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Abstract—The leakage of secret information via a public
channel is a critical privacy flaw in software systems. The more
information is leaked per observation, the less time an attacker
needs to learn the secret. Due to the size and complexity of
the modern software, and because some empirical facts are not
available for a formal analysis of the source code, researchers
started investigating statistical methods using program executions
as samples. However, current statistical methods require a high
sample coverage. Ideally, the sample is large enough to contain
every possible combination of secret × observable value to
accurately reflect the joint distribution of ⟨secret, observable⟩.
Otherwise, the information leakage is severely underestimated,
which is problematic as it can lead to overconfidence in the
security of an otherwise vulnerable program.

In this paper, we introduce an improved estimator for in-
formation leakage and propose to use methods from applied
statistics to improve our estimate of the joint distribution when
sample coverage is low. The key idea is to reconstruct the
joint distribution by casting our problem as a multinomial
estimation problem in the absence of samples for all classes.
We suggest two approaches and demonstrate the effectiveness
of each approach on a set of benchmark subjects. We also
propose novel refinement heuristics, which help to adjust the joint
distribution and gain better estimation accuracy. Compared to
existing statistical methods for information leakage estimation,
our method can safely overestimate the mutual information and
provide a more accurate estimate from a limited number of
program executions.

Index Terms—Information Leakage, Mutual Information, Sta-
tistical Estimation

I. INTRODUCTION

Adversaries should not be able to infer secret data by
observing public information from a system. In fact, devel-
opers need to minimize the information an adversary can
infer about secret values to protect a data-sensitive program
from an adversary who can observe the program’s behavior. If
information about the secret is leaked, i.e., an adversary can
infer it from the observed behavior of the program more than
the developer intended, it becomes a critical privacy bug [1].
Therefore, information leakage needs to be identified/tested in
the development process. But how can we even measure how
much an adversary would learn about a secret?

Information leakage can be quantified using mutual infor-
mation (MI) between secret values and observable values.

†The author conducted this research while doing an internship at MPI-SP.

MI is an information-theoretic measure that quantifies the
correlation between two random variables related as a joint
probability distribution. The MI between the secret and the
observable values is the difference between the uncertainty of
the secret value before observing the observable value and the
uncertainty of the secret value after observing the observable
value. Therefore, the MI represents the remaining uncertainty
about the secret value after observing the observable value.

There is a stream of works that propose to measure the MI
based on a white-box approach, which calculates the number
of inputs corresponding to every possible ⟨secret, observable⟩
pair using symbolic execution and model counting, and com-
putes the MI via the the joint probability distribution [2]–
[5]. Nevertheless, even if we assume white-box access to the
system, analytical methods are often intractable due to the size
or complexity of the system, or since empirical facts, such as
typical sensor data or average server load, are not available
during source code analysis [6], [7]. These challenges have
prompted exploration into techniques for estimating MI in a
black-box fashion.

A more recent stream of works proposes to measure the MI
based on a scale-oblivious black-box approach using statistical
estimation methodologies [8]–[10]. Given a random sample
of program executions containing ⟨secret, observable⟩ pairs,
they apply a statistical model to infer the joint probability
distribution and estimate the MI from it. However, the current
state-of-the-art statistical methods suffer from the underes-
timation problem in the small-sample regime, where low-
probability events, i.e., ⟨secret, observable⟩ pairs, are missing
in the sample [11]. Underestimating the information leakage
is especially harmful and unsafe in the sense of security
evaluation as it can lead to overconfidence in the security of
the vulnerable program. They require a sufficient number of
samples for every possible ⟨secret, observable⟩ pair to estimate
the MI accurately, which is a strong restriction in practice.

In this paper, we propose a method to recover the prob-
abilities of the undetected events in the joint probability
distribution concealed by the small sample size by adapting a
methodology from biostatistics and then directly compute the
MI from this recovered distribution. This methodology is Chao
et al.’s species-rank abundance distribution estimation [12].
From a limited number of samples, it seeks to recover an
unknown multinomial distribution (MD) by estimating the



1 int16_t prog(int secret) {
2 int16_t observable = secret & 0xff00;
3 return observable;
4 }

Fig. 1: Example program. int16_t is a 16-bit integer type.

probabilities of the observed events and the set of potential
probabilities of the unobserved events. As Chao’s estimation
methodology is designed for the MD of a single random vari-
able, we suggest two approaches to extend the methodology
for the joint distribution of two random variables: The Flatten
approach considers a ⟨secret, observable⟩ pair as a single
random variable. The By-Secret approach considers, for every
secret, a conditional distribution of the observable given the
secret as a single random variable MD. Moreover, we propose
several heuristics for a more realistic reconstruction of the
joint distribution by adjusting the probabilities assigned to the
unobserved events.

We evaluate our proposed method on a set of benchmark
subjects against the state-of-the-art statistical MI estimation
methods; the benchmark consists of programs used in previous
literature as well as data from the real-world software. We
investigate the effectiveness of the proposed method with
respect to the accuracy, i.e., the mean squared error (MSE)
of the estimated MI, and the safety, i.e., the probability of
underestimating the MI. We also investigate the effectiveness
of each component of the proposed method and the effect of
the refinement heuristics. The result shows that our estimator
accurately estimates the MI as close to the state-of-the-art
statistical methods with a small number of samples. Yet, it
produces a safe overestimation of the MI even in the presence
of missing events, unlike the state-of-the-art statistical methods
that suffer from the underestimation problem. Especially in the
real-world software, where the size of the observable space is
vast, our method turns out to be much more accurate than the
previous state-of-the-art statistical methods.

The main contributions of this paper are as follows:
• We propose a novel integration of the statistical MI and MD

estimations to overcome the “missing low-probability event”
problem in the statistical MI estimation.

• We suggest two approaches to reconstruct the joint distri-
bution of the ⟨secret, observable⟩ pairs from the estimated
probabilities of the observed and unobserved events.

• We propose novel refinement heuristics, which adjust the
joint distribution to have a better estimation accuracy.

• We evaluate our methodology on a set of benchmarks and
compare its accuracy and safety to state-of-the-art statistical
methods. We make experimental data and analysis available
at: https://github.com/niMgnoeSeeL/ChaoMI

II. BACKGROUND

A. Quantifying Information Leakage

We first explain how the information leakage of a program
is quantified with mutual information. The simple example

program in Figure 1 takes a “secret” value as an input and
returns the first 8 bits of the secret as the “observable” value.
The correlation between the secret and observable values can
be represented as a joint probability distribution between the
two. Assuming that each secret value has the same probability
than any other secret value to be an input (i.e., a uniform
distribution over the secret domain), the joint distribution pXY

between the secret and the observable is as follows:

p(x, y)1 = Pr(X = x, Y = y) =

{
2−16 if x0..7 = y0..7
0 otherwise,

(1)

where X and Y are the random variables for the secret and
the observable, x and y are the bit-vector values of the secret
and the observable, respectively, and x0..7 is the first 8 bits
of x. The initial uncertainty of the adversary about the secret
value according to the Shannon entropy

H(X) = −
∑
x∈X

pX(x) log pX(x) (2)

is 16 bits, where X is the domain of the secret value, and
pX(x) = Pr(X = x) is the marginal probability of the secret
value. When the adversary observes the observable value, the
uncertainty of the adversary about the secret value regarding
the conditional Shannon entropy

H(X | Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

pY (y)
(3)

is 8 bits, where Y is the domain of the observable value,
and pY (y) = Pr(Y = y) is the marginal probability of the
observable value. The reduction in the uncertainty about the
secret value is the mutual information (MI) between the secret
value and the observable values

I(X;Y ) = H(X)−H(X | Y ), (4)

which is 8 bits. The MI represents the amount of information
leakage from the program.

