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Abstract—We introduce LEARN2FIX, the first human-in-the-
loop, semi-automatic repair technique when no bug oracle—except
for the user who is reporting the bug-is available. Our approach
negotiates with the user the condition under which the bug is
observed. Only when a budget of queries to the user is exhausted,
it attempts to repair the bug. A query can be thought of as the
following question: “When executing this alternative test input,
the program produces the following output; is the bug observed”?
Through systematic queries, LEARN2FIX trains an automatic bug
oracle that becomes increasingly more accurate in predicting the
user’s response. Our key challenge is to maximize the oracle’s
accuracy in predicting which tests are bug-revealing given a small
budget of queries. From the alternative tests that were labeled
by the user, test-driven automatic repair produces the patch.

Our experiments demonstrate that LEARN2FIX learns a suffi-
ciently accurate automatic oracle with a reasonably low labeling
effort (It. 20 queries). Given LEARN2FIX’s test suite, the GenProg
test-driven repair tool produces a higher-quality patch (i.e.,
passing a larger proportion of validation tests) than using manual
test suites provided with the repair benchmark.

I. INTRODUCTION

Automatic program repair (APR) [1], [2] holds the promise
of automating the tedious, manual task of patching bugs. In
their seminal paper, Le Goues and colleagues [3|] demonstrated
that APR is both feasible and cost-effective even at the scale
of several million lines of code. Given a failing test suite, APR
changes the buggy program such that all test cases pass.

However, what if no such test suite is available? Suppose,
a user reports a bug and provides a test input to reproduce the
bug. We envision a semi-automatic approach that keeps the
human-in-the-loop and negotiates the condition under which
the bug is observed before repairing the bug. Strategically, the
user is asked: “For this other input, the program produces that
output,; is the bug observed”? While the user might not have
the expertise to understand the source code or to produce a
patch, it seems reasonable to ask to distinguish expected from
unexpected program behavior. Iteratively, an automatic bug
oracle is trained to predict the user’s responses with increasing
accuracy. Using the trained oracle, the user can be asked more
strategically. Our key challenge is to maximize the oracle’s
accuracy, given only a limited number of queries to the user.

In this paper, we introduce LEARN2FIX, a technique that
realizes our approach for programs that take numeric inputs.
LEARN2FIX uses mutational fuzzing to generate alternative
test inputs from the failing test, active learning to construct
a Satisfiability Modulo Linear Real Arithmetic SMT(LRA)
constraint that is satisfied only by failing test inputs, and zest-
driven program repair to fix the bug using the labeled tests.
The hope is that test cases—sufficient to train a machine to
accurately identify the bug—are sufficient to repair the bug.

How to generate more failing test cases? Starting from one
failing test, our first objective is to increase the evidence for
the bug before attempting to fix it. Metaphorically speaking,
by exploring the “neighborhood” of the original failing test, we
can stake out the “boundaries” of the bug and find more failing
tests in the “vicinity”. LEARN2FIX uses mutational fuzzing to
generate new tests from the failing one. In mutational fuzzing,
a test input is modelled as a sequence of numbers (i.e., bytes
or integers), and new test inputs are generated by applying
mutation operators at random positions in the sequence.

How do we know whether a generated test reveals the
bug (i.e., whether its a failing test case)? At first, LEARN2FIX
asks the user to classify. However, it would be impractical to
ask the human oracle for every generated test input whether the
program produces the expected output. Instead, LEARN2FIX
trains an automatic oracle that is asked instead. That is, it
learns an SMT constraint [4]] which is satisfied only by failing
test cases. Satisfiability Modulo Theory (SMT) provides a nat-
ural representation of program semantics and is a fundamental
building block of symbolic execution [5]-[7] and semantic
program repair [], [9].

How do we train the automatic oracle most efficiently?
We suggest to maximize the probability that the user is asked
to classify only test cases that are actually failing. Firstly, bugs
are (hopefully) rarely observed, and hence, most generated
test cases are actually passing. This yields a class imbalance
problem: The class of passing test cases is often substantially
larger. Given insufficient evidence for the bug (i.e., a relatively
small number of failing test cases), the trained oracle may
exhibit a high error rate when classifying failing test cases.
Secondly, we cannot ask the user for every test case whether
it is failing. In both cases, the most reasonable strategy would
be to present the user only with test cases that have a high
probability of being labeled as failing.

How do we know the probability that a test case fails
before we can even ask the user? An automatic oracle only
provides hard, binary decisions: Either the test case passes or
it fails. So, how can we derive the probability that test ¢ fails?
LEARNZ2FIX constructs an unbiased committee of oracles from
the original oracle, asks each member of that committee about
the label of ¢, and estimates the probability that ¢ is failing as
the proportion of members that classify ¢ as failing. If that
probability is greater than one half, then ¢ is presented to the
user. This approach is inspired by a seminal paper on reducing
the labeling cost in image classification [10]

'"We present a randomized variant of the algorithm presented by Holub et
al. [[10]. We do not need to construct two classifiers for each unlabeled data
point in a fixed-size sample. Instead, our sample is continuously generated.



Our experiments with Codeflaws [11] demonstrate that

e Oracle quality is high. Even though LEARN2FIX has
only ever seen a single failing test case from the manually
labeled validation test suite, the automatic oracle is able
to accurately predict the label of 75-84% validation tests
(and 76-80% of failing validation tests) for the median
subject. The prediction accuracy further increases as more
queries can be sent to the human oracle.

o The labeling effort is low. As oracle quality increases,
the proportion of generated tests that are sent to the
human oracle decreases. This suggests that the automatic
oracle gradually takes over from the human oracle. Mean-
while, the probability that a test case which is sent to the
human is failing increases. This suggests, our automatic
oracle is effective in reducing the number of queries.

o The repair quality is high. We used the GenProg
automatic repair tool [3]] to (i) repair each buggy program
with the manually constructed training test suite, and
(ii) repair each buggy program with the automatically
constructed test suite that is produced by LEARN2FIX.
While LEARN2FIX produces fewer repairs, patch quality
is higher. The proportion of validation tests that fail on the
repair is 31% smaller, on the average, than for GenProg
when started with the manually constructed test suites.

