to reliably identify

potentially vulnerable code while accepting a certain degree of false

alarms. Hence, it is questionable whether the reported detection

rates would be equally high for our setup and purposes or as good

as the features we chose, respectively.

Pereira et al. [63] also employed software metrics and SAST-tool

findings for binary (and multi-class) vulnerability prediction. For

binary classification, they showed that using both, SAST-based

and software metric features, results in higher detection rates than

using only one of the two feature classes. We achieved equally

high detection rates (90%) at a more fine-grained prediction (i.e.,
function instead of file level). Interestingly, they also reported that

the number of SAST flags per code region is only of limited use for

predicting vulnerable code. Therefore, instead of two SAST-tools,

we employ six state-of-the-art static analyzers (includingCppcheck

and Flawfinder) and a modified version of AddressSanitizer to

use the number of different tools that flag a function as problematic

as an additional machine learning feature. Furthermore, we use

seven different codebases to train and evaluate our models, while

they use one (Mozilla project).

Fuzzing Stopping Criteria. The question of how to accurately

quantify fuzzing effectiveness and thus when to stop a campaign

is still an open challenge in fuzz testing [13]. Several studies [11,

19, 29, 32, 33, 35, 65, 74, 75] have evaluated new or existing code

coverage variants to optimize or assess the effectiveness of test

suites. However, none of these variants includes any heuristics that

differentiate between potentially vulnerable and non-vulnerable

code regions to provide a more accurate feedback about fuzzing

effectiveness and thus a better fuzzing stopping criterion.

For comparing the effectiveness of fuzzers, Klees et al. [39] sug-
gest a fixed time budget of at least 24 hours, as certain fuzzing tech-

niques becomemore effective later in the campaign, e.g., whenmore

inputs are added to the queue. This suggestion has become an estab-

lished guideline within the fuzzing community; accordingly, most of

the recent fuzzer evaluations [22, 25–27, 36, 42, 43, 46, 49, 50, 64, 82]

use timeouts between 24 hours and 7 days. Interestingly, Google’s

fuzzer evaluation platform FuzzBench [56] uses timeouts of 23

hours. They justify their decision with the negligible differences in

fuzzer rankings based on the code coverage achieved between ex-

periments with 23 hour and those with 7 days timeouts, but the vast

increase in hardware costs. Although this may give an indication

of how long fuzzers should run for evaluation purposes, fixed time

budgets oftentimes result in overly prolonged campaigns when

launched to hunt security bugs in the wild.

To the best of our knowledge, only Böhme et al. [17] have at-
tempted to address this problem. They employ various statistical

estimators, including the Good-Turing estimator [15, 31], to quan-

tify the residual risk (upper bound) of missing bugs in fuzzing

campaigns, thus allowing for a more informed decision of when

to stop them. In contrast to our fuzzer-agnostic approach, their

stopping criterion is linked to the input generation approach imple-

mented in the fuzzer. Specifically, their criterion must account for

adaptive bias, which occurs in all fuzzing techniques that increase

the probability of generating a bug-revealing input as the campaign

progresses.

9 CONCLUSION
Fuzzing is very effective at finding security bugs, but also extremely

time- and hardware-intensive. This ismainly because vulnerabilities

are sparse and oftentimes hard to trigger/detect. Hence, stopping

fuzzing campaigns based on the saturation of crashes (≠ unique

bugs) is likely to miss vulnerabilities. Furthermore, a campaign

may appear effective in terms of code coverage and/or crash count

and is therefore not terminated, although it only increases code

coverage of non-security-critical program parts or repeatedly trig-

gers the same crashes, respectively, resulting in unnecessarily long
campaigns. Therefore, we propose to stop campaigns when they

stagnate on the same potentially vulnerable code regions, i.e., code
that contains critical instructions that can cause a security violation

if used improperly. Through a large-scale empirical evaluation, we
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then show that (1) combining static vulnerability indicators (SAST-

tools and software metrics) into a machine-learned vulnerability

prediction model is very effective at identifying (potentially) vulner-
able functions and (2) terminating fuzzing campaigns when they

saturate on such identified potentially vulnerable functions allows

for substantial time savings while incurring a low risk of missing
bugs, compared to saturation of crashes and regular function cover-

age. Missing bugs can thereby be a permissible tradeoff, if parts of

the time savings are invested in further testing efforts.

10 DATA AVAILABILITY STATEMENT
We release all training and evaluation data, including the analysis

script and machine-learned vulnerability prediction models [47].

This material will allow replication of the study results and encour-

age further research on fuzzing stopping criteria.
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