If the source code is available, the analytical approach can
be considered to compute the MI. The program is transformed
to the constraints with symbolic execution, and the number of
inputs corresponding to every possible (secret, observable) pair
is computed with the model counter to produce the MI [13]–
[16]. Nonetheless, analytical methods are often intractable due
to the path explosion problem for symbolic execution, due to
restrictions on the type of constraints solved by the model
counter, or due to the lack of empirical facts unavailable to a
static analysis [6], [7].

On the other hand, the statistical approach treats the pro-
gram as a black-box and estimates the MI from a limited
number of samples of the program executions [8]–[10]. Given
samples of (secret, observable) pairs, it applies the statistical
model to estimate the MI either directly or from the estimated
joint probability distribution. As it is agnostic to the com-
plexity of the program and can analyze non-deterministic or
probabilistic software without any additional effort, it has been

1We use the notation p instead of pXY if the random variables of the
distribution are clear from the context.



shown that statistical methods are often more scalable than
the analytical methods [3], [11]. However, the current state-
of-the-art statistical methods [9] require a sufficient number of
samples for every possible ⟨secret, observable⟩ pair to estimate
the MI accurately, which is a strong restriction in practice. We
further explore the consequences of the missing event problem
that arise from a small sample size in the following section.

B. Entropy Estimation in the Presence of Missing Events

Given a set of samples from an unknown multinomial
distribution (MD), one can estimate the probability of each
event from the empirical probability, i.e., Xi/n, where n is
the total number of samples, and Xi is the frequency of
the i-th event. However, in the presence of low-probability
events in the MD, collecting a small number of samples
may miss rare events. The probabilities of the undetected
events are underestimated to zero, and the probabilities of the
detected events are instead overestimated to compensate for
the underestimation, which the following equation can explain:

E [p̂i | Xi > 0] = E
[
Xi

n

∣∣∣∣xi > 0

]
=

pi
1− (1− pi)n

(5)

where pi and p̂i are the true probability and empirical prob-
ability of the i-th event, respectively. Due to the bias, using
the empirical Shannon entropy estimate Ĥemp underestimates,
which is why the empirical MI estimate Îemp overestimates.

Miller and Madow [17] suggested a bias correction method
for Shannon entropy estimation, which is known as the Miller
estimator:

ĤMiller = Ĥemp +
m− 1

2n
, (6)

where m is the number of the observed events, and Ĥemp is the
empirical entropy. In the case of the MI between the random
variable X and Y , the Miller estimator is applied as follows:

ÎMiller = Îemp −
(mX − 1)(mY − 1)

2n
, (7)

where mX and mY are the number of the observed events
of the random variables X and Y , respectively, and Îemp is
the empirical MI. The Miller estimator is used in the state-
of-the-art statistical information leakage analysis methods [8],
[9]. However, it is shown that if the number of samples is
insufficient to observe the events, the bias correction of the
Miller estimator overcompensates the underestimation of the
entropy, which leads to the underestimation of the MI [11].
Regarding the information leakage analysis, the underestima-
tion of the MI is especially harmful; estimating the MI as a
smaller value than the actual MI can lead to overconfidence
in the privacy of the vulnerable program.

C. Single-Variable MD Estimation

The absence of species (here, events) from the sample is
a long-standing challenge in ecological biostatistics. Chao
et al. [12] proposed a method that estimates the species
distribution in the target assemblage from a limited number
of samples from that assemblage. This unvieled species distri-
bution represents our hidden multinomial distribution (MD).
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Fig. 2: Illustration of MD estimation. The upper left plot shows
the empirical probabilities (white + grey) and the estimated
probabilities (white) of the detected events. The upper right
plot shows the estimated probabilities of the undetected events
(black). The lower plot shows the merged distribution.

Given a set of samples from the hidden MD, Chao’s MD
estimation first computes the true probabilities of Sobs detected
events, which is shown in the upper left plot of Figure 2. To
get rid of the overapproximation (grey bars) of the empirical
probabilities of the detected species (white + grey bars),
it models the true probabilities of the detected events with
two parameters, λ > 0 and 0 < θ ≤ 1: for Xi > 0,
pi ≈ (Xi/n)(1− λe−θXi). Then, it solves the system of two
non-linear equations for the 1st and 2nd order sample coverage
1C and 2C to estimate the parameters λ̂ and θ̂.

1C =
∑

i∈detected

pi,
2C =

∑
i∈detected

p2i . (8)

The result gives the estimated probabilities p̄det
i for each

detected events (white bars).
To estimate the probabilities of the undetected events (upper

right plot of Figure 2), it first estimates the number of
undetected events f̂0 from the number of singleton events
f1 and the number of doubleton events f2. Then, similar to
the detected events, it models the true probabilities of the
detected events with two parameters α and β: for 1 ≤ i ≤ f̂0,
pund
i = αβi. It solves another system of two non-linear

equations for the complement of 1st and 2nd order sample
coverage 1−1C and 1−2C to estimate the parameters α̂ and
β̂. The result gives the set of estimated probabilities {p̄und

i }i
of potential undetected events (black bars).

The probabilities of detected and undetected events com-
bined and normalized by their sum, as shown in the lower
plot of Figure 2, represents the estimated multinomial dis-
tribution (MD). The result of the MD estimation lessens the
overestimation of the probabilities of the observed events and
distributes those to the probabilities of the unobserved events
of the unknown MD. Therefore, computing Shannon entropy
from the estimated MD results in a larger entropy than the
underestimated entropy of the empirical distribution. Note
that our method only estimates the set of probabilities of the
undetected events; it does not provide which undetected class
has which probability. Also note that the running time of our
method is dominated by the running time of the non-linear
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Fig. 3: Two approaches to estimate the joint distribution

optimization which is known to depend on the number of
equations (here, 2) and the number of variables (here, 2).

III. METHODOLOGY

In this section, we propose a novel integration of the multi-
nomial distribution (MD) estimation and mutual information
(MI) estimation methods to reconstruct the joint distribution of
the ⟨secret, observable⟩ pair. We first suggest two approaches
to reconstruct the joint distribution: Flatten and By-Secret.
Then, we propose novel refinement heuristics to estimate more
rational joint distribution, which can improve the estimation
accuracy. Finally, we design a new adjusted Miller-Madow
bias correction method for the reconstructed joint distribution.

A. MD Estimation for MI

Chao’s MD estimation, which may complement the bias of
the Shannon entropy from the empirical distribution, considers
the distribution of a single random variable. However, the MI
is defined over the joint distribution of two random variables
of the secret value X and the observable value Y . Thus, it is
nontrivial to be applied to estimate the joint distribution p̂XY .

The key idea to employ the MD estimation for the MI
estimation is to consider the joint distribution pXY as one or
more MDs of a single random variable(s). Figure 3 illustrates
the two approaches, Flatten and By-Secret.

Algorithm 1: Flatten (FL) approach
Input: O = {(xi, yi)}i: An ordered set of samples

X ,Y: Sample spaces of the secret and the observable
isRefine: A flag for refinement heuristics

Output: p̂XY : The estimated joint distribution matrix
1 fmax

0 ← |X| × |Y| − |{(x, y) | (x, y) ∈ O}|
2 OZ ← {zi}i s.t. zi = (xi, yi) // Notation change
3 P̄det, P̄und ← MD(OZ , f

max
0 ) // MD estimation

4 if isRefine then
5 P̄det, P̄und ← Reorder(P̄det, P̄und) // Refinement (Sec. III-B)

6 p̂XY ← Reshape(P̄det, |X |, |Y|) // Reconstruct the joint dist.
7 for j ← 1 to |P̄und| do
8 ix, iy ← RndZeroIdx(pXY )
9 p̂XY [ix, iy]← P̄und[j] // Assign the undetected probability

10 return p̂XY

Approach 1. Flatten (FL): The first approach is to consider
the pair of the secret and the observable as a single random
variable, which we call a flattening of the joint distribution.
Given two sample spaces X and Y of the secret and the

observable, respectively, we define the joint sample space
Z = X ×Y , i.e, z = (x, y) ∈ Z , x ∈ X , and y ∈ Y . Then the
probability of the event z is defined as p(z) = Pr(Z = z) =
Pr(X = x, Y = y) = p(x, y), and the probability distribution
of a random variable Z over the sample space Z is a MD.

Algorithm 1 shows the pseudocode of the FL approach.
A set of samples O = {(xi, yi)}i from the joint distribution
pXY is equivalent to a set of samples {zi}i from the flattened
distribution pZ , where zi = (xi, yi) (line 2). Thus, the
flattened distribution pZ can be estimated by applying the MD
estimation to {zi}i (line 3). The result of the MD is adjusted
probabilities P̄det for each observed p̄det

i = p̂(zi) = p̂(xi, yi)
((xi, yi) ∈ detected) and a set of estimated probabilities
P̄und of the unobserved events {p̄und

1 , · · · p̄und
f̂0

}. During the MD

estimation, f̂0 is bounded by the number of undetected joint
events fmax

0 = |X | × |Y| − [# of detected (x,y)] (line 1).
To reconstruct the joint distribution p̂XY from the estimated

probabilities, the probabilities of the detected events p̄det
i

are assigned to the observed (xi, yi) pairs (line 6), and the
probabilities of the undetected events p̄und

j are assigned to
the unobserved (xj , yj) pairs. The function Reshape (line 6)
reshapes the ordered set of the probabilities of the detected
events P̄det to the joint distribution matrix p̂XY with the size
of |X | × |Y|. For the undetected probability assignment, we
randomly choose unobserved (xj , yj) and assign p̄und

j for each
probabilities in P̄und (line 7-9). The function RndZeroIdx (line
8) returns a random index of the zero element in the given
vector. Lines 4 and 5 describe the refinement heuristics, which
will be explained in Section III-B.
Approach 2. By-Secret (BS): The second approach considers
the conditional probability distribution of the observable given
the secret value as an individual MD. It applies the MD
estimation for each of the conditional probability distributions.
Given one secret value x ∈ X , the conditional probability
distribution of the observable, p(y | x) = Pr(Y = y | X =
x) = p(x, y)/p(x), becomes a MD with a single random
variable Y over the sample space Y .

Algorithm 2 shows the pseudocode of the BS approach.
For each secret value x′ ∈ {x ∈ X | (x, y) ∈ O}, the
MD estimation is applied to the sub-sample of the observed
observable values {yj}j where (xj , yj) ∈ O∧xj = x′ (line 4-
6, 9). The result of the MD is adjusted conditional probabilities
P̄det of p̄det

i = p̂(yi | x′) for each observed yi with x′

((x′, yi) ∈ O) and a set of estimated conditional probabilities
P̄und of the unobserved events {p̄und

1 , · · · p̄und
f̂0

}. Here, when
estimating MD, we use the minimum value between the usual
estimated f0 and the number of detected observable but not
with x′, i.e., |{y ∈ Y | (x′, y) /∈ O∧∃x ∈ X s.t., (x, y) ∈ O}|,
as f̂0 for the MD estimation (line 8).

The probabilities from MD estimation for each secret value
x′ are used only for the joint probability of the same secret
value x′ when reconstruction. p̄det

i × p̂(x′) is assigned to the
observed (x′, yi) pairs (line 11), and p̄und×p̂(x′) is assigned to
the unobserved (x′, y) pairs; for the assignment, we randomly
choose y such that (x′, y) /∈ O ∧ ∃x ∈ X s.t., (x, y) ∈ O



Algorithm 2: By-Secret (BS) approach
Input: O = {(xi, yi)}i: An ordered set of samples

X ,Y: Sample spaces of the secret and the observable
isRefine: A flag for refinement heuristics

Output: p̂XY : The estimated joint distribution matrix
1 XO ← {x ∈ X | (x, y) ∈ O} // Detected secrets
2 YO ← {y ∈ Y | (x, y) ∈ O} // Detected observables
3 p̂XY ← Zeros(|X |, |Y|) // Zero matrix
4 foreach x′ ∈ XO do
5 ix ← Idx(x′,X ) // For each x′ ∈ X , get y′ ∈ Y observed
6 Ox′ ← {yj | (xj , yj) ∈ O ∧ xj = x′}j // with x′

7 p̂(x′)← |Ox′ |
|O| // Empirical probability of x′

8 fmax
0 ← |YO| − |{y ∈ YO | (x′, y) /∈ Ox′}|

9 P̄det, P̄und ← MD(Ox′ , fmax
0 ) // MD estimation for x′

10 if ¬isRefine then
11 p̂XY [ix, :]← P̄det× p̂(x′) // Elementwise multiplication
12 for j ← 1 to |P̄und| do
13 iy ← RndZeroIdxFrom(pXY [ix, :],YO)
14 p̂XY [ix, iy]← P̄und[j]× p̂(x′) // Assign und. prob.

15 else
// Refinement heuristic (Sec. III-B)

16 P̄ ′
det, P̄

′
und ← Reorder(P̄det, P̄und)

17 p̂XY [ix, :]← P̄ ′
det × p̂(x′)

18 for j ← 1 to |P̄ ′
und| do

19 iy ← PropZeroIdxFrom(p̂XY [ix, :],YO, O)
20 p̂XY [ix, iy]← P̄ ′

und[j]× p̂(x′) // Assign und. prob.

21 return p̂XY

(line 12-14). The function RndZeroIdxFrom (line 13) returns a
random index of the observation from YO = {y ∈ Y | (x, y) ∈
O}, with zero probability in the given vector. Lines 15-19
describe the refinement heuristics presented in Section III-B.

After the estimation of the joint distribution, the MI is
computed from the estimated joint distribution p̂XY as Eq. (4).

Comparison between FL vs. BS: The advantage of the
BS approach against the FL approach is that it assigns the
estimated probability of the undetected events more precisely
regarding the frequency of the observable values given the
secret value. The intuition of Chao’s MD estimation is that
the number of undetected events is close to the number of
detected rare events, and the frequencies of the detected rare
events determine the probabilities of the undetected events.
If there is no rare observable value regarding a secret value
in the samples, MD estimation will predict that there is no
undetected observable value regarding the secret value. In
contrast, if many rare observable values are detected within
a secret value, MD estimation will predict that there still
remain many undetected observable values regarding the secret
value. However, as the BS approach applies MD estimation for
each secret value xi, it may need more samples than the FL
approach to apply MD estimation for each secret value.

Conversely, the FL approach applies MD estimation regard-
ing all the samples, which may make MD estimation more
accurate than the BS approach. Also, the FL approach can
assign the estimated probability of the undetected events to
the unobserved secret value, unlike the BS approach.

B. Refinement Heuristics

As the MD estimation does not provide which undetected
class would have which estimated probability, the estimated
probability of the undetected events has been randomly as-
signed to the unobserved (x, y) pairs without any guidance in
the suggested approaches. Also, the MD estimation uses differ-
ent models for the detected and undetected events, which may
cause some of the estimated probabilities of the undetected
events to be larger than the minimum estimated probability of
the detected events, which is less likely to be true.

We propose a heuristic refinement of the adjustment to
address those abnormalities of probability assignment. The re-
finement is based on the following hypothesis: 1) the probabil-
ity of the detected secret-observable pair should not be smaller
than the probability of the undetected secret-observable pair,
and 2) the probability of assigning the estimated probability
to the undetected secret-observable pair should be proportional
to the marginal probability of the observable; in other words,
the more probable observable regarding the general program
execution should be more likely to be observed than the less
probable observable. Notice that the second heuristic is only
applicable to the BS approach as the FL approach flattens
the secret-observable pair and does not provide the marginal
probability of the observable.

Function Reorder (line 5 in Algorithm 1 and line 16 in
Algorithm 2) implements the heuristic regarding the first hy-
pothesis. It receives P̄det = {p̄det

i }i, an ordered set of estimated
probabilities for the detected events, and P̄und = {p̄und

j }, a
multiset of estimated probabilities for the undetected events.
Until the minimum probability of the detected events is larger
than the maximum probability of the undetected events, it
swaps the probability of the detected event and the probability
of the undetected event; during the swapping, it preserves the
order of the probabilities of the detected events.

Algorithm 3: Function PropZeroIdxFrom
Input: p: The current estimated probability vector

YO: A set of detected observable values
O: A set of samples

Output: j: The index of the next assignment for the
undetected event

1 Yzero ← {y ∈ Y | py = 0} // Get zero probability observables
// Construct a map from y to marginal probability

2 ProbMap ← {y ∈ Yzero :
|{yj |(xj ,yj)∈O∧yj=y}|

|O| }
3 j ← select from Yzero with prob. ProbMap
4 return j

Algorithm 3 shows the pseudocode Function PropZe-
roIdxFrom (line 18 in Algorithm 2): the heuristic regarding the
second hypothesis. It first identifies the candidate observable
values Yzero that have zero probability in the current estimated
probability vector p. Then, it computes the marginal empirical
probability of each candidate observable value y ∈ Yzero .
Finally, it randomly selects an observable value y ∈ Yzero

with the probability proportional to the marginal empirical
probability of y. The function RndZeroIdxFrom (line 13 in



Algorithm 2) is a special case of Function PropZeroIdxFrom,
where the index is selected uniformly from Yzero .

C. Miller-Madow Bias Correction for Our Estimator

In addition to the refinement, we also consider applying
the Miller-Madow bias correction to the estimated entropy.
In Equation (7), the Miller-Madow bias correction term
(mX−1)(mY−1)

2n depends on the total number of samples n.
After applying the MD estimation, there may exist a non-
zero probability smaller than 1/n, the minimum non-zero
empirical probability with n samples, in the estimated joint
distribution. The reciprocal of the minimum non-zero proba-
bility n′ = ⌈1/min p(x, y)⌉ in the estimated joint distribution
represents the resolution of the distribution; the distribution
can exhibit what would have been the expected frequency of
the event that occurs with n′ samples. Regarding this, we use
max(n, n′) instead of n in the Miller-Madow bias correction in
our estimator. The bias correction value is subtracted from the
MI estimated from the reconstructed joint distribution p̂XY .

IV. EXPERIMENTAL SETUP

A. Research Questions

We design four research questions to investigate our main
hypothesis: whether accounting for missing events improves
the information leakage estimate.

RQ1: How accurate and safe is the proposed method com-
pared to existing statistical methods?

We measure accuracy using the mean-squared error (MSE), a
standard measure of estimator performance, and safety as the
frequency of underestimating the MI. Underestimating the MI
can lead to undue confidence in the confidentiality of the data
processed by the program and renders the estimator unreliable.

RQ2: How does each component of our proposed method
affect the performance of the estimation?

We investigate the effect of each component on the perfor-
mance of our proposed method. The components include:
(a) the selected approach (Flatten [FI] or By-Secret [BS]),
(b) with or without refinement heuristics, and (c) with or
without the Miller-Madow bias correction.

RQ3: What is the timing cost of the proposed method?

Compared to the empirical MI estimation or Miller-Madow
bias correction, which have negligible time overhead, the
proposed method requires additional computation to estimate
the MD. We investigate the timing cost of the proposed method
and discuss the feasibility of the proposed method in practice.

RQ4: How does the proposed method perform on real-world
applications for information leakage quantification?

We evaluate the proposed method in the practical context
of information leakage quantification. We consider two real-
world applications: location privacy and e-passport privacy.

B. Baseline and State-of-the-Art Estimators

We consider two baseline estimators: the empirical estimator
and the Miller estimator, i.e., the empirical MI with Miller-
Madow bias correction used in Leakwatch [8], [9].

We consider one state-of-the-art estimator, HyLeak, a hy-
brid estimation method that combines statistical and precise
analysis [11]. Similar to our work, Biondi et al. [11] aimed
to overcome the limitations of large sample sizes required for
statistical methods. Their HyLeak approach relies on precise
analysis for components that are impractical to analyze statis-
tically. They suggest an automatic program decomposition and
a set of heuristics to select components that have a large joint
sub-distribution matrix. For such components, they use precise
analysis, and for the others, they use statistical analysis. Then,
the results are combined to estimate the MI of the program.
The authors claimed that HyLeak is more scalable than the
Miller estimator and the purely precise method.

C. Subjects and Design of Experiment

Benchmark Programs (Table I). For the first three research
questions, we use the benchmarks from HyLeak [11] for our
evaluation. The subjects cover a wide variety of programs,
some of which operate probabilistically and exhibit non-trivial
secret-observable mappings. More details can be found in
the supplementary material. For every program, we choose
between four to five variants (choices of N ) for a total of 22
variants. For all variants, we choose four sample sizes for a
total of 88 configurations. We consider the uniform distribution
over the domain of secret values as in previous work [9], [11].

To determine the ground truth, at this scale, there exists
no method to compute the MI precisely. Hence, we follow
the approach typically followed in applied statistics. Given a
program, we compute the ground truth MI between (secret,
observable) from the empirical MI given a very large number
(1M) of executions. This is more than one to five orders
of magnitude larger than the number of samples for the
estimation.

We consider the performance of the estimators for different
numbers of sample program executions. Our evaluation con-
siders ×0.5, ×1, ×2, and ×5 of the size of the observable
domain (Y) for each secret value (x ∈ X ) as the number of
program executions. We call this relative number of executions
as a sample ratio. The range covers starting from the natural
situation when it is simply not possible to observe all the
observable values for each secret value (×0.5) and up to a case
when each secret value may have had enough opportunity to
be observed with all the observable values (×2, ×5). For each
N ∈ {0.5, 1, 2, 5} · |X | · |Y|, we randomly sample N program
executions and estimate the MI using the estimators.

Real-world Applications. To investigate how the proposed
method performs in practice, we consider two real-world
applications of information leakage quantification in RQ4.

Our first application is measuring information leakage from
a location privacy-preserving mechanism (LPPMs) which is
used to protect the user’s location privacy (secret) by reporting



TABLE I: List of subject programs (from HyLeak [11])

Subject (|X |, |Y|) Variants (N ) Information Leakage

ProbTerm (N + 1, 10–20) {5, 7, 9, 12} A program implementing a loop that terminates after a certain number of iterations (observable). The termination
condition for that loop is a probabilistic function on the secret value (secret).

RandomWalk (500, 24–40) {3, 5, 7, 14} A robot control program leaks the final location of the controlled robot (observable). The adversary wants to guess
the starting location (secret).

Reservoir (2N , 2N/2) {4, 6, 8, 10, 12} An implementation of reservoir sampling [18] that leaks the random sample of size N/2 (observable) chosen
without replacement from a population of size N (secret).

SmartGrid (3N , 12) {1, 2, 3, 4, 5} A smart grid control program leaks whether the total consumption of all users exceed a cetain threshold (observable).
The adversary can be one of the users and wants to guess the consumption of another user (secret).

Window (N,N) {20, 24, 28, 32} A secret-avoiding random number generator which leaks the number chosen within a random range (observable).
If the selected range includes the secret, a different range is chosen. The adversary wants to guess the secret.

the obfuscated location (observable) to the corresponding
location-based service (LBS) [19]. Some vendors develop their
own mechanisms [20], e.g., the Onion Router (Tor) network,
while others use 3rd-party services [21]–[23]. It is important
to quantify the information leakage of the LPPMs as there is
a trade-off between the privacy and the utility of the location-
based services. If the obfuscation is too strong, the utility of
the LBS is lost, while if the obfuscation is too weak, the user’s
privacy is lost. Yet, it is difficult to analytically compute the
leakage not only due to the accessability or complexity (Tor’s
LOC is ∼300K) but also due to the availability of additional
information, like points of interest (e.g., shops, churches) or
geographical characteristics of the area (e.g., roads, lakes).

For the evaluation, we implement two LPPMs: the planar
Laplacian [24] and one of the optimal mechanisms proposed
by Oya et al. [25]. We measure the information leakage of the
LPPMs on the real location data from the Gowalla dataset [26],
which contains users’ checkins and their geographical location.
The size of the secret (X ) and observable (Y) domains are 400
and 115,600 locations, respectively. The distribution over the
secret domain is based on Gowalla check-ins. Each LPPM
defines the joint distribution of the secret and the observable,
where we retrieve the ground-truth MI and the samples. As
the joint space is vast, we consider the sample sizes of 2i · |X |
for i ∈ {0, 1, · · · } until the sample size reaches one million.
More details can be found in the supplementary material.

Our second application is measuring information leakage
from the RFID chip on an e-passport. The old e-passport
protocol was vulnerable to a replay attack, where the pro-
cessing time for the replayed message from the same passport
was longer than the time for the message from a different
passport [27], [28]. The observable is the time it takes to read
and process the data from the e-passport, while the secret is
a boolean value indicating whether the message is from the
same passport or not. The MI between secret and observable
quantifies the likelihood of an adversary successfully tracing
a passport. By measuring the MI, researchers can quantify the
information leakage of the e-passport protocol and develop a
countermeasure to protect the e-passport from the attack [8].

We investigate how our proposed method performs to
quantify the MI of the e-passport protocol. The dataset from
the previous work [8] consists of the response time of the
e-passport across three different countries both before and
after the fix of the vulnerability. Given the data, we first

reconstruct the underlying distribution by fitting the timing
data to the normal distribution, and then we sample the timing
data from the distribution. Similar to the benchmark programs,
we consider the sample ratios of ×0.5, ×1, ×2, and ×5.

We evaluate our proposed method along with the baseline
estimators, the empirical estimator, and the Miller estimator on
the real-world applications. HyLeak cannot be applied to them
since no source code is available which could be analyzed
symbolically. For location privacy, the LPPM implementation
is a probabilistic model obfuscating location information. For
the passport protocol, we only have the binary outcome of
passport verification and the time taken.

Infrastructure. Experiments were conducted in Ubuntu
20.04 docker containers running on an AMD EPYC 7713P
64-Core server with 256 GB of RAM. To mitigate the random-
ness, we repeat all the experiments 30 times for each (program,
sample size) pair. For our estimator, we run 30 times the MD
estimation and compute the average of the estimates. All data
and scripts used in this paper are publicly available at

https://github.com/niMgnoeSeeL/ChaoMI.

D. Variables and Measures

To measure estimator performance, we use a standard met-
ric, i.e., the mean squared error (MSE). The MSE is computed
as the average squared difference between the estimated MI
and the ground truth MI. It measures the accuracy of the
estimation methods in terms of both the mean bias and the
variance of the produced estimates.

To measure estimator safety, we report the mean bias and
the proportion of estimates larger than ground truth across the
88 configurations. We argue that a safe estimator should not
systematically underestimate the true leakage; otherwise, we
might wrongly believe that an attacker might need more re-
sources to guess the secret than actually required. To facilitate
a fair comparison of estimator performance (in terms of MSE
and mean bias) across different subjects, we normalized the
MI values by dividing them by the log of the secret domain
size (i.e., the maximum MI). We used the Wilcoxon signed-
rank test to check the statistical significance of the difference
between the estimator performances.

To measure cost effectiveness, we calculate the time taken
to estimate the MI for our estimator. As the analysis time
for the empirical estimation and Miller-Madow bias correction
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Fig. 4: MSE of the estimators across the configurations.

are negligible due to their simplicity, the measured time of
our estimator can be considered as the extra analysis time
required for the estimation. We investigate the affordability of
the extra analysis time taken by our estimator. We exclude the
time taken to sample the executions of the program from the
efficiency evaluation as all the estimators use the same number
of samples for the same sample size.

V. EXPERIMENTAL RESULTS

RQ1: Estimator Performance and Safety

We named the eight variants of our mutual information
(MI) estimator using Chao’s multinomial distribution (MD)
estimation as the following scheme: ‘Chao’ + ‘F’ (for the FL
approach) or ‘S’ (for the BS approach) + ‘O’ (for the original
MD estimates) or ‘R’ (for the refined MD estimates) + ‘N’
(for no bias correction) or ‘M’ (for Miller’s bias correction).

Estimator performance. Figure 4 shows the distribution
of the mean-squared error (MSE) for the five estimators:
the empirical estimator (Empirical), Miller estimator (Miller),
ChaoFRM, ChaoSRM, and HyLeak estimator. The result for
all estimators is available in the replication package.

Our ChaoSRM and Miller estimators perform better than
the empirical estimator. These differences are statistically
significant with p < 0.01. Our ChaoFRM and HyLeak perform
better than the empirical estimator, which is also supported by
the statistical test, except for the sample ratio of ×5.

Our ChaoSRM is the best performing estimator for the
sample ratios ×1 (µMSE = 1.44e−3), while Miller is best
performing for ×0.5 (µMSE = 3.77e−3), ×2 (µMSE = 4.93e−4)
and ×5 (µMSE = 9.52e−5). However, the differences between
ChaoSRM, ChaoFRM, and Miller are not significant for ×0.5,
×1, and ×2 with p-value > 0.05. Miller performs better
than our ChaoSRM and ChaoFRM for ×5 with significance.
HyLeak’s performance depends significantly on the success
of its heuristics decomposing the software and deciding which
will be analyzed either with precise analysis or with sampling.
It showed the smallest MSE for subjects ProbTerm and Ran-
domWalk but worse performance than other estimators for the
other subjects, which resulted in a bad performance overall.
This implies that the HyLeak estimator is not robust to the
target program and the sample size.

Underestimate

Fig. 5: Mean bias of the estimators across the configurations.

Estimator safety. While the performance of the three estima-
tors, Miller, ChaoFRM, and ChaoSRM does not differ much,
there are significant differences in the safety of the estimators.
Figure 5 shows the distribution of the mean bias of the estima-
tors across the configurations. The empirical estimator always
overestimates the true MI as theoretically expected. ChaoSRM
also produces safe overestimates in most of the configurations;
it underestimates only 7 (8%) configurations, while it is always
more accurate than the empirical estimator. In contrast, each
Miller estimator and HyLeak estimator underestimates the true
MI in 50 (57%) and 51 (58%) configurations, respectively. The
ChaoFRM estimator does not help to avoid the underestima-
tion of the MI; it underestimates 59 (67%) configurations.

We further analyze how the proportion of undetectable
events affect the underestimation of the estimators. In case
of the Miller estimator, it underestimates 75% and 100% of
the configurations if the proportion of undetectable events
is more than 45% and 75%, respectively. In contrast, the
ChaoSRM estimator always safely overestimates the MI if
the proportion of undetectable events is less than 75% except
for a single configuration, and it safely overestimates 50%
of the configurations even if more than 75% of the ⟨secret,
observable⟩ pairs are undetectable.

In summary, our ChaoSRM estimator is the best estimator
in terms of both safety and accuracy; its average MSE is the
smallest when sample size is small, and it safely overestimates
the MI for most of the configurations. The Miller estimator
performs best when sample size is large. Yet, it often unsafely
underestimates the MI if the program has undetectable ⟨secret,
observable⟩ pairs, even with a small proportion.

RQ2: Component-wise In-depth Analysis

Empirical vs. Chao: The first three rows of Table II show
the effect of estimating the probabilities of the missing events
using the MD estimation. The result shows that, without the
refinement and the bias correction, both the FL (ChaoFON)
and the BS (ChaoSON) approach produce a smaller MI than
the empirical MI for more than half of the configurations,
which leads to a lower MSE. This implies that the proposed
estimators successfully are more accurate than the overestimat-
ing empirical estimator using the MD estimation. Between the
FL and the BS approach, there is no significant difference in



Esti-A Esti-B #(MIA ≥ MIB) #(MSEA ≥ MSEB) p-value

Empirical ChaoFON 58 56 2e-4
Empirical ChaoSON 69 69 <1e-4
ChaoFON ChaoSON 43 46 0.60

Empirical ChaoFRN 61 60 <1e-4
Empirical ChaoSRN 88 88 <1e-4
ChaoFON ChaoFRN 58 65 <1e-4
ChaoSON ChaoSRN 65 65 <1e-4

TABLE II: The number of configurations matching the con-
dition regarding the MI and the MSE of the estimators out of
88 configurations. The p-value is from the one-sided Wilcoxon
signed-rank test comparing the MSE of the estimators.

y1 y2 y3 y4

x1 0.45 0.05 0. 0.
x2 0.2 0.25 0.05 0.

(a) Empirical

y1 y2 y3 y4

x1 0.44 0.02 0.04 0.
x2 0.2 0.25 0.05 0.

(b) Estimated MD 1
y1 y2 y3 y4

x1 0.445 0.04 0. 0.015
x2 0.2 0.25 0.05 0.

(c) Estimated MD 2

(a) MI(X;Y ) = 0.226
(b) MI(X;Y ) = 0.234
(c) MI(X;Y ) = 0.256

(d) MI

Fig. 6: Illustration: how MD estimation affects MI estimation

terms of the MI and the MSE. We can assume that the pros and
cons of the FL and the BS approach discussed in Section III-A
did not overwhelm each other in the experiment.

Effect of the refinement: The last four rows of Table II
show the effect of the refinement. For both the FL and the
BS approaches, the refinement reduces the MI and the MSE,
helping to produce more accurate estimates for majority of the
configurations. It is noticeable that the ChaoSRN estimator
produces a smaller or equal MI/MSE than the empirical
MI/MSE for all configurations. This implies that the refine-
ment successfully improves the accuracy of the MI estimation.

We investigate how the refinement affects the MI estimation.
Figure 6 shows two examples of how the MD estimation with-
out the refinement could increase the MI estimate compared to
the original empirical probability distribution. The original em-
pirical probability distribution shown in Figure 6a has an MI
of 0.226. If the estimated probability of the undetected event
becomes larger than some estimated probability of the detected
event ((x1, y3) vs. (x1, y2) in Figure 6b), the MI estimation
can increase than before (0.234). Also, if the decreases of the
discovery probabilities of the observed events are distributed
to the undetected event (xi, yi) whose yi is less observed
in any xi (y4 in Figure 6c), the MI after the adjustment
increases than before (0.256) as such an assignment increase
the discriminability of Y given X .

Effect of the bias correction: Table III shows the effect
of the Miller-Madow bias correction for empirical estimator
and the modified bias correction for the proposed estimator.
It shows that the amount of the decrease in the empirical MI
is larger than the decrease in our estimators; the difference
is similar for the FL approach but significant for the BS

TABLE III: Effect of Miller-Madow bias correction. Column
∆MI and shows the average decrease in MI. ∆u.e. shows the
difference of the number of underestimated configurations
(Esti-A−Esti-B). The fifth column shows the number of con-
figurations where Esti-A has lower MSE than Esti-B, and the
p-value is the one-sided Wilcoxon signed-rank test with MSEs.

Esti-A Esti-B ∆MI ∆u.e. #(MSEA ≥ MSEB) p-value

Empirical Miller 0.35 50 72 <1e-4
ChaoFRN ChaoFRM 0.24 52 52 0.0817
ChaoSRN ChaoSRM 0.06 7 80 <1e-4

approach. As a result, while the bias correction makes the
empirical estimator more accurate for 72/88 configurations,
the huge decrease in the MI makes it underestimates the
MI; thus, the underestimation happens for more than half
(50/88) of the number of configurations. In contrast, the bias
correction of our estimator with the BS approach makes the
estimator not only more accurate but also keeps the safety;
the estimator becomes more accurate for 80/88 configurations,
while only seven configurations become underestimated. The
bias correction of our estimator with the FL approach does
not help significantly to improve the accuracy and the safety;
it becomes more accurate for 52/88 configurations, while it
creates 52 more underestimations.

In summary, each component of the proposed estimator
contributes to the safety and accuracy of the estimator. Both
BS and FL approach are effective in terms of the accuracy,
which is further improved by the refinement. The Miller-
Madow bias correction is effective in terms of the safety and
accuracy when it is applied to the BS approach.

RQ3: Cost Effectiveness

We find that the time taken to compute our estimates neg-
ligibly affected (Pearson correlation coefficient (PCC) < 0.1)
by the sample ratio compared to the size of the joint sample
space (PCC ≈ 0.97). The time taken by the FL approach is
generally higher than that taken by the BS approach. Without
the refinement or the bias correction, the average time across
the configuration taken by the FL approach is 326.2s, while
the one with the BS approach is 94.7s for the sample ratio
of ×1. This is because the size of the non-linear equation
gets larger by the size of the joint sample space for the FL
approach, while, for the BS approach, the size of the linear
equation gets larger by the size of the secret space and the
number of equations to solve is relative to the size of the
observable space. The regression analysis shows that the time
taken by ChaoSRM is linearly proportional to the size of
the joint sample space. The slope of the regression line is
6.94e–03, with an R2 = 0.98. The refinement process takes
non-negligible time (roughly ×3.5) for the FL approach but
not for the BS approach (less than ×0.1) for the same reason.
The bias correction has negligible effect on the time taken.

RQ4: Evaluation on the Practical Scenarios
Location privacy. Figure 7a and 7b shows the information

leakage estimates for the two LPPM implementations. Our
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Fig. 7: MI estimation for the practical application.

ChaoSRM estimator consistently outperforms all other esti-
mators and produces safer MI estimates than Miller which
consistently underestimates. The maximum sample size con-
sidered is 211 · |X | = 819, 200, which is ∼1.7% of the size of
|X | · |Y|. This means, the domain of the observables (|Y|) is
substantially larger than the previous benchmarks programs;
115,600 locations can be observed in the location privacy
application. As we can see, Miller significantly underestimates
(even an impossible negative mutual information) due to
its large bias correction term, which overclaims the safety
of LPPMs. In contrast, the ChaoSRM estimator consistently
provides more accurate, i.e., less overestimating, estimates
compared to the empirical estimator. Knowing the LPPM’s
MI with less overestimation can provide the better quality of
the location-based services as it can avoid over-obfuscating the
location for the privacy. Compared to the empirical estimator,
ChaoSRM has 1.89-10.88× lower MSE for the optimal algo-
rithm and 1.29-7.56× lower MSE for the planar algorithm,
except for the smallest sample size.

Passport privacy. Figure 7c and 7d illustrates the estimation
for the required computational resources for a successful
timing attack against the British passport RFID protocol.
Roughly 1,200-2,000 different timing values are observed in
the timing attack application. While the MI of unfixed protocol
is close to 1 (left), showing the high information leakage, it
becomes close to 0, meaning that guessing for the passport
trace is half-and-half, after the fix (right).

Just like for the location privacy application, the Miller
estimator significantly underestimates the MI for the unfixed
protocol, leading to the overclaim of the safety of the protocol,
while the ChaoSRM estimator provides the most accurate
estimates with sample ratio ≥ 1. The ChaoSRM estimator
always overestimates less and is more accurate than the
empirical estimator for the fixed protocol. Accurate estimation
of the MI can avoid the cost of replacing the protocol and
losing the trust from the users. The results for other passport

protocols are similar and presented in the supplementary
material. ChaoSRM is always better, up to 13×, than the
empirical estimator for the fixed passport protocol. Only when
⟨Unfix, sample ratio= 0.5⟩ configuration is the empirical
estimator better than ChaoSRM. However, ChaoSRM still
estimates significant MI, indicating leakage in the passport
protocol.

To summarize, our proposed ChaoSRM estimator is espe-
cially more practical for the real-world applications, where the
domain of observables can be very large.

VI. THREATS TO VALIDITY

External validity concerns whether the results from the
study can be generalized. To mitigate this concern, we use
various programs used in the previous study [11] with multiple
variants of different sizes and complexity. While it cannot
guarantee the generalizability of our work to every program,
it provides a fair comparison with the previous work and
is a good starting point for future work. Internal validity
concerns the degree of confidence of our study, having not
been influenced by any factor beyond the scope of the study.
To mitigate the randomness of the experiment, we repeat the
estimation 30 times for each configuration and conduct the
statistical test in the evaluation. To avoid missing any potential
error in our evaluation and to facilitate the reproduction of our
study, we make our scripts and data publicly available.

VII. RELATED WORK

Quantifying Information Leakage. In recent decades, there
have been many works on quantifying information leakage. A
larger number of works use information theoretic approaches
to measure information leakage. As in this paper, several works
measure the information leakage by estimating the mutual
information (MI) between the input and the output of the
program [8]–[11], [29], [30]. Other works consider different
measures to quantify the information leakage, such as the
channel capacity [5], [9], [31], Shannon entropy [2], [3], [32],
[33], or g-leakage [7].

Many of the works [2]–[5] employ model counting tech-
niques [13]–[16] to compute the information leakage in a
white-box manner. As model counting-based techniques in-
evitably face scalability issues due to limitations of the con-
straint extraction and the solver, existing literature computes a
bound on the information leakage [3], uses approximate model
counting techniques [5], or combines with sampling-based
techniques [11]. In this work, we solely focus on the black-
box approach to estimate the MI and compare the performance
with the state-of-the-art black-box and hybrid approaches.

MI Estimation. There are several approaches to estimating
the Shannon entropy and MI from the limited number of
samples besides the empirical MI or Miller-Madow method.
Grassberger [34] proposed a method by exchanging the log-
arithmic function for a scalar function represented with the
digamma function to avoid the bias. Jackknife [35], [36], the
resampling method to reduce the bias of the estimator, has
also been used to estimate the MI. Bayesian reasoning for



entropy [37], [38] is to specify a model relating the observed
events to the unknown quantity, then compute the posterior
distribution over the entropy. Our method is orthogonal to
these previous methods; we approximate the joint probability
distribution itself.

Combining Biostatistics Methods for Software Testing/Secu-
rity. Recently, there have been several works that combine
biostatistical estimation methods with software testing and
security. The key property of such biostatistical methods is
the treatment of the unobserved events. For instance, the
missing mass estimation [39], [40] estimates the probability of
finding new species (or events) in an assemblage (or sample
space) from the observed data. These methods have been
employed in various dynamic software analysis tasks to solve
the fundamental problem of dynamic software analysis, i.e.,
the missing events. For instance, Böhme et al. [41] estimate the
residual risk, i.e., the probability that the next generated input
is the first bug-revealing input, in a greybox fuzzing campaign
using the Good-Turing [39] estimator, which estimates the
probability of finding new species in an assemblage. Lee et
al. [42] further extend the Good-Turing estimator to consider
the structure of the given program to estimate the probability
of reaching a certain, currently unreached statement in the
program. Liyanage et al. [43] approximated the number of
coverable program elements by a fuzzer using various species
richness estimators [44].

VIII. DISCUSSION

In this paper, we propose a statistical program analysis to
analyze the privacy of a software system. Only by making
public observations about a software system, what can attacker
tell about its secrets? More formally, what is the mutual
information (MI) between the random variable representing
the secret and that representing the observable? Given a small
sample of ⟨secret, observable⟩-pairs, we propose an improved
methodology to estimate the MI for a software system that
is both more safe and more accurate than existing methods
according to our experiments.

We focus particularly on the small sample regime because in
practice we cannot assume that we can draw samples so large
that they contain all ⟨secret, observable⟩-pairs. In practice, a
large proportion of pairs will be missing from the sample due
to time or resource constraints during sampling. For instance,
the time between samples [45] or getting a sufficient number
of samples may be prohibitive to cover the domain of secrets
or observables with a certain degree. Hence, reducing the
estimation error due to these missing pairs has been the main
challenge we sought to address in this paper.

With our methodology, a developer can evaluate and attempt
to reduce the leakage of private information from their pro-
gram without any restrictions on the size or language of the
program. In fact, as a statistical program analysis [42], [46],
our methodology works for software systems of arbitrary size
and composition. In fact, apart from the time spent getting the
samples, the running time of our methdology depends only

on the time complexity of the non-linear optimization which
depends on the number of equations and variables (both fixed
at two for our estimation problem). In our experiment, we used
MINPACK’s hybrd/hybrj algorithms from the scipy library and
observed the time to be linear in the size of the sample space.
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board: Revisiting the design of optimal location privacy-preserving
mechanisms,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’17. New York,
NY, USA: Association for Computing Machinery, 2017, pp. 1959–1972.
[Online]. Available: https://doi.org/10.1145/3133956.3134004

[26] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user
movement in location-based social networks,” in Proceedings of the
17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’11. New York, NY, USA: Association
for Computing Machinery, 2011, pp. 1082–1090. [Online]. Available:
https://doi.org/10.1145/2020408.2020579

[27] T. Chothia and V. Smirnov, “A traceability attack against e-passports,”
in Financial Cryptography and Data Security, R. Sion, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 20–34.

[28] T. Chothia and A. Guha, “A statistical test for information leaks using
continuous mutual information,” in 2011 IEEE 24th Computer Security
Foundations Symposium, 2011, pp. 177–190.

[29] J. Newsome, S. McCamant, and D. Song, “Measuring channel capacity
to distinguish undue influence,” in Proceedings of the ACM SIGPLAN
Fourth Workshop on Programming Languages and Analysis for Security,
2009, pp. 73–85.

[30] F. Biondi, Y. Kawamoto, A. Legay, and L.-M. Traonouez, “Hyleak:
hybrid analysis tool for information leakage,” in Automated Technology
for Verification and Analysis: 15th International Symposium, ATVA
2017, Pune, India, October 3–6, 2017, Proceedings 15. Springer, 2017,
pp. 156–163.

[31] C. G. D. Val, M. A. Enescu, S. Bayless, W. Aiello, and A. J.
Hu, “Precisely measuring quantitative information flow: 10k lines
of code and beyond,” 2016 IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 31–46, 2016. [Online]. Available:
https://api.semanticscholar.org/CorpusID:16644725
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[43] D. Liyanage, M. Böhme, C. Tantithamthavorn, and S. Lipp, “Reachable
coverage: Estimating saturation in fuzzing,” in Proceedings of the 45th
International Conference on Software Engineering, ser. ICSE ’23, 2023,
pp. 1–13.

[44] A. Chao and R. K. Colwell, “Thirty years of progeny from chao’s
inequality: Estimating and comparing richness with incidence data
and incomplete sampling,” SORT-Statistics and Operations Research
Transactions, pp. 3–54, 2017.

[45] A. G. Clark, M. Foster, B. Prifling, N. Walkinshaw, R. M. Hierons,
V. Schmidt, and R. D. Turner, “Testing causality in scientific modelling
software,” 2022. [Online]. Available: https://arxiv.org/abs/2209.00357

[46] M. Böhme, “Statistical reasoning about programs,” in Proceedings of
the ACM/IEEE 44th International Conference on Software Engineering:
New Ideas and Emerging Results, ser. ICSE-NIER ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 76–80.
[Online]. Available: https://doi.org/10.1145/3510455.3512796


