
Invivo Fuzzing by Amplifying Actual Executions
Octavio Galland

Canonical, Argentina
Marcel Böhme

MPI-SP, Germany

Abstract—A major bottleneck that remains when fuzzing
software libraries is the need for fuzz drivers, i.e., the glue code
between the fuzzer and the library. Despite years of fuzzing,
critical security flaws are still found, e.g., by manual auditing,
because the fuzz drivers do not cover the complex interactions
between the library and the host programs using it.

In this work we propose an alternative approach to library
fuzzing, which leverages a valid execution context that is set up
by a given program using the library (the host), and amplify
its execution. More specifically, we execute the host until a
designated function from a list of target functions has been
reached, and then perform coverage-guided function-level fuzzing
on it. Once the fuzzing quota is exhausted, we move on to
fuzzing the next target from the list. In this way we not only
reduce the amount of manual work needed by a developer to
incorporate fuzzing into their workflow, but we also allow the
fuzzer to explore parts of the library as they are used in real-
world programs that may otherwise not have been tested due to
the simplicity of most fuzz drivers.

I. INTRODUCTION

Today, fuzz drivers have to be developed to make a software
library ammenable to fuzzing. Fuzzing is a popular automated
testing technique which has proven to be very effective at bug
finding, with tens of thousands of vulnerabilities discovered
in commonly used software [1]. Since this technique involves
executing the program, when applying it to code libraries it
becomes necessary to implement a fuzz driver. A fuzz driver
is a piece of code that acts as the entry point for execution
during the fuzzing campaign. It sets up an artificial calling
context and is responsible for accepting data from the fuzzer
and feeding it into the library with the appropriate format.

Traditionally, fuzz drivers are implemented manually which
constitutes a major hinderance to widespread adoption of
fuzzing. For instance, Google incentivices the development of
fuzz drivers for important open source projects by paying up
to 30k USD of integration awards [2]. Google’s project OSS-
Fuzz [1] is primarily a community-maintained collection of
fuzz drivers for open source projects.

Moreover, fuzz drivers do not capture the complex inter-
action that actual host programs have with the library. They
often set up too simplistic a context and seperately target very
specific parts of any given API. While this allows developers to
maximize fuzzer throughput—for instance, LibFuzzer’s docu-
mentation [3] advices developers to make fuzz drivers execute
as fast as possible and leave any global state unmodified after
execution has finished—it also reduces the search space for
bugs that could be observed during normal execution by a
host but not during executions generated via the fuzz drivers.

Amplifier Point Amplifier Constraints
ASN1_parse(sizeof(pp) = len

BIO* , const char* pp, long len, int) ∧ len < C
OPENSSL_hexstr2buf(sizeof(str) < C

const char* str, long*)
ossl_punycode_decode(sizeof(pEnc) = encLen

char* pEnc, size t encLen, ∧ sizeof(pDec) = encLen
int* pDec, int* pOutLen) ∧ encLen < C

∧ sizeof(pOutLen) = 1
∧ *pOutLen = encLen

cms_kek_cipher(sizeof(in) = inlen
char** , size t* , char* in, size t inlen, ∧ inlen < C
CMS KeyAgreeRecipientInfo* , int)

TABLE I: Four of 100+ amplifier points semi-automatically
selected for OPENSSL. C is a constant chosen to prevent
spurious out-of-memory errors. For brevity, we omit names
for parameters which are not fuzzed (_).

In fact, despite an abundance of fuzz drivers and years of
fuzzing, it is still possible to find vulnerabilities in software
libraries by manual auditing that could have been found
by fuzzing if only the “right” fuzz driver was written. For
instance, recently a high-severity vulneratility has been found
in the OpenSSL project which involved faulty memory man-
agement during parsing of Punycode and resulted in a stack-
buffer overflow (CVE-2022-3602). In the aftermath of the
discovery it was found that this vulnerability could be exposed
in a matter of minutes through fuzzing, if only the relevant
part of the code was being targeted.1 Moreover, the relevant
function was being executed by the test suite, which suggests
that if the test suite had been “amplified” by fuzzing, the bug
might have been spotted earlier.

In this paper, we propose in-vivo fuzzing to make all
code subject to fuzzing by (i) identifying amplifier points,
(ii) injecting function-level fuzzers at amplifier points, and
(iii) amplifying actual executions from a host application that
is using the target library. This approach side-steps any re-
quirement for fuzz drivers and allows us to amplify executions
generated in any way as they are entering an amplifier point.

Amplifier points. While it is possible to choose every func-
tion entry as amplifier point, to maximize utility we would like
to focus on the most interesting functions. In order to identify
such functions, the user can rely on their expert knowledge
of the codebase, or on automated static analyses. For our
implementation,2 we choose functions that are associated with
parsing a specific data chunk from the input sequence of bytes.
Without loss of generality, this simplifies the data types used

1https://allsoftwaresucks.blogspot.com/2022/11/why-cve-2022-3602-was-not-detected-by.html
2https://anonymous.4open.science/r/afllive-598A/README.md#config-file-1

https://allsoftwaresucks.blogspot.com/2022/11/why-cve-2022-3602-was-not-detected-by.html
https://anonymous.4open.science/r/afllive-598A/README.md#config-file-1

for amplification and minimizes the number of false positives.
The criteria involves having at least one parameter whose type
is a pointer to a byte-stream and has a parsing-related name
(e.g., parse, decode). Table I-Col.1 shows four (of 100+)
amplifier points automatically identified for OpenSSL.

Amplifier preconditions. In-vivo fuzzing mutates the input
parameters of functions chosen as amplifier points. The hope is
that the mutational approach corrupts the valid program state
minimally to maintain the validity of the resulting program
state and minimize the number of false positives. Nevertheless,
there are certain constraints that need to be satisfied to
maintain validity. These preconditions take the form of a
conjunction of constraints that arguments need to satisfy. To
minimize false positives, when specifying amplifier points, we
allow such preconditions to be specified, as well. Table I-
Col.2 shows the preconditions for the four amplifier points
in OpenSSL.

Instrumentation and runtime. In order to fuzz a library with
our approach it is first necessary to find a suitable host which
uses it, and instrument both of them during compilation. This
instrumentation enables us to intercept any call to an amplifier
point during an execution of the host. Upon invocation of
an amplifier point, we can proceed to amplify the execution
by repeatedly forking into a shadow execution, replacing the
parameters passed to the function with parameters provided
by the fuzzer, and allowing this shadow execution to terminate
while monitoring the shadow process for potential crashes.

In-vivo fuzzing (§III). To study the effectiveness of our in-
vivo approach, we implemented our tool called AFLLIVE and
measured the difference in code coverage achieved between
the unamplified, original executions and the amplified, shadow
executions. For each of the four target libraries, we chose a
host program and input to generate unamplified executions.
Indeed, we observe a substantial increase in code coverage
without false positives, indicating that AFLLIVE effectively
explores the “valid” neighborhood of the original execution.

Auto harnessing (§IV). An approach to enable fuzzing for a
library without manual intervention is the automatic synthesis
of fuzz drivers. To study the difference in effectiveness, we
compare AFLLIVE against state-of-the-art fuzz driver gener-
ators. Specifically, we choose the fuzz drivers generated by
FuzzGen [4] and FUDGE [5] and compare them with our
approach on the FuzzGen and FUDGE benchmarks.3 Ensuring
the same initial conditions, we find that our prototype is able
to identify 7 bugs in one of the subjects (5 memory corruption
bugs and 2 assertion violations), while FuzzGen and FUDGE
are unable to find any. Furthermore, our prototype consistently
achieves greater code coverage on all of their benchmarks.

Test amplification (§V). We discuss the amplification of the
executions generated by a test suite as a special use case of in-
vivo fuzzing. For the OpenSSL example, amplifying the test
suite did not only rediscover the Punycode vulnerability, but
also found a previously unknown vulnerability that received

3We spent several months conducting experiments with the UTopia fuzz
driver generator [6], but could only reproduce false positives on the original
and most recent versions of the benchmark programs. Details in the Appendix.

Fig. 1: Overall procedure.

2.4k USD in bug bounty. Test cases often cover certain
edge cases or are designed to expose regressions similar to
previously discovered bugs. Amplifying such test cases allows
us to search their “neighborhood” to bring to light new bugs or
existing bugs that have been incompletely fixed. In fact, over
40% of 0-days exploited in-the-wild are variants of previously
discovered vulnerabilities.4 Also, test suites often achieve high
code coverage. Amplifying the test suite thus enables the
fuzzer to reach deep into the code. During amplification, the
test cases practically become fuzz drivers for in-vivo fuzzing.

In summary, the main contributions of this work are:

• An approach that auto-enables fuzzing for every compil-
able system or library subject to user-defined constraints
that is executed, e.g., in production.

• A way to harness existing test suites by amplifying their
coverage and exploring the neighborhoods states induced
by existing regression tests.

• An open-source prototype implementation AFLLIVE and
an extensive evaluation, available at: https://anonymous.
4open.science/r/afllive-598A.

II. IN-VIVO FUZZING

Given a host process p and a set of interesting functions F ,
called amplifier points, in-vivo fuzzing piggybacks on the
correct execution of the host process to generate a valid library
state, calling context, and arguments for any function f ∈ F .
Trying to minimize interference with the original process, an
in-vivo fuzzer proceeds to repeatedly fork the execution and
mutate the parameters of a targeted function call—within the
constraints C specified by the user and in a coverage-guided
manner—to generate a crashing function call.

In-vivo fuzzing is inspired by the mutational fuzzing ap-
proach for file-processing programs [7]–[11] or protocol im-
plementations [12]–[15]. Given a valid seed input, such as
a PDF file for a PDF reader, a mutational fuzzer slightly
corrupts the valid file by applying various mutation operators
to generate semi-valid files that can still reach deep into

4https://blog.google/threat-analysis-group/0-days-exploited-wild-2022/

https://anonymous.4open.science/r/afllive-598A
https://anonymous.4open.science/r/afllive-598A
https://blog.google/threat-analysis-group/0-days-exploited-wild-2022/

the parsing process but suddenly induce crashes in the file-
processing program. We might consider the generated inputs to
be within the “neighborhood” of the valid seed file. Moreover,
given a seed corpus with a high diversity, a mutational fuzzer
can cover a large diversity of program behaviors in the file-
processing program.

Algorithm 1 In-Vivo Fuzzing – Function fuzz

Input: Amplifier points F , Types T , Constraints C
Input: Instrumented process p, Time budget t0 and t1

1: Global corpus Q = ∅
2: Local corpus Qf = ∅ for all f ∈ F
3: Crashes Q✗ = ∅
4: Shadow process p′ = fork(p)
5: for each function f ∈ F executed in p do
6: Objects objs = collect_initial_args(p′, f)
7: Types t ∈ T corresponding to f
8: Args args = serialize(objs, f, t)
9: Add args to local corpus Qf

10: Add ⟨f, args⟩ to global Q
11: end for
12:
13: for each function f ∈ F executed in p do
14: while t0 not expired do
15: Args q = select(Qf)
16: For f , find types t ∈ T and constraints c ∈ C
17: fuzz_function_args(p′, f, t, c, q,Q,Qf , Q✗)
18: end while
19: end for
20: while campaign not aborted and t1 not expired do
21: Tuple ⟨f, q⟩ = select(Q)
22: For f , find types t ∈ T and constraints c ∈ C
23: fuzz_function_args(p′, f, t, c, q,Q,Qf , Q✗)
24: end while
Output: Crashes Q✗

Similarly, we propose to use as seed a valid calling context
and valid function arguments generated by a host. This way an
in-vivo fuzzer remains within the “neighborhood” of a valid
program state when fuzzing a function. Assuming the host
application generates several calls to the library at different
amplifier points, our in-vivo fuzzer can reach deep into the
program and cover and amplify a diverse set of program states.

A. Overall Procedure

Figure 1 sketches the overall procedure. Given the host
code, including the library code, and the user-specified am-
plifier points and constraints, the first step is to compile and
instrument the program. Our instrumentation pass introduces
a function call into our in-vivo runtime within the preamble
of every function identified as amplifier point. During fuzzing,
this transfer of control allows the runtime to create a shadow
process and independently fuzz the function arguments in that
shadow process in collaboration with the in-vivo fuzzer. We
implemented our prototype, AFLLIVE, on top of AFL++ 4.02c.

Instrumentation. Our instrumentation pass (LLVM 14 [16])
adds the runtime whose purpose is to mediate between the in-
vivo fuzzer and running process of the instrumented binary. At
the entry point of the main function, AFLLIVE inserts a call into
our runtime to initialize any necessary state and communicate

with the fuzzer. At the entry point of an amplifier point, the
instrumentation pass inserts a call into our runtime containing
the name of the amplifier point and the memory addresses
of the arguments that will be fuzzed. Additionally, AFLLIVE
hooks the exit point of every amplifier point to facilitate early
termination of the host if configured in this way.

Amplifier points. To focus the in-vivo fuzzing on interesting
library functions, we require the user to specify a set of func-
tions called amplifier points. This selection need not be limited
to library API functions only. It is possible to choose these
amplifier points manually or using an auto-discovery process.
Generally, we would be looking for functions whose signa-
ture or behavior suggests they may be attacker-controllable
and contain vulnerabilities. For instance, our prototype uses
CodeQL [17] to find parsing functions5 (which are user-
controlled by default and have the added benefit that constraint
specification for them tends to be particularly simple, since
they typically take a byte array and its length).

Amplifier constraints. To minimize the number of false
positives, the in-vivo fuzzer also takes user-provided amplifier
constraints that the generated function parameters need to sat-
isfy before they are passed into the amplified function. These
amplifier constraints carry the same role as the preconditions
in property-based testing [18], [19]. They take the form of
binary relationships between arguments and/or constants. For
example, in Row 1 of Table I, a constraint can be seen which
implies that the pointer pp must point to an array of length
len, and that len should be less than a constant C.

Amplifier types. The instrumentation pass also records type
information for the given amplifier points (in JSON format).
During fuzzing, these amplifier types are used to serialize
function parameter objects to a sequence of bytes for the
in-vivo fuzzer and, vice versa, deserialize for the runtime,
similar to the coverage-guided Java fuzzing approach proposed
by Padhye, Lemieux, and Sen [19]. This type information is
composed of the bitwidth for primitive types, fields’ types and
offsets for struct types, and the type of the pointee for pointers.
Note that since the collected types are in LLVM Intermediate
Representation (IR) types, these three cases cover every kind
of variable types encountered for fuzzing most targets.

B. In-Vivo Fuzzing Algorithm

Algorithm 1 starts with the user-provided amplifier points
and constraints, the auto-generated amplifier types, an instance
of the instrumented host binary p, and two user-provided
time budgets t0 and t1 (which determines the lengths of the
screening phase and the main fuzzing loop, respectively).

Global and local corpora. In Line 1–3, all seed corpora
are initially set to the empty set. The fuzzer maintains two
global corpora Q and Q✗ and one local corpus Qf for every
amplifier function F ∈ F . Throughout the campaign, the
global corpus will contain tuples where the first element is

5This script checks each function’s name against a predefined list of
substrings and validates if at least one of its parameters is a pointer (or double
pointer) of type char* or uint8_t and another one is an number.

an amplifier point and the second the serialized function argu-
ments. A local corpus does not need the amplifier information
and is hence a set of serialized function arguments. Since the
fuzzer proceeds in a coverage-guided manner, the local and
global corpora Q (and Q✗) contain arguments that have been
observed to be coverage-increasing (and crash-inducing, resp.).

Forking. In Line 4, the execution of process p is forked
which allows the host to continue execution normally while we
keep a handle to the shadow execution, which will be used for
fuzzing. We assume that the forked process is isolated from the
original execution and does not interfere with it. Conceptually,
we assume the process has the ability to be rewound back
to the invocation of any amplifier point, which is needed to
alternate amplifier points during fuzzing.

Auto-collecting initial seeds. In Line 5–11, the fuzzer har-
vests the initial seeds from the original execution. These seeds
are later used for coverage-guided, mutational fuzzing. For
every amplifier point that is executed in the original, running
process, our instrumentation pass made sure the call is routed
through the in-vivo runtime which collects the function argu-
ments as objects from the (forked) shadow process (Line 6).
These objects corresponding to the function arguments are
serialized and added to the global and local corpora.

Screening loop. In Line 12–18, the fuzzer fuzzes every
executed amplifier point for a fixed amount of time in order
to collect sufficient coverage information for the main fuzzing
loop. The time budget t0 for every amplifier point is fixed
by the user. Without the screening loop, all amplifier points
will be considered as equally good at generating coverage in-
creasing inputs since the coverage collected during the initial,
non-amplified execution will be exactly the same for all initial
seeds. The screening loop over all amplifier functions forces
the fuzzer to explore which regions of code each amplifier
point is capable of covering. The function select (Line 14)
selects the next best seed from the current local queue while
the function fuzz_function_args (Line 16) fuzzes the
selected seed. During fuzzing, all coverage-increasing inputs
are added to the global and local queues (Q,Qf) while all
crashing inputs are added to the set of crashes (Q✗).

Main fuzzing loop. In Line 19–23, the fuzzer fuzzes the
seeds selected from the global queue until the campaign is
aborted or the time budget t1 is depleted. To select the next
seed, we can now simply reuse the default heuristics of the
underlying fuzzer (AFL++). Given a seed corpus of serialized
function arguments, this is how we fuzz those arguments in a
coverage-guided manner with a minimal false positive rate.

Early termination. AFLLIVE can be configured to terminate
at the exit of or an arbitrary period of time after an amplifier
function has returned, e.g., if the fuzzer throughput is too low.
Our intuition is that crashes often arise shortly after the call
to the amplified function. Early termination allows the user to
strike a balance between performance and stability for a given
campaign, at the risk of introducing false-negatives.

Algorithm 2 Function fuzz_function_args

Input: Process p′, function f , types t, constraints c, args q
Input: Global corpus Q, Local corpus Qf , Crashes Q✗

1: Energy e = compute_energy(f, q,Q)
2: while e not expired do
3: Mutated args q′ = mutate(q)
4: Mutated objs o = deserialize(q′, t, c)
5: Process p′′ = fork_rewind_wait(p′, f)
6: Result r = substitute_continue(p′′, f, o)
7: if r = new crash detected then
8: Add ⟨f, q′⟩ to Q✗

9: else if r = coverage increased then
10: Add ⟨f, q′⟩ to Q
11: Add q′ to Qf

12: end if
13: end while
Output: Global corpus Q, Local corpus Qf , Crashes Q✗

C. Mutational Fuzzing of Function Arguments

Algorithm 2 shows fuzz_function_args called in
Line 16 and 22 of Algorithm 1. Given the shadow process, the
amplifier point, types, and constraints, and the seed arguments,
it mutates the seed to generate alternative function arguments.
Those that increased code coverage are added to the local and
global corpora while those that induced a unique crash are
added to the set of crashes.

Mutation. In Line 1–3, an “optimal” number of mutations
o′ of the serialized function arguments q are created. What is
considered as optimal is computed in the compute_energy
function while the mutation operators applied to the arguments
are implemented in the mutate function. Since the serialized
arguments is just a sequence of bytes, we can reuse the
implementations of both functions in a classic fuzzer [7], [20].

Deserialization. In Line 4, the in-vivo runtime receives
and parses the mutated sequence of bytes into the actual
function argument objects using the intrumenter-provided type
information t. This process is deterministic: Deserializing the
same byte sequence multiple times results in the same argu-
ment objects being generated, which ensures consistency and
reproducibility. The deserialization procedure also enforces
the user-provided constraints c. We discuss the procedure of
deserialize in a separate section below.

Spawning shadow executions. In Line 5 and 6, the in-vivo
runtime uses the shadow process p′ to spawn another shadow
execution which is rewound back to right before the selected
function f is called, so as to continue executing with the
mutated function parameters. Technically, we can implement
the function fork_rewind_wait by considering p′ as
running in a virtual machine and using a snapshot-restore
mechanism to restore a snapshot of p′ right before f is called.
This approach fully isolates the constructed process p′′ from
the shadow process p′ (and the original process p), but it also
introduces a performance and memory overhead for storing
and loading the snapshots. In our prototype, we chose to
fully reexecute the host application until f is reached (to
conceptually rewind it) and start a fork server at f where the
runtime interferes to provide the function call parameters o.

Algorithm 3 Function deserialize

Input: Function argument byte sequence q,
Input: Function argument types t
Input: Function argument constraints c
Output: Function argument objects o

1: Objects o = ∅
2: for type in t do
3: Object obj = deserialize_arg(q, type, c)
4: Add obj to o
5: end for
6: function deserialize_arg(q, type)
7: Object obj
8: if type is primitive then
9: obj = q.consume_bytes(type.bitWidth / 8)

10: else if type = Struct then
11: for field, fieldType in type.fields do
12: obj.field = deserialize_arg(q, fieldType, c)
13: end for
14: else if type = Pointer then
15: type′ = type.pointeeType
16: length = q.consume_bytes(4)
17: for i ∈ {0, ..., length − 1} do
18: obj[i] = deserialize_arg(q, type′, c)
19: end for
20: end if
21: Object obj = enforce_constraints(obj, c)
22: return obj
23: end function

Coverage-guidance. In Line 7 to 12, the fuzzer adds func-
tion arguments to the corpora that are observed to be coverage-
increasing. Function arguments that are observed to induce
crashes are added to the corpus containing the crashing inputs.

D. Serialization and Deserialization

In order to reuse existing greybox fuzzers to implement seed
selection (select), prioritization (compute_energy), and
mutation (mutate), we need to translate function arguments
into a sequence of bytes (which the fuzzer can handle) and
back again. We accomodate the serialization (serialize)
and deserialization (deserialize) procedures in the in-
vivo runtime that is instrumented into the host binary (cf.
Fig. 1). On a high-level, this process is similar to the appraoch
proposed by Padhye et al. [19] which enables coverage-guided
mutational fuzzing for an object-oriented language, like Java.

Algorithm 3 presents the procedure of the deserialize
function. The procedure of serialize is analogous. Given
a seed byte sequence, the argument types, and the argument
constraints, the deserialization algorithm computes the func-
tion argument objects to be passed into the function call. In
Line 1–5, the runtime generates one object for every function
argument using its type information. Line 7–24 sketches the re-
cursive procedure of the corresponding deserialize_arg
function which also enforces the validity of the synthesized
function argument objects.

The provided sequence of bytes q is “consumed”, such that
each byte is used at most once for the construction of the
function argument objects. The function consume_bytes
keeps an offset into the fuzzer-provided byte sequence, initially

set to 0. When called, the function returns the desired amount
of bytes available in the sequence, and advances the offset by
that same amount of bytes. If the in-vivo runtime attempts to
consume more bytes than available, the function returns all
available bytes and the remaining bytes set to zero.

For primitive types (Line 9–10), the runtime reads as many
bytes from the fuzzer-provided byte sequence q as needed in
order to properly cast them into the appropriate type t.

For structured types (Line 11–14), an empty instance of
the structure is allocated, and the algorithm is then applied
repeatedly and recursively for each field of the structure,
consuming the available bytes from the byte sequence q.

For pointer types (Line 15–21), our current prototype de-
serializes those as arrays. The value represented by the four
bytes consumed from the byte sequence q determine the
number of elements (length) that are to be included in the
array. This includes arrays of length one (single elements) and
zero (null pointers). This is because in the C programming
language a pointer can transparently point to one element or
the beginning of a list of elements. We can recover the ”width”
of a single element from the pointee type information (type′).
The individual elements can then be deserialized recursively.
We rely on the user-provided constraints to enforce the validity
of the deserialized array length (cf. Tab. I).

Constraint enforcement. In Line 22, the fuzzer runtime mod-
ifies the constructed function argument objects to render them
valid with respect to the user-provided constraints C. These
constraints denote inequalities between constants, primitive
type parameters, lengths of array parameters, or array items.
In order to “enforce” them, the runtime goes over the de-
serialized values, bounding the value of each left-hand side of
a constraint with respect to the right-hand side.

This implies a dependency relationship between the values
of the left-hand side of a constraint and its right-hand side.
This in turn means that the set of constraints specified by the
user can not denote circular dependencies, in order to allow
the runtime to traverse the set of arguments in a valid order.

Additionally, the user can tag string arguments as filenames,
for which the runtime will dump fuzzing data into a temporary
file, and replace the string provided to the function with the
corresponding filename.

Serialization. As mentioned earlier, the serialization in
Algorithm 1 (Line 8) proceeds analogously, translating the
function argument objects o into a byte sequence q, such that
if Algorithm 3 is applied to q, we would recover o. However, it
might not be immediately clear how pointers are handled. How
do we know a priori whether a pointer points to no element
at all, a single element, or a number of elements? In this case,
we rely on user-specified constraints to properly indicate the
size of the array by way of reference. If the user-provided
constraints are not strong enough to assign a value to the length
of the array referred to by a pointer, our fuzzer prototype
defaults to treating character pointers as null-terminated strings
(in which case the length of the array is calculated by looking
for the first occurrence of the null byte in the string) and any
other pointers as pointers to single elements.

Subject Type #LOC Version Host AP M.#C.
boringssl Encryption 483.2k dd52194 crypto_test 37 2
bzip2 Compression 8.2k 1.0.8 bzip2 1 2
libass Rendering 35.4k 0.17.1 ffmpeg 4 2
libexif Parsing 30.7k 0.6.24 photographer 2 1

TABLE II: Detailed information about our subject programs.

III. IS EXECUTION AMPLIFICATION EFFECTIVE?

To study the effectiveness of our in-vivo approach, we im-
plement AFLLIVE and measure the difference in code coverage
achieved between the unamplified original executions and the
amplified, shadow executions on four target libraries. For each
one of them, we choose a host program and one host input
to generate unamplified executions, and use a simple CodeQL
script to choose interesting amplifier points heuristically.

A. Experimental Setup

Libraries and hosts. Table II shows information about the
benchmarks selected for this experiment (two more to follow).
We randomly picked four widely-used open-source C libraries
that parse host-provided input data. These libraries cover a
wide range of domains, from cryptography to rendering. Ap-
plications using these libraries might attempt to parse untrusted
data and thus any errors present in them might represent
potential security vulnerabilities. For every library, we picked
one host and one input for that host whose execution we
sought to amplify. For our host selection criteria, we focused
on programs that were either developed or endorsed by the
same group that developed the library. This was done with
the intention of minimizing the likelihood of potential crashes
stemming from wrong library usage, instead of actual bugs in
the library.

For boringssl, we used a binary as host that is supposed
to test the encryption functionality of the library which also
generates the one unamplified execution. For bzip2, we used
the example application bundled with the source code as host
and a compressed version of a text file containing sample text6

to generate the unamplified execution. For libass, we used
ffmpeg as host, a large video and audio editing library that
integrates subtitle functionality via libass. The unamplified
execution was generated by adding subtitle track with a single
subtitle to the shortest possible video. For libexif, we used
an example application bundled with the source code and one
of the test images7 to generate the unamplified execution.

Amplifier points and constraints are identified using a Cod-
eQL script implementing heuristics to identify parsing-related
functions (Section II-A). This script returns potential amplifier
points consisting of at most a few hundred functions. We then
went through the list, adjusting the automatically inferred con-
straints based on the function signature and example invoca-
tions within the code. Column AP in Table II shows how many
of the identified amplifier points were executed during the host
execution used for the fuzzing campaign. Column M.#C. in

6“The quick brown fox jumps over the lazy dog”
722-canon_tags.jpg

0 6 12 18 24
time (hs)

900.0

956.2

1012.5

1068.8

1125.0

lin
es

 c
ov

er
ed

(a) bzip2

0 6 12 18 24
time (hs)

39150

39250

39350

39450

39550

lin
es

 c
ov

er
ed

(b) boringssl

0 6 12 18 24
time (hs)

4250

4812

5375

5938

6500

lin
es

 c
ov

er
ed

(c) libass

0 6 12 18 24
time (hs)

1000

1350

1700

2050

2400

lin
es

 c
ov

er
ed

(d) libexif

Fig. 2: Coverage-vs-time for test subjects using in-vivo
fuzzing. The horizontal, dashed lines indicate the baseline
coverage from the original, unamplified execution. The ver-
tical, dashed lines indicate when AFLLIVE switched from the
screening loop to the main fuzzing loop, on the average.

turn shows the median number of constraints specified for each
amplifier point, as a “proxy” metric of the amount of effort
involved in setting up each subject.

Fuzzing campaigns. For every project, we started 20 in-vivo
campaigns initialized with the same original execution using
AFLLIVE. All campaigns were run for 24-hours each on a
AMD EPYC 7713P 64-Core processor with 256GB of RAM.

B. Experimental Results

Presentation. The results are shown in Figure 2. All values
reflect coverage within the library, and not on the host. The
vertical, dashed line indicates when, on the average, AFLLIVE
switched from screening to the main fuzzing loop. However,
since the screening loop only lasts one minute for every target
function executed, it is barely visible in cases where few
functions were amplified. The horizontal, dashed line indicates
the coverage achieved by the unamplified host execution.

Results. The greatest increases in term of coverage were
obtained in libass and libexif, where AFLLIVE achieved
an increase of 38.24% (1706 lines) and 91.79% (1040 lines)
over the baseline, unamplified execution, respectively. For
bzip2 and boringssl, AFLLIVE managed to achieve an
increase in coverage of 18.75% (173 lines) and 0.82% (321
lines), respectively.

The lack of increase in coverage for boringssl is further
confirmed by a visual inspection of Figure 2b where we can
see the campaign reach a plateau about 1 hour into the 24 hour
fuzzing campaign.8 Although line coverage did not increase
after the first few hours, new path-increasing inputs kept being
added to the corpus throughout the campaign. We attribute this

8Notice that coverage increases well after the screening loop has finished.

to the fact that out of the 2044 functions executed by the host,
1381 were fully covered in terms of lines by the unamplified
host execution. This in turn means there was little room for
improvement upon initial line coverage.

The substantial increase in coverage for libass and
libexif is observed over the entire day-long fuzzing cam-
paign and appears to further increase beyond our time bud-
get. This suggests that amplifying the right executions can
bring tremendous benefits to automatic vulnerability discovery
where the amplified executions reach deep into the code base.

False positives. No crashes were reported in these (previ-
ously well-fuzzed) programs during the campaign. This in turn
implies that no false positives were reported either, although
it is important to keep in mind that the rate of false positives
depends on the quality of the specified amplifier constraints.

IV. ONBOARDING LIBRARIES WITHOUT FUZZ DRIVERS

An advantage of in-vivo fuzzing, as shown in the previous
section, is that it makes fuzz drivers superfluous. A fuzz driver
is a piece of code that acts as a glue code between an off-
the-shelf fuzzer and the library-under-test. The driver sets up
an artificial calling context and is responsible for accepting
data from the fuzzer and feeding it into the library with the
appropriate format.

However, effective fuzz drivers are often manually imple-
mented which constitutes a major hinderance to widespread
adoption of fuzzing. For instance, Google incentivices the
development of fuzz drivers for important open source projects
by paying up to 30k USD for the successful and effective
integration [2]. In fact, Google’s project OSS-Fuzz [1] is
primarily a community-maintained collection of fuzz drivers
for open source projects.

An existing approach to overcome this hindrance is to
automatically synthesize fuzz drivers. For instance, FUZZGEN
[4] leverages a whole system analysis to infer the library’s
interface and synthesizes fuzz drivers specifically against that
interface. FUDGE [5] scans a repository for usages of the
library’s API, uses program slicing [21] to extract the corre-
sponding code snippets, synthesizes a fuzz driver candidate for
every code snippet by concretizing place holders, and evaluate
the generated fuzz driver candidates by building and running it.
IntelliGen [22] also first infers the library’s interface annotated
with vulnerability likelhoods and generates fuzz drivers for
the entry functions through hierarchical parameter replacement
and type inference. Daisy [23] first dynamically observes how
a host system calls the library’s API, and then synthesizes fuzz
drivers that follow a similar object usage pattern via a series
of API calls.

However, these approaches hoist the tested library only
very artificially resulting in a high false positive and false
negative rate. The libraries would never be integrated or used
in this way in real applications. Approaches that immitate the
actual usage as faithfully as possible will still not be as close
to fuzzing a library as it is actually used. This is precisely
our proposal: We suggest to amplify actual user-generated
executions where a library is actually used.

In the following, we compare the effectiveness of automatic
fuzz driver generation to in-vivo fuzzing as implemented
in AFLLIVE. Like fuzz driver generation techniques, in-vivo
fuzzing requires only the source code and little human inter-
vention in the specification of amplifier points and constraints.

A. Experimental Setup

Fuzz driver generators. We selected FUZZGEN [4] and
FUDGE [5] according to the following selection criteria. We
consider approaches that target C libraries, and that are either
themselves publicly available and compilable or the generated
drivers are publicly available and compilable. We also consid-
ered the following fuzz driver generators, but excluded them
for the following reasons. GraphFuzz [24] focuses on object-
oriented libraries, and in the case of C libraries a complete
dataflow specification9 must be provided, which we do not
have available. For Daisy [23], despite substantial effort, we
did not succeed in compiling the available fuzz drivers due
to missing dependencies. For IntelliGen [22], neither the tool
itself nor fuzz drivers generated by it were publicly available.

For the comparison against FUZZGEN, since the tool itself
was not available, we selected three of the seven libraries, as
shown in Table III. Out of the four excluded libraries, three
had an API that consisted of a single function that accepted
a complex struct object which wraps the actual library
call and maintains the entire state of the library interaction10.
The remaining library was excluded because it could not be
compiled (or easily fixed). For the three selected libraries, we
used the only driver available for libaom and libvpx and a
random fuzz driver (codlin) for libgsm.

For the comparison against FUDGE, we selected all fuzz
drivers mentioned in the paper, except OpenCV, as shown in
Table III. OpenCV was excluded since the entire API consisted
of C++ rather than C functions. leptonica and htslib
are highly popular libraries used for image processing, and
high-throughput sequencing data processing, respectively.

Hosts and Original Execution. For every library, we picked
one host and one input for that host whose execution we
could amplify (cf. Table III). To be fair, we provided each
auto-generated fuzz driver with an initial corpus that generates
precisely the same values for the library API as our in-vivo
fuzzer. Our intention is that the tested libraries execute on
the same piece of data during the first run (for instance,
they should attempt to decode the same byte-stream in the
case of decoders). For our host selection criteria, we focused
on programs that were either developed or endorsed by the
same group that developed the library. This was done with
the intention of minimizing the likelihood of potential crashes
stemming from wrong library usage, instead of actual bugs in
the library.

Fuzzing campaigns. For all of the five projects, we started
20 in-vivo fuzzing campaigns initialized with the same original
execution using AFLLIVE and 20 normal AFL campaigns using

9https://github.com/hgarrereyn/GraphFuzz/issues/1
10Example for libhevc: https://android.googlesource.com/platform/

external/libhevc/+/refs/heads/main/test/decoder/main.c#563

https://github.com/hgarrereyn/GraphFuzