
BUILDING SECURITY IN
Editors: Eric Bodden, eric.bodden@uni-paderborn.de | Fabio Massacci, fabio.massacci@ieee.org | Antonino Sabetta, antonino.sabetta@sap.com

	 Copublished by the IEEE Computer and Reliability Societies	 � 1
This work is licensed under a Creative Commons
Attribution 4.0 License. For more information,
see https://creativecommons.org/licenses/by/4.0/

At last year’s Pwn2Own competition, one individual successfully exploited all major browsers—Chrome,
Firefox, Safari, and Edge—used by billions of people worldwide. Despite decades of security research, the
discovery of new vulnerabilities in important software systems continues unabated.

B uilding security into software
from the start is the most

effective approach to cybersecu-
rity. Unlike physical systems, where
behavior is studied empirically,
software systems are fully described
through source code, which reflects
the programmer’s intentions using
the syntactic and semantic rules
of the programming language.
Because software operates based on
well-defined instructions, we can
theoretically reason about, control,
and monitor its behavior with great
precision. By developing increas-
ingly better security tools and
processes, in the limit, we should
be able to prevent attackers from
launching successful exploits. Is
this how we can solve cybersecurity
once and for all?

How to Solve Cybersecurity
Once and For All
Imagine we have used all avail-
able tools and processes to design,
develop, and maintain our soft-
ware system with security as
first-class citizen.1 We’ve applied
offensive and defensive strate-
gies to find and fix flaws, created
threat models, and adopted best

practices, like using memory-safe
languages and rigorous secure
software engineering principles.
We also run continuous testing,
such as fuzzing and security tools
(static/dynamic application secu-
rity testing, SAST/DAST), and
even formally verify critical com-
ponents. But is this enough? Are
we truly safe?

Is it possible for a software sys-
tem to be completely free of secu-
rity flaws? If not, why bother?

Now, imagine you’re the ven-
dor of a widely used mobile phone.
Despite your best efforts to protect
security and privacy, the first jailbreak
is released within two weeks. After
patching it, a new jailbreak appears
just months later. Even after exten-
sive work to secure everything, new
jailbreaks keep appearing. Over the
next two decades, you invent critical
mitigations, many of which have been
adopted as de facto industry standard,
only to see the next jailbreak finally
trigger another security update. Does
this mean that your defenses are inef-
fective? Definitely not.

No Universal Claims
About Security
There are at least two reasons
why we cannot guarantee for any

software system that it is free of
security flaws. First, there are the
unknown unknowns: We don’t
know what we don’t know. For a
system to withstand attacks, we
must know which properties must
hold. In many cases, we only know
that some software behavior is
actually a security flaw retrospec-
tively. For instance, speculative
execution—a performance optimi-
zation technique where processors
predict and execute instructions
before knowing if they are actually
needed—was meant to improve
the performance of our proces-
sors, and it does in almost all cases.
However, it took someone with a
security perspective and a decent
amount of curiosity to find that
we require all secret-dependent
executions (e.g., in a cryptographic
protocol) to run in constant time:
Meaning they must take exactly
the same amount of time regard-
less of what secret values are being
processed. This constant time
property is violated by specula-
tive execution. An attacker could
measure subtle timing differences
to infer the secret values, effec-
tively breaking the cryptographic
protection. Now, how do we vali-
date or enforce this high-level Digital Object Identifier 10.1109/MSEC.2025.3551590

How to Solve Cybersecurity
Once and For All

Marcel Böhme | Max Planck Institute for Security and Privacy

https://orcid.org/0000-0002-4470-1824

BUILDING SECURITY IN

2	 IEEE Security & Privacy�

constant-time property in the con-
crete? Do we disable speculative
execution (Spectre)? Do we count
(fast) cache hits and (slow) cache
misses (MeltDown)? Do we dis-
able all data-dependent optimiza-
tion in the compiler and processor?
Whatever we choose, the validation
or enforcement of the high-level
property is always specific. So, how
can the defense (e.g., against attacks
on constant-time) ever be general?
I claim that an attacker can always
exploit: 1) the absence of proper-
ties that we do not even know need
to hold and 2) the specificity with
which we must validate or enforce
that high-level property.