In summary, our paper makes the following contributions:

« Active Oracle Learning. We introduce an active learning
approach that infers an automatic oracle from well-placed
labeling queries to a human oracle. The automatic oracle
is represented as SMT constraint which is satisfied by all
test inputs that have been labeled as failing. We address
the class imbalance problem by prioritizing the minority
class of failing tests. Our experiments demonstrate that
the inferred oracle accurately classifies a large proportion
of (failing) validation tests.

o Semi-Automatic Repair. We develop the first human-in-
the-loop program repair technique which negotiates with
the reporting user the conditions under which a functional
bug is observed before attempting to repair the program.
Our experiments show that LEARN2FIX’s patches have a
quality that is high while human effort is relatively low.

« Overfitting. Patches may be plausible but incorrect [[12],
[13]]. In our case, the patch would overfit to the failing test
case. To address overfitting, we propose to co-evolve an
automatic oracle and a labeled test suite. The generated
labeled test suite augments the provided test suite.

« Evaluation. We implemented and evaluated LEARN2FIX.
To facilitate reproducibility, we make the implementation,
all data, and scripts available.

II. MOTIVATING EXAMPLE

We introduce the existing challenges of automatic program
repair using a motivating example that is shown in
The example is taken from an experiment by Russ Williams
[14] who asked 12 participants to submit, together with some
inputs and expected outputs, a solution to this problem:

Implement a function classify which takes 3 inputs that
represent the lengths of the sides of a triangle and returns
an integer where the return value

o | means it is equilateral (all sides equal length)

o 2 means it is isosceles (exactly 2 equal sides)

« 3 means it is scalene (no equal sides)

e 4 means it is an illegal triangle

Functional bug. The participants submitted 22 programs
out of which only 4 appear to be correct and 13 test suites
totaling 5636 test cases. [Listing 1| shows the submission by
Steve who wrote a==b==c instead of a==b&&b==c in Line
6. For instance, given input ¢ = (2,2,2), Line 6 evaluates
to (2==2)==2 which evaluates to (1)==2 and finally to O.
Hence, Steve’s program is incorrect for all equilateral triangles,
except (1, 1, 1), and for all isosceles triangles where c==1. For
test input t, classify returns 2 (isosceles) while we expect
it to return 1 (equilateral). Because of this difference between
actual and expected output, we call ¢ as failing test case. It is
a witness of Steve’s bug in Steve’s program.

1 int classify(int a, int b, int c) {

2 if (a <=0 || b <=0 || c <= 0)

3 return 4; // invalid

4 if (a <= c-b || b <= a-c || ¢ <= b-a)

5 return 4; // invalid

¢ if (a == b == ¢) // BUG!

7 return 1; // equilateral
8 if (a ==b || b===c¢c || ¢c == a)

9 return 2; // isosceles
0 return 3; // scalene
1}

Listing 1. Buggy triangle classification program. Given the lengths
of all three sides, classify returns 1 if the triangle is equilateral,
2 if it is isosceles, 3 if it is scalene, and 4 if the triangle is invalid.
This program classifies almost all equilateral triangles as isosceles.

For example, classify (2,2, 2) returns 2 while we expect 1.

Automatic oracle. Steve’s program fails for all inputs that
satisfy the following linear arithmetic constraint

[(a=b)A(b=c)A(a#£1)A (0=2)]

Vila=b)A(e=1)A(a#1)A(o=1)] (1)

where 0 = classify(a,b,c) is the actual output. We call
this an automatic oracle for Steve’s bug because it identifies
for all inputs whether the Steve’s bug is exposed.

Automatic repair. Given a sufficient number of test cases,
an automatic repair tool such as GenProg [3]] or Semfix []]
would first localize Line 6 as fix location. Most failing and
least passing test cases actually execute that statement. The
repair tool would then repair Line 6 such that all test cases
are passing. However, we assume that there exists only a
single failing test case. Even if Line 6 was identified as fix
location, the produced patch may be plausible but incorrect
[13]]. Substituting the if-statement in Line 6 with if (a==2)
would turn the test case (2,2, 2) into a passing one. However,
the patch is overfitting and actually introduces a different bug.

Oracle problem. If an automatic oracle was available, more
failing test cases could be generated to augment the existing



Algorithm 1 Active Oracle Learning

Input: Buggy program P, Failing test case tx = (i, 0)
Input: Human oracle H, Maximimum labeling effort /

1: Failing test Tx = {tx}

2: Labeled tests T = {tx}

3: Automatic oracle O = SMT_LEARN(T))

4: while (|7'] < 1) and not timed out do

5. Failing test ty = SELECT(TY)

6:  Generated test t» = FUZZ(t})

7. if DECIDE2LABEL(t2, O) then

8: Labeled test ¢t = H(t»)

9 Labeled tests T'= T U {t}

10: Automatic oracle @ = SMT_LEARN(T)
11: if ¢ is labeled as failing then

12: Failing tests Tx = Tx U {t}

13: end if

14:  end if

15: end while

return Labeled test cases 7', Automatic test oracle O

test suite [15]. However, for functional bugs, such as the one in
the user that is reporting the bug or the developers
are the only oracles available to distinguish expected from
unexpected behaviors. In this paper, we will discuss an active
learning approach to automatically derive an automatic oracle,
similar to the one in Equation ().

III. LEARNING TO DECIDE TEST CASE FAILURE

Given a buggy program, a failing test case, and only the
user or developer as a test oracle, our technique LEARN2FIX
generates an automatic oracle and a set of labeled test cases.
A test oracle decides whether or not the program produces the
expected output for a given test input. In order to minimize the
queries to the human oracle, LEARN2FIX aims to maximize
the probability that the human is presented with a failing test.

An overview of LEARN2FIX is shown in Algorithm [I] As
input, LEARN2FIX takes the buggy program P, the failing
test case tx = (i, o) where ¢ is a vector of input variable
values and o = P(i) is the actual output of P for i. Next,
we assume that there exists a human test oracle # that can
decide whether a generated test is failing, i.e., exposes the bug.
We also assume that H accepts at most [ queries. As output,
LEARN2FIX produces a set of labeled tests 7" and an automatic
test oracle O that can decide whether a test is failing without
human intervention.

Algorithm |l| maintains two sets of test cases 1" and T that
are labeled overall and are labeled as failing, respectively. A
test case is a tuple consisting of (i) a vector representing input
variable values and (ii) the program’s actual output for that
input vector (e.g., tx = (Z 0)). The first automatic oracle O
is learned by applying SMT_LEARN to the set of labeled test
cases (Line 3; [Section III-B). Given only a single failing test
case, at first, O = true identifies all test cases as failing.

Algorithm [T] generates new test inputs, asks # to label
certain generated test inputs, and refines the automatic oracle

until the maximal allowable number of labels [ is reached or
a timeout occurs (Lines 4-15). In each iteration, a new test
input ¢, is generated from a failing one t} € Tx (Lines 5-6;
[Section TIT-A). If DECIDE2LABEL decides that ¢, should be
labeled, then the human oracle H is asked for the label, the
labeled test is added to 7" (and Tx), and the automatic oracle

O is retrained (Lines 7—14; [Section III-C).

A. Mutational Fuzzing to Generate More Failing Test Cases

More failing test cases are needed. If the automatic oracle
O is trained only with one failing test, the simplest oracle is
O = true: All test cases fail, including the provided one. Of
course, this oracle is highly inaccurate. In order to improve the
accuracy of our automatic oracle, LEARN2FIX must generate
more test cases that—when labeled—become positive and
negative evidence of the bug.

In order to generate more test cases in the “vicinity” of
a failing test case, LEARN2FIX employs mutational fuzzing.
A mutational fuzzer generates new test inputs by applying a
set of mutation operators to an existing seed input. In our
case, SELECT(TY) in Algorithm || first selects as seed input
a random test case ty € Tx while FUZZ(t)) applies mutation
operators to ty such as bit flips, simple arithmetics, boundary
values, and block deletion and insertion strategies to generate a
new input t»E] Our implementation of LEARN2FIX (i) assumes
that the input vector ¢ has a fixed length, i.e., all generated
test inputs have the same lengthE] and (ii) for each position
a in 7, LEARN2FIX either maintains the same value, adds or
multiplies a constant or random value for z[ ] to generate a
new input ¢’ such that t, = (7', o') where o/ = P(7').

The idea of exploring the neighborhood of a failing test case
in order to collect more evidence of the location and behavior
of the observed bug is not new. In fact, the widely successful,
coverage-based, mutational greybox fuzzer American Fuzzy
Lop (AFL) features a crash exploration modeﬂ which allows
to generate more crashing inputs from a seed crashing input.

Example. For our motivating example in starting
with the failing test case tx = ((2,2,2),2), for illustration
suppose for each position a in i, we employ one of three
mutation operators chosen uniformely at random: ' [a] = 7]a],
i'[a] = i[a] + 1, or '[a] = i[a] — 1. The following test cases
to, .., tg are generated when actually running the fuzzer on tx:

((2,2,1),1)2, ((1,3,3),2),
((1,3,2),4)2, ((3,3,1),1),
((2,1,3),4)2, ((3,3,3),2),
((2,1,1),4)2, ((1,2,3),4)s,
((3,2,2),2)2, ((2,3,2),2)2

The probability to generate another failing test case by mu-
tational fuzzing is much higher than by generational fuzzing.
Suppose, we would randomly generate three numbers in the
range [—253,263 — 1]. The probability that the corresponding

2https://lcamtuf.blogspot.com/20 14/08/binary-fuzzing- strategies- what- works.html
3Otherwise, we cannot fix the value domain during oracle-learning [4].
4https://lcamtuf.blogspot.cnm/2014/1 1/afl-fuzz- crash-exploration-mode.html


https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.blogspot.com/2014/11/afl-fuzz-crash-exploration-mode.html

test case represents an isosceles triangle with ¢ = 1 or an
equilateral triangle required to expose Steve’s bug is infinites-
imal. On the other hand, three of the ten test cases generated
by our mutational fuzzer expose Steve’s bug (if labeled by
H), ie., ((2,2,1),1), ((3,3,1),1), and ((3,3,3),2). As more
test cases are generated and labeled by the human oracle, the
quality of the automatic oracle improves.

B. Active SMT-based Oracle Learning

An automatic oracle is needed. We cannot expect the user H
to label every generated test case. Instead, LEARN2FIX trains
an automatic oracle O based on the tests that have already been
labeled by H. Like the human oracle, the automatic oracle
decides whether a given test is labeled as passing or failing.
As the accuracy of the automatic oracle improves, O gradually
takes over from 7{. The automatic oracle is trained within an
active learning loop with the human oracle as the teacher and
the automatic oracle as the learner.

Why SMT? We believe that Satisfiability Modulo Theory is
a natural representation of buggy program semantics. Firstly,
SMT constraints are fundamental building blocks in semantic
analysis, including symbolic execution and semantic program
repair. Symbolic execution [5]-[7|] uses SMT constraints (i.e.,
path conditions) to group all inputs that exercise the same
path. The negation of the constituent branch conditions and the
solution of the resulting constraints facilitates the exploration
of alternative paths. Semantic program repair [§], [9] uses
SMT constraints for statement-level specification inference
at the fix location and SMT-based synthesis to satisfy the
inferred specification [[16]. Unlike other binary classifiers, such
as Support Vector Machines (SVMs), SMT constraints nicely
capture the “discontinuous” nature of program behaviorE]

Secondly, our automatic oracle is a simple constraint. It only
reflects the circumstances under which the program behaves
in an unexpected manner. It does not reflect how the program
is expected to behave. Indeed, this would require a full-
fledged specification inference. For our motivating example in
we know that Steve’s program provides unexpected
results for all equilateral triangles, except for those with sides
of unit length, and for all isosceles triangles where the third
side has unit length. As SMT constraint, the automatic oracle
O for Steve’s bug is shown in Equation (I). It is not necessary
for O to capture what we expect, e.g., to be a scalene triangle.

Oracle inferencing. LEARN2FIX uses INCAL to implement
SMT_LEARN in Algorithm E} INCAL [4] is a passive machine
learning technique that given positive and negative examples
learns an SMT(LRA) constraint that is satisfied by all positive

5Qur preliminary experiments with popular classifiers (e.g., SVM) revealed
a prediction accuracy well above 90%. However, upon closer inspection, we
found that the classifier would conservatively predict all test cases as passing.
Even from the training set, almost none of the failing test cases was correctly
predicted as failing. Indeed, in the presence of the class imbalance problem,
prediction accuracy is an improper measure of classifier quality [[17]. An SMT
constraint, in contrast to regression-based classifiers, interpolates the training
set, i.e., the constraint is satisfied by all failing test cases and no passing test
case in the training set. In our results, we report the proportion of correctly
identified failing test cases in a validation set as measure of classifier quality.

but not by any negative examples. Satisfiability Modulo Linear
Real Arithmetic SMT(LRA) is a formalism that combines pro-
positional logic with expressions from linear arithmetic (e.g.,
[in]equalities, sums, and products) over continuous variables.

INCAL casts the problem of generating an SMT constraint—
that would satisfy all positive and no negative examples—
itself as a satisfiability problem (rather than an optimization
problem). The authors argue that “searching for a satisfying
formula is usually faster than searching for an optimal one in
practice”. It is assumed that all examples are labeled correctly.
It is guaranteed that INCAL “will find a constraint that satisfies
all positive examples and none of the negatives, iff such a
formula exists”. In contrast to most rule learning approaches,
INCAL is non-greedy, i.e., the formula is learned in one step
rather than piece-by-piece.

LEARN2FIX extends INCALs passive learning into an active
learning approach. The learner (i.e., automatic oracle) actively
queries the teacher (i.e., the human oracle) about the label of
the most informative examples (i.e., generated test cases).

C. Maximizing the Probability to Label a Failing Test Case

In order to construct an effective automatic oracle, the class
imbalance problem (CIP) needs to be addressed. Usually, there
are more test inputs that do not expose the bug. In other words,
a test generation technique normally generates more passing
than failing test cases (whether or not we know the label of
the test case). LEARN2FIX addresses the CIP partially already
using the mutational fuzzing approach to generate more test
cases in the “vicinity” of the failing test case (Section IIT-A).
However, we still find that most generated inputs are passing.
The human oracle ‘H has limited time. So asking her to label
mostly passing test cases is unproductive.

How do we maximize the probability that the human H is
queried with mostly failing tests (without knowing whether the
test case is actually failing)? More importantly, how can we
predict the probability that a test case is failing if the automatic
oracle can only deliver hard decisions (passing or failing)?

Algorithm 2] provides an overview of how DECIDE2LABEL
in Alg. [I] maximizes the probability that the human oracle is
asked to label mostly failing test cases. Firstly, if the current
automatic oracle O predicts the label of the generated test ¢; as
failing, then conservatively ¢, is passed on to the human oracle
for labeling (i.e., DECIDE2LABEL returns frue; Lines 1-4).

Oracle committee. Secondly, if the majority of an unbiased
committee of oracles predicts the label of ¢, as failing, then
it is passed on to the human oracle, as well. LEARN2FIX
constructs the oracle committee to answer the question how
to predict the probability that ¢, is failing if our oracle O can
only provide hard decisions. LEARN2FIX effectively generates
a given number S of test cases by fuzzing t» and assigns each
label L € {v, X} to each generated test case ¢, (Lines 7-9).
For each such hypothetically labeled test case ¢, LEARN2FIX
generates an oracle O and asks that hypothetical oracle
about the label of the original, unlabeled test case t,. If the
majority of hypothetical oracles predict the label of ¢; as



Algorithm 2 DECIDE2LABEL auxiliary function
Input: Unlabeled test case t», Automatic oracle O
Input: Committee size S
1: Labeled test ¢t = O(t»)
2: if ¢ is labeled as failing then
3:  return true
4: end if
5: votes = (
6: for Index ¢ from 1 to S do
7. Generated test tj = FUZZ(t7)
8:  Labeled test t/, < assume ) is labeled as passing
9:  Labeled test t}, <— assume ¢} is labeled as failing
10:  Hypothetical oracle O, = SMT_LEARN(T' U {t/, })
11:  Hypothetical oracle Ox = SMT_LEARN(T U {t}})
12:  if O, labels t» as failing then increment votes end if
13:  if Oy labels t» as failing then increment votes end if
14: end for
15: Failure probability estimate § = e
return (é > 0.5) // return true if the majority votes for failing

failing, then DECIDE2LABEL returns true, as well (Lines 12—
16). Otherwise, DECIDE2LABEL returns false.

The committee is unbiased because LEARN2FIX counts the
vote from an oracle that is trained with the labeled test cases
T plus a random, new test case hypothetically labeled as
failing with the same weight as the vote from an oracle that is
trained with the same new test case hypothetically labeled as
passing. The key idea is to construct so-called look-one-ahead
oracles [10] which are given all the actual evidence (i.e., the
labeled test cases T') plus one piece of hypothetical evidence,
(i.e., a random unlabled test case which is assigned a random
label). Our experiments show, as more tests are labeled (i.e.,
|T| increases), the prediction accuracy of the look-one-ahead
oracles improves, too. To boost statistical power, LEARN2FIX
constructs and queries 2 - S such look-one-ahead oracles.

IV. IMPLEMENTATION

LEARN2FIX is implemented in Python v3.7 and builds on
the INCAL toolf] the PYwMI toolbox for probabilistic infer-
encing (which includes a solver for SMT(LRA) constraints)
the LATTE model counting toolE] and the NUMPY scientific
computing libraryﬂ Most of these libraries are dependencies
that are inherited from INCAL.

Figure [T] gives an architectural perspective on LEARN2FIX.
At first the test suites 7' and Ty are seeded with the failing
test case tx. The SMT_LEARN method uses INCAL to learn the
first automatic oracle and the first oracle committee from the
labeled test suite. Meanwhile, the FUZZ method implements
the mutational fuzzer which generates a new test case t9.

Within the DECIDE2LABEL method, first the automatic
oracle and then the supporting oracle committee are asked

Ohttps://github.com/ML-KULeuven/incal
"https:/pypi.org/project/pywmi/
8https://www.math.ucdavis.edu/~latte/software.php
9https://mumpy.org/
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Fig. 1. Architecture and Implementation LEARN2FIX

to predict the label of the generated test case. If either oracle
or committee predict 5 to be failing, (¢s, X), t- is sent to the
human oracle for labeling. Otherwise, the generated test case
is discarded. The test case that is labeled by the human oracle
is added to the labeled test suite 7'. From the augmented test
suite, INCAL is used to construct an improved automatic oracle
and oracle committee. The improved oracles are then used to
make better predictions about which test cases to pass to the
human oracle. This closes the active learning feedback loop.

INCAL [4] takes a variable domain which specifies the type
and number of the constrained variables, and a set of positive
and negative examples. An example is a vector of values for the
variables in the domain that is specified. In our case, a positive
example, which is supposed to satisfy the learned constraint,
is a failing test case. From the domain and examples, INCAL
produces an SMT(LRA) constraint that is satisfied by all
positive examples and by none of the negative examples.
While our implementation of LEARN2FIX is technically bound
to SMT(LRA) constraints, we believe as the field of SMT
learning advances more domains, such as strings, will become
available to our approach.

The mutational fuzzer takes a test case and applies various
mutation operators to generate a new test case. In LEARN2FIX,
a test case (i,0) is a tuple consisting of a test input 7 and the
actual output o. The mutational fuzzer extracts and mutates
the test input to produce a new test input, and constructs the
new test case by executing the new test input on the program
(which produces the new actual output). As mutation opera-
tors, we use several simple operations, such as incrementing or
decrementing the value, adding or subtracting ten, multiplying
or dividing by ten, replacing the value with a random number.
For each position in the test input, zero or more operators can
be applied. Through the mutational fuzzer, it is possible to
generate both passing and failing test cases.

The automatic oracle is a first-order logic SMT formula
generated by the SMT Learner. Given the program inputs and
the actual output, the satisfiability of this formula predicts the
label of the test case. Each time the human oracle labels a test
case, the automatic oracle is being updated.


https://github.com/ML-KULeuven/incal
https://pypi.org/project/pywmi/
https://www.math.ucdavis.edu/~latte/software.php
https://numpy.org/

The supporting oracle committee contains a set of auto-
matic oracles. Each automatic oracle is generated by the SMT
learner taking the labeled test suite and one generated test case
with a hypothetical label (Algorithm [2} [Section ITII-C)). This
generated test case is obtained from the mutational fuzzer.
LEARN2FIX constructs a new oracle committee every time a
new test case is labeled and added to the labeled test suite 7.

V. EXPERIMENTAL SETUP

A. Research Questions

RQ.1 (Oracle quality). How accurately does LEARN2FIX’S
automatic oracle label manually constructed & labeled
(failing) test cases provided in the repair benchmark?

RQ.2 (Human effort). What is the proportion of generated
test cases that are sent to the human oracle for labeling?
Does the probability to send mostly failing test cases
indeed increase versus a random choice of test cases?

RQ.3 (Patch quality). How does the quality of patches pro-
duced using LEARN2FIX’s automatically generated test
suite compare to the quality of patches produced using
the manually constructed test suite that is provided with
the repair benchmark? Specifically, how many subjects
can be repaired and what is the proportion of validation
(heldout) test cases that pass on the patched program?

B. Experimental Subjects
To evaluate LEARN2FIX and answer the research questions,
we chose the benchmark according to the following criteria:

1) It should contain a sufficiently large number of programs
that are algorithmically complex.

2) It should contain a diverse set of real defects that cause
functional bugs, i.e., programs produce unexpected output
for some inputs. For each subject, there should be 1 bug.

3) For each subject, there should be a golden version, i.e., a
slightly changed program where the bug has been fixed.
To automate a large number of experiments, the golden
version will act as the human oracle H. Any discrepancy
between the output produced by the golden and buggy
version for the same test input is labeled as failing test.

4) For each subject, it should contain a manually constructed
and labeled training test suite and a validation test suite.
Both test suites combined will be used to evaluate oracle
quality while training and validation test suite will be
used to generate a patch and evaluate patch quality, resp.

5) For each subject, it should contain at least a failing test in
the training test suite, i.e., a test input for which the buggy
and golden version produce different outputs. Otherwise,
LEARN2FIX cannot be started.

6) For each subject, it should contain test inputs that have a
constant number of numeric input values. For each such
test input, the program should produce a numeric output.
Otherwise, INCAL cannot be used to learn the oracle O.

Codeflaws [11]] satisfies the first four selection criteria. Code-
flaws consists of 3902 buggy programs and the corresponding
golden versions. For each buggy program there exist manually

# Defect | Description Example
72 DCCR | Replace constant — for(i=n+1;1i<=90;i++)
with variable/constant + for (i=n+1;i<=100;1i++)
63 OILN | Tighten condition - 1f (£%2==0)
or loosen condition + 1f(t%2==0 && t!=2)
59 ORRN | Replace relational — if (sum>n)
operator + if (sum>=n)
50 HIMS | Insert multiple + freopen ("input.txt",
non-branch statements "r", stdin);
+ freopen ("output.txt",
"w", stdout);
48 OAIS | Insert/Delete - max += days$2;
arithmetic operator + max += (days%7)%2;
48 HOTH | Other higher order - scanf ("%s",h);
defect classes + for (i=0;1i<71;1i++)
+ scanf ("%c",&h[i]);

Fig. 2. Top-5 defect classes (out of 34) for our 552 Codeflaws subjects. First
column (#) lists the number of subjects belonging to that defect class.

constructed and labeled training and validation test suites. The
programs originate from 1653 users of Codeforces where they
competed in different programming contests and solved three
to five programming problems. In their 2017 publication, the
authors claim “to our best knowledge, in automatic program
repair evaluation, our benchmark has the largest number of real
defects obtained from the largest number of subject programs
to date” [11].

From all subjects in Codeflaws, 552 subjects satisfy the last
two criteria (cf. [Figure 2. 2298 subjects took input files with
more than one line, 323 took inputs that are not numeric, 82
did not contain functional bugs (but instead, e.g., crashes or
timeouts), 39 did not contain failing tests, one (1) subject had a
non-constant number of input variables across test input files,
and 607 subjects produced a non-numeric output.

IntroClass and ManyBugs benchmarks [18]] do not satisfy
our selection criteria. ManyBugs consists of programs that take
complex, non-numeric inputs which does not satisfy our sixth
criterion. IntroClass consists of programs that implement one
of six very simple functions (e.g., return the smallest of three
numbers) which does not satisfy our first selection criterion.

GenProg. As automatic repair tool, we chose GenProg [3]
because it is a mature tool that has been shown to repair large
programs cost-effectively. GenProg is already set up with the
Codeflaws repair benchmarkm

C. Setup and Infrastructure

For each subject program, given a single failing input we
run LEARN2FIX to produce a labeled test suite, including both
failing and passing test cases. The detailed workflow for this
step is shown in Figure[T] The data collected from the first step
(i.e., test suite generation and labeling) is used to answer the
first two research questions (RQ.1 and RQ.2). To answer RQ.3,
we run GenProg twice with an attempt to repair the buggy
subject using the labeled test suite generated by LEARN2FIX
and the manually constructed training test suite, respectively.

10We also sought to conduct experiments with the Angelix [9] automatic
repair tool. However, despite enlisting the help of the Angelix authors a few
weeks before submission, we could not get Angelix to work with Codeflaws. It
seems recent upstream changes in the dependencies introduced a compatibility
issue: https://github.com/mechtaev/angelix/issues/11| (DBR: Not our report).


https://github.com/mechtaev/angelix/issues/11
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Fig. 3. Oracle Quality. On the left (a): Boxplots showing the accuracy of LEARN2FIX’s automatic oracle O when predicting the labels of manually constructed
and labeled validation test cases in the repair benchmark, when varying the maximal number of labeling queries to the human oracle (i..,  in Algorithm [I).
For overall accuracy (a.left), the observed increases are statistically significant according to the paired one-sided Wilcoxon test (p < 0.0001). For conditional
accuracy (a.right), there is no statistically significant difference (p > 0.05). On the right (b): Boxplots showing some statistics about the validation test suites,

including the distribution of passing and failing tests across subjects.

For our experiments, we fixed the following values.

o Timeouts. We set the maximal time for auto-generating a
labeled test suite (Alg. [I)) as well as for auto-generating
a patch to 10 minutes each.

o Committee size. We set the size of the oracle committee
to 20 members (i.e., S = 10 in Alg. [2).

o Maximal labeling effort. We set the maximal number of
queries to the human oracle to 10, 20, and 30, repeating
the entire set of experiments for all three parameters (i.e.,
1 € {10,20,30} in Alg. .

Experiment Repetition. To mitigate the impact of random-
ness and to gain statistical power for the experimental results,
we repeat each experiment 30 times.

Infrastructure. We evaluated our approach within a Docker
container that has access 64GB of main memory and 32 logical
Intel Haswell processor cores (each at 2.0GhZ) and that runs
the Ubuntu 16.04.03 LTS (Xenial Xerus) 64-bit OS.

D. Reproducibility

To facilitate open science and reproducibility, we make our
implementation of LEARN2FIX, our collected data, and scripts
available at first in a blinded manner for the reviewer’s scrutiny
and, upon acceptance, publically for everyone to reproduce our
results. We provide concrete instructions for reproducing the
experiments and all artifacts here:

> https:/github.com/mboehme/learn2fix

VI. EXPERIMENTAL RESULTS

RQ.1 Test Oracle Quality

Validation tests. The Codeflaws benchmark [[11] comes with
a large number of manually labeled test cases (i.e., training and
heldout test cases). We use these validation tests to check the
accuracy of LEARN2FIX’s automatic oracles. In [Figure 3|b,
we see the distribution of the number of passing and failing
validation tests across all subjects. On average, each subject
is accompanied by 42 passing and 13 failing validation tests.

Measures of oracle quality. The classical prediction accu-
racy is computed as the proportion of validation tests for which

both human and automatic oracle agree. However, due to the
class imbalance problem, classical accuracy is not a good
measure of oracle quality. If about 90% of the generated tests
are actually passing, even a low-quality oracle that predicts
all tests as passing would have a prediction accuracy of 90%.
To address the class imbalance problem, we also report the
conditional accuracy which is computed as the proportion of
actually failing validation tests that the automatic oracle also
labels as failing (i.e., conditioned on the minority class).

Result presentation. Throughout the results section, the box
plot is our main means of presenting the data. For each subject,
labeling effort, and measure, we computed average values over
all 30 runs. For instance, when configured with a maximal
labeling effort of [ = 10 queries, LEARN2FIX’s prediction
accuracy for the subject 1-A-bug-18353198-18353306
is 83.4% when averaged over all 30 runs. A boxplot shows
several interesting statistics for the distribution of this average
value over all subjects. For instance, from the first boxplot in
Figure 3la, we can derive that for the middle 50% of the 552
subjects, LEARN2FIX exhibits a prediction accuracy between
63% and 88% with a median of 75%. For a quarter of subjects
the prediction accuracy is higher than 88% (up 100%).

Even though LEARN2FIX has only ever seen a single failing
test case from the manually labeled validation test suite, the
automatic oracle is able to accurately predict the label of
75-84% validation tests for the median subject (Fig. [3la).
The prediction accuracy further increases as more queries
can be sent to the human oracle. For instance, if the human
is willing to label 30 tests, the median prediction accuracy
is 15% higher than if the human only wants to label ten.
Even if we focus only on the minority class, Fig. [3] shows
that LEARN2FIX’s automatic oracle labels at least 78% of
failing validation tests correctly for the majority of subjects
(i.e., the median conditional accuracy is 78% or higher).

Result. LEARN2FIX produces high-quality test oracles that
improve with the number of queries to the human oracle.


https:/github.com/mboehme/learn2fix
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Fig. 4. Human Effort. On the left (a): Boxplots showing the proportion of generated or failing tests that LEARN2FIX sends to the human oracle for labeling. All
observed decreases are statistically significant (paired one-sided Wilcoxon test; p < 0.01). On the right (b): Boxplots showing the probability that LEARN2FIX
sends a failing test relative to the probability that LEARN2FIX generates a failing test. Observed increases (b.right) are statistically significant (p < 0.0001).

RQ.2 Human Effort

Measures of human effort. We report two metrics. Firstly,
we measure the proportion of generated tests that are labeled
given the human is willing to label at most [ € {10, 20,30}
generated tests. That is, we abort the test generation once the
human has labeled [ tests. The lower the proportion of labeled
generated test cases, the lower the human effort.

Secondly, we measure the probability to label a failing test,
i.e., how likely it is that the human oracle labels a received test
as failing. The key objective of LEARN2FIX is to maximize the
probability that the human oracle is labeling failing test cases,
i.e., the minority class. If the probability to label a failing test
case is much greater than the probability to generate a failing
test case, the human effort is reduced.

As the (conditional) prediction accuracy of the automatic
oracle increases, the proportion of generated tests that are
labeled decreases (Fig. [ a-left). Meanwhile, the proportion
of generated test cases that are labeled as failing remains
above 70% (Fig. Hla-right). In other words, while a smaller
proportion of generated test cases require human scrutiny,
LEARNZ2FIX retains roughly the same proficiency to identify
failing test cases to send to the human oracle.

For the median subject, almost every second test case is
sent for labeling if the human oracle is willing to label only
ten test cases (I = 10). However, for the median subject, only
one in four generated tests is sent for labeling if the human is
willing to label three times more test cases (I = 30). Recall
that no more tests are generated once the human oracle has
labeled [ generated test cases.

As the (conditional) prediction accuracy of the automatic
oracle increases, the probability that a test—that is labeled
by the human oracle—turns out failing increases (Fig. {]b-
right). Meanwhile, the probability to generate a failing test
(unsurprisingly) remains about the same (Fig. @b-left). In
fact, for the median and average subject, when | = 30, the
probability to label a failing test case is twice and 11 times
higher than expected by random labeling, respectively.

For the median subject, about a quarter of the generated tests
are actually failing. However, if the human is willing to label
I = 30 generated tests, for the median subject, the probability
that LEARN2FIX labels a failing test is about twice as high.

Result. LEARN2FIX reduces human effort versus random
labeling. As oracle quality improves, effort is further reduced.

RQ.3 Patch Quality

Training and validation. For each subject, the Codeflaws
repair benchmark provides manually constructed training and
validation test suites. Given the training test suite, GenProg at-
tempts to produce a patch such that all test cases in the training
set are passing. In addition, for each subject LEARN2FIX auto-
generates three training test suites of size [ € {10, 20,30}. We
assume that the human oracle provides the expected output for
the labeled tests. We call the manually constructed training
suite as manual and LEARN2FIX’s training suites as 10, 20,
or 30 depending on suite’s size [. The validation test suite is
used to measure the quality of all four patches.

Measures of patch quality. Firstly, we measure repairability
as the proportion of subjects that were successfully repaired
in at least one of three runs. In other words, for those subjects
all tests in the provided fraining test suite pass on the patched
program. Secondly, we measure the validation score as the
proportion of validation tests that pass on the patched program.
Primarily, we would like to maximize the validation score as
it also measures overfitting (unlike repairability).

While fewer subjects are repaired when GenProg is given
LEARN2FIX s training suite, the validation score is higher.
As the size of the training suite increases, the repairabil-
ity decreases: Fewer repairs are produced (Fig. []left).
Hence, we explain the increased repairability—when given
the manual suite-by the lower number of training tests
(Fig. Blmiddle). The median and average number of manual
training tests per subject is 6 and 10.8 test cases, respec-
tively. The validation score of the patches that are produced
with LEARN2FIX s training tests increases as test suite size
increases (Fig. P}right): Our auto-generated patches are
better. The proportion of validation test cases that still fail
on the generated repair is 31% smaller, on the average,
when the repair is produced by LEARN2FIX (I = 30) than

by the manually constructed training suite (cf. [Figure 6).

Result. LEARN2FIX produces test suites that are well-suited
for automatic program repair to produce high-quality patches.
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Fig. 5. Patch Quality. On the left: The proportion of subjects that could be successfully repaired (across all 30 runs), i.e., a patch was generated such that
all (generated) training tests pass. In the middle: The number of manually constructed training test cases as provided with the Codeflaws repair benchmark
(across all 552 subjects). On the right: The proportion of manually constructed validation test cases that pass on the patched program (across all 552 subjects).
According to the unpaired, two-sided Wilcoxon test, the observed increases between Manual and [ = 20 are statistically significant (p < 0.001). There is no
statistically significant difference from { = 20 to I = 30 (p > 0.05) In both cases, a mean of 90% heldout tests pass on the patches produced by LEARN2FIX.

Median  Average
Manually generated test suite 2.4% 14.9%
Auto-generated test suite (I = 10) 1.6% 13.8%
Auto-generated test suite (I = 20) 0% 10.1%
Auto-generated test suite (I = 30) 0% 10.3%

Fig. 6. Proportion of validation tests that are still failing on the repaired
subject (across all subjects). Complement of the validition score (1 — score).

VII. THREATS TO VALIDITY

As for any empirical study, there are various threats to the
validity of our results and conclusions. The first concern is
external validity, i.e., the degree to which our findings can be
generalized to and across other subjects and tools. First, our
results may not hold for other subjects. Particularly, our SMT
learning tool INCAL [4] works only for numeric variables.
Hence, our subject programs were required to take numeric
input values and produce numeric output values. However, we
chose our subjects such that we had a large number of real,
arithmetically complex, buggy programs containing diverse
types of defects (i.e., 552 programs containing 34 defect types;
cf. Sec. [V-B). Second, the results on patch quality (RQ.3)
may turn out differently for automatic program repair (APR)
tools other than GenProg. However, the APR tool used in
our experiments, GenProg [J3]], is state-of-the-art and has been
shown to repair large open-source programs cost-effectively.

The second concern is internal validity, i.e., the degree to
which our study minimizes systematic error. Firstly, to mitigate
spurious observations due to the randomness of the mutational
fuzzer or the SMT learner and to gain statistical power,
we repeated each experiment 30 times and report average
values. Second, like implementations of other techniques, our
tool may not faithfully implement LEARN2FIX as presented
in Algorithms [ and 2] However, to facilitate scrutiny and
reproducibility, we make source code and all data available.

The third concern is construct validity, i.e., the degree to
which a test measures what it claims, or purports, to be
measuring. To mitigate this threat, we motivate and discuss at
least two measures for each of the three independent variables:
oracle quality, human effort, and patch quality.

VIII. RELATED WORK

This paper was inspired by the work of Holub et al. [10] on
an active learning approach to reduce human (labeling) effort
during image classification. Faced with large amounts of un-
labeled data, the authors required an efficient human labeling
approach. Holub et al. proposed to send in each iteration to
the human oracle only the most informative unlabeled point
(MUIP), i.e., that image where the classifier is most uncertain
about its label. “At first glance this may seem counter-intuitive:
how can the algorithm know whether a group of unlabeled
images will be informative, when, by definition, there is no
label directly associated with the images” [[10]?

We extended the approach of Holub et al. by addressing the
class imbalance problem (generated tests are likely passing)
which violates their assumption of equal probabilities over all
labels. LEARN2FIX conservatively sends all test cases to the
human oracle that are predicted as likely failing. Moreover,
we extended their pool-based approach, where the data have a
fixed number of points, into a stream-based approach, where
data points are continuously generated and decided upon. Our
insight is that a reliable probability estimate for a point’s label
can be derived with a fixed-size random classifier committee.

“The automation of test oracles is probably one of the most
difficult problems in software testing” according to Briand [19].
There are two kinds of automatic test oracles. Barr et al. [20]
provide a recent survey on the oracle problem in general while
Pezze and Chang [21]] review the current state-of-the-research
for constructing and evaluating automated test oracles specif-
ically. Implicit oracles are compiler-induced and observable
as crashes or timeouts [20]. Functional or logical bugs cannot
be detected by implicit oracles. Implicit oracles can also be
injected [22], [23]]. For instance, ASAN [22] induces a crash
for inputs that expose a memory safety error. Explicit oracles
detect functional and other bugs and must be manually added.
Typically, developers write assertions as explicit oracles [24].
However, while assertions are added proactively, our goal is to
construct an explicit oracle retroactively, i.e., the oracle should
identify new test cases exposing a known error.



Bowring et al. [25] also propose to train an oracle by queries
to the human. Suppose, a test input ¢t was labeled as failing.
The test oracle would assign an unlabeled test input which
executes the same code with similar frequency as ¢ the same
label as ¢. Unlabeled tests that execute other code or the same
code with a different frequency as previously labeled tests are
sent to the human for labeling. This induces a query for each
increase in coverage. In their study, even at 350 queries, the
authors did not observe a difference in prediction accuracy
compared to a passive learning approach, where the classifier
is trained with a random set of the same number of labeled
tests. In contrast, LEARN2FIX requires no source code and
addresses our key challenge, i.e., to minimize the number of
queries while maximizing oracle quality, which we empirically
demonstrate even at 10 queries. Also, LEARN2FIX realizes our
larger vision of human-in-the-loop automatic program repair.

Other existing approaches infer a specification of a program
as regression oracle [21]—while the objective of LEARN2FIX
is to infer a bug oracle. A regression oracle checks whether a
new program version behaves like the previous version for
unseen inputs. Machine learning can be used to learn the
function between the program inputs and outputs. The learned
function can be implicitly represented as classifier [26[—[28]]
or explicitly as a program assertions or likely invariants [29].
Now, given a new program version, if for an input the output
that is predicted by the regression oracle differs from the actual
output, a bug may have been introduced in the recent changes.

While such existing techniques learn to identify the expected
behavior of a program, our bug oracle learns to identify the
unexpected behavior (i.e., a known functional bug). We believe
that this smaller task is achieved much more efficiently. For
instance, in our motivating example (Sec. @), LEARN2FIX
does not learn how to classify a triangle. Instead, it learns
which triangles Steve’s program classifies incorrectly. Groce
et al. [30] present an approach to learn an automatic bug
oracle for a classifier that has been observed to misclassify.
However, their approach uses properties that are specific to
classifier programs. In contrast, LEARN2FIX generally applies
to all programs (as long as their domain and range can be
represented in an existing satisfiability modulo theory).

To reduce the time it takes the human oracle to label tests in
a generated test suite as passing or failing, several approaches
have been proposed. Harman et al. [31] propose to reduce
the number of tests generated without compromising code
coverage achieved. Afshan et al. [32] proposed to improve the
human readability of the generated test cases by incorporating
a natural language model into the test generation process.
McMinn et al. [33] propose more generally to extract oracle
knowledge from various sources, such as programmers, source
code and documentation. Pastore et al. [|[34] propose to crowd
source the labeling task to a crowd of users on the Internet
to label the test cases. Staats et al. [35]] suggest to identify a
smaller subset of variables to be checked that have the highest
impact on the program output. However, none of these works
studies the problem of constructing an automatic oracle that
learns to label a continuous stream of generated test cases.

The use of constraints as oracles has been explored within
formula-based debugging [36]. Given an input that fails on
the current version and passes in a previous version, DARWIN
[37] constructs an SMT constraint that is satisfied by all inputs
that pass on the current version and differ marginally from the
failing input in their control flow behavior. This difference in
control flow points to the location of the fault. Ermis et al. [|38]]
introduce the error invariant which is anchored at a particular
program location and represents variable values that still lead
to an observed assertion violation. Angelic Debugging [39]
infers SMT constraints as statement-level specification for the
faulty statement. None of the existing techniques produce an
automatic oracle that can decide whether a test case does or
does not expose a known functional error.

The generation of further failing test cases from one failing
test has previously been explored. The AFL fuzzer [40[]—[42]]
supports a crash-mode for this purpose. More tests can also be
generated to isolate the fault [43]], or to improve auto-generated
patches [15]. Given only a stack trace, there exist techniques
that generate a crash-reproducing input [44], [45]. Unlike in
our work, in all cases an automatic oracle is already assumed.

IX. DISCUSSION AND FUTURE WORK

We envision a semi-automatic approach that negotiates the
condition under which the bug is observed before repairing the
bug. Strategically, the user is asked: “For this other input, the
program produces that output; is the bug observed”? While the
user might not have the expertise to understand the source code
or to produce a patch, it seems reasonable to ask to distinguish
expected from unexpected program behavior. Iteratively, an
automatic bug oracle is trained to predict the user’s responses
with increasing accuracy. Using the trained oracle, the user can
be asked even more strategically. The key challenge that we
addressed in this paper was to maximize the oracle’s accuracy,
given only a limited number of queries.

We presented LEARN2FIX which realizes our approach for
programs that take numeric inputs. We empirically showed that
the quality of the trained oracles and auto-generated patches
is reasonably high despite a relatively low labeling effort. The
restriction to numeric inputs is inherited from INCAL [4] a very
recent (2018) technique that learns an SMT(LRA) constraint
from positive and negative examples. Yet, programs that take
arrays, strings, or structured objects require more sophisticated
theories (e.g., [46], [47]). Some limitations are shared with
symbolic execution which builds on SMT, as well. Realizing
our approach for non-numeric inputs is left for future work.

We note that the learned constraint cannot serve as ground
truth, e.g., during semantic repair [8], [9]. The inferred oracle
is only approximate and may itself mispredict. In future, we
plan to explore the true risk [48] (i.e., the true probability of
misprediction) within a probabilistic or statistical framework
[49], [50]. Exact learning might be possible with equivalence
queries [S1] in addition to the membership queries to the
(human) teacher. As a more general approach, we also plan to
evaluate binary classification with abstention [52]. Only test
inputs with “uncertain” label are passed to the human.



We are excited by the prospect of the first fully automatic
end-to-end software debugging technique that starts with a user
reporting a bug and ends with a patch that fixes the bug, where
the patch has a better quality than one which is auto-generated
from manually constructed test cases. Of course, there are
abundant opportunities for future work, but our current results
are already very encouraging.
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