Second, there is the modeling
gap: For efficiency, we usually reason
within some model of the behaviors
of a system; and from properties of
the model, we make claims about
the actual, deployed system as it is
running in production. For instance,
provable security—including cryp
tography, model checking, protocol
analysis, secure-by-construction,
proof-carrying code, and soft-
ware verification—models the full
behavior of the system using for-
mal methods, and it allows univer-
sal statements about the system’s
properties. SAST techniques—like
symbolic execution, abstract inter-
pretation, and logic-based static
analysis, including Infer, CodeQL,
SonarQube, and FindBugs—model
all relevant executions of a pro-
gram after parsing its source code
or binary to automatically check
assertions about behaviors of the
system. DAST techniques—like
sanitization, compartmentalization,
sandboxing, and trusted execution
environments—model the cur-
rent execution at some (fixed) level
of abstraction. Approaches from
secure-by-design—like security
best practices, threat modeling, and
language-based security—model
future software systems before they
are built and avoid introducing
security flaws at the design stage.

An attacker can always exploit
an invalid assumption about or
the higher level of abstraction of
the actual system. For instance,
imagine running a formally veri-
fied Rust implementation of a
provably-secure protocol on a fleet
of CPUs with a microcode bug. In
2023, a vulnerability (CVE-2023–
205932) was found in AMD Zen 2
class processors that would leak the
parameters of security-critical basic
operations, like memcpy or strcmp,
in plain text, across the boundar-
ies of virtual machines, sandboxes,
containers, and processes. You only
needed to trigger an XMM Register
Merge Optimization followed by a
register rename and a mispredicted
vzeroupper within a precise win-
dow of time. Security guarantees
established at the protocol-level,
the source-code-level, or even for
the executable fail to hold if the
processor does not do what we
assume it to do. In the gap between
source code and executable, we can
find undefined behavior, which
causes 72%3 of exploits in-the-
wild, 86%4 critical vulnerabilities
in Android, and 70%5 in Chrome.
In the gap between the executable
and the process running on the
machine, we find hardware-specific
vulnerabilities, such as the micro-
code bugs, side channels, and Row-
Hammer (a hardware vulnerability
where repeatedly accessing certain
memory rows in DRAM chips can
cause bit flips in adjacent rows,
allowing attackers to alter memory
they should not have access to and
potentially gain unauthorized priv-
ileges). Given only the program,
without assumptions about the
compiler or the machine, it is hard
to make reliable statements about
properties of the running process.

Secure or Insecure. That Is
Not the Question
Let’s get back to our earlier ques-
tion: If there are no guarantees,
why bother? Well, the security of a

software system is no binary prop-
erty that needs to be guaranteed at
all. In practice, security is funda-
mentally empirical and more like a
numeric property that needs to be
strengthened. Hence, the true pur-
pose of security tooling [including
that which is designed to formally
guarantee security (in the spe-
cific)], is to increase a system’s secu-
rity (in the general). In other words,
we want to reduce the likelihood
that an attacker can compromise
the security of the system, including
confidentiality, integrity, or avail-
ability. If you ever find yourself con-
sidering your enterprise system as
guaranteed secure, it is only because
you are missing a counterexample.
We can only try to approach abso-
lute security in the limit.

We should focus on the degree
to which our systems are secure.
First, we should think about secu-
rity as an attacker cost. In our moti-
vating example, we talked about a
phone vendor that has been react-
ing to jailbreaks by developing new
mitigations. Some defenses were
long-term, ground-breaking, and
general mitigations, and others were
just short-term patches, but together
they ultimately rendered the cost of
the next jailbreak just impractically
high. While a kernel-read/write was
sufficient a few years ago, it is only
the starting point for a year-long
journey today. Second, we should
think about security in economic
terms as a function of incentive.
Like in the phone vendor’s case,
there is a huge demand for jail-
breaks and thus to overcome the
security measures of the vendor. On
the one hand, we have the vendor’s
supply of security measures. On the
other hand, we have the jailbreak-
ers’ demand to overcome these
security measures. When there is no
demand, our system may only seem
secure to us and to the outside,
irrespective of our supply (i.e., the
strength of our defenses). If instead
there is substantial demand, like in

www.computer.org/security� 3

our jailbreak example, our system
may seem insecure only to the out-
side but not to us. I would argue
that reports of successful attacks,
whether through bug bounty pro-
grams or red team exercises (which
increase demand artificially), or
through other ethical means, pro-
vide the only reliable signal about
the current strength of our defenses.
Interestingly, this also means that a
system with a larger number of pub-
licly known security flaws (com-
mon vulnerabilities and exposures,
or CVEs) may technically be much
more secure than a system with no
CVEs, at all.

Consequently, if our tools and
processes fail to find or prevent a
specific security flaw, even if the
reader works in software verifica-
tion—Worry not! Our tools and
processes are not ineffective; they
just need to be hardened. We should
identify the particular reason why
they failed in that specific case and
fix it. We strengthen our security
defenses one reported security flaw
at a time, entirely incrementally and
in a counterexample-guided man-
ner. Since security is an empirical
property, we must take an empirical
approach. Instead of claims about
the effectiveness of our defenses,
we should consider focusing on
claims about our failure to find
counterexamples.

Security Engineering
The real strength of security tooling
is measured by the failure of those
with enough incentive to find suc-
cessful attacks. Still, we evaluate our
scientific progress by confirming
known attacks to be unsuccessful.
Instead, we should focus more on
identifying security flaws that our
tools cannot find or mitigate. For
instance, as developers (or users)
of a static analysis tool, we should
evaluate SAST performance with a
focus on those security flaws clearly
in scope, that it fails to find and elicit
the underlying reasons as limitations

for future research. Just confirm-
ing that our technique worked for a
larger number of security flaws in a
specific benchmark will not help to
inform our scientific progress. The
focus moves from universal claims
about the security of a software sys-
tem to falsification of such universal
claims. Just going from 99% to 100%
on some benchmark tells us nothing
about their failure to find or mitigate
future attacks.

We might agree that nothing can
truly guarantee security. Yet, we per-
petually develop new techniques for
every new type of vulnerability that
is currently undiscovered by existing
means. Given that there will always
remain some insecurity, new tech-
niques might represent no progress
at all. Instead, for every attack that
is successful despite the defenses
we employ, we should ask ourselves
what exactly caused this failure in
our defenses, and what exactly can
be improved in our defenses to find
or mitigate the most general version
of the attack in the future. In this way,
our defenses can empirically “con-
verge” toward a fixed point where
no counterexamples can be found
within reasonable cost. In fact, exist-
ing tools always fail to find a given
(type of) vulnerability for a spe-
cific reason. Why not localize and
address exactly that reason? This
counterexample-guided harden-
ing perspective offers a longer-term
approach where existing techniques
are systematically extended rather
than eternally complemented.

In the absence of successful
attacks to use as counterexamples
for our defenses, we can artifi-
cially increase the “demand” (i.e.,
the incentive to report successful
attacks) and thus turn our reac-
tive approach into a proactive one.
For instance, using an effective bug
bounty program, we invite bug
reports and also receive some sig-
nal on the strength of our defenses.
In the absence of successful attacks,
we know that the software system is

at least as secure as our bug bounty
program is willing to pay for evi-
dence of insecurity.

Hardening our Software
and Defenses
How do we solve cybersecurity
once and for all? There are no guar-
antees in security (there may always
be an unknown attack that could
be successful), but we can at least
approach maximal security in the
limit in a counterexample-guided
manner. Consider fishing as a meta-
phor for bug finding. A fishernet rep-
resents the tools and processes we
use to build security in while the
fishes represent the security flaws in
our software systems. My claim is
that, for every net, there will always
be a fish that slips through. But
clearly, this does not undermine
the utility of the net. We must real-
ize that there is not ever going to be
the ultimate fishernet. Rather, I have
argued, we should develop more
systematic support for an incre-
mental, counterexample-guided
evolution of our defenses to maxi-
mize effectiveness empirically. Our
focus moves from developing new
defenses conceptually to identifying
and mitigating the limitations of our
existing defenses empirically. But
what does it mean?

For the defensive security com-
munity this means that, when eval-
uating a new technique, instead of
evidence supporting our claims
about its effectiveness, we should
actively seek evidence that could
falsify them. At least, we should add
discussions or evaluations of the
risk of potential attacks despite that
new technique. Indeed, we should
design our techniques with the pos-
sibility to render it effective, reac-
tively, against currently unknown
types of attacks (e.g., like CodeQL
allows adding new detection rules).

For the offensive security com-
munity this means that any new type
of attack effectively becomes a coun-
terexample for all of our existing

BUILDING SECURITY IN

4	 IEEE Security & Privacy�

defenses. Hence, in addition to the
analysis of the attack itself, we should
also add an analysis of why existing
defenses fail to catch this attack. We
should provide concrete advice on
how these existing defenses can be
hardened against the most general
version of this attack.

For the software engineering
community this means that there
are opportunities to automate this
hardening process using techniques
from automated software engi-
neering.6,7 We can develop tech-
niques to automate the localization
of the root cause of a failure in our
defenses given a successful attack
(as in automated debugging) and
further to automatically render our
tools effective against the new attack
(as in automated program repair).

F or the general reader of this arti-
cle this means that we should

stop trying to confirm the effective-
ness of our defenses and start fail-
ing to find counterexamples to their
effectiveness. This is how we solve
cybersecurity once and for all. One
counterexample at a time.

Acknowledgment
This article summarizes an invited
keynote address at the 27th Inter-
national Symposium on Research

in Attacks, Intrusions and
Defenses (RAID 2024) with the
same title.

References
1.	 M. Böhme, E. Bodden, T. Bul-

tan, C. Cadar, Y. Liu, and G. Scan-
niello, “Software security analysis
in 2030 and beyond: A research
roadmap,” ACM Trans. Software
Eng. Method., pp. 1–24, 2025, doi:
10.1145/3708533.

2.	 T. Ormandy, “Zenbleed.” cmpx-
chg8b.com. Accessed: Jul. 24, 2023.
[Online]. Available: https://lock.
cmpxchg8b.com/zenbleed.html

3.	 “0day in the wild,” Google Proj-
ect Zero, Apr. 20, 2023. [Online].
Available: https://docs.google.com/
spreadsheets/d/1lkNJ0uQwbeC1
ZTRrxdtuPLCIl7mlUreoKfSIgajn-
SyY/edit

4.	 “Memory safe languages in Android
13,” Google Android Secur., Dec. 1,
2022. [Online]. Available: https://
security.googleblog.com/2022/12/
memory-safe-languages-in-android
-13.html

5.	 “Memory safety,” Google Chro-
mium Secur., 2022. [Online].
Available: https://chromium.org/
Home/chromium-security/memory
-safety/

6.	 A. Zeller, “The debugging book,”
CISPA Helmholtz Center for Inf.
Secur., Saarbrücken, Germany,

2024. [Online]. Available: https://
www.debuggingbook.org/

7.	 C. Le Goues, M. Pradel, and A.
Roychoudhury, “Automated pro-
gram repair,” Commun. ACM, vol.
62, no. 12, pp. 56–65, Nov. 2019,
doi: 10.1145/3318162.

Marcel Böhme is a faculty member at
the Max Planck Institute for Secu-
rity and Privacy, 44799 Bochum,
Germany, where he leads the
Software Security research group.
His research interests include
foundations of cybersecurity,
fuzzing (automated testing), and
ML4Sec. Böhme received a Ph.D.
from the National University of
Singapore. He won a 2024 Euro-
pean Research Council Consoli-
dator grant and serves as a guest
editor in chief and associate edi-
tor of ACM Transactions on Software
Engineering and Methodology, and
as a Program Committee chair
of the Association for Comput-
ing Machinery (ACM)/IEEE
Automated Software Engineering
Conference 2025 and ACM SIG-
SOFT International Symposium
on Software Testing and Analy-
sis 2026. Contact him at marcel.
boehme@acm.org.

http://dx.doi.org/10.1145/3708533
https://lock.cmpxchg8b.com/zenbleed.html
https://lock.cmpxchg8b.com/zenbleed.html
https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/edit
https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/edit
https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/edit
https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/edit
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://chromium.org/Home/chromium-security/memory-safety/
https://chromium.org/Home/chromium-security/memory-safety/
https://chromium.org/Home/chromium-security/memory-safety/
https://www.debuggingbook.org/
https://www.debuggingbook.org/
http://dx.doi.org/10.1145/3318162
mailto:marcel.boehme@acm.org
mailto:marcel.boehme@acm.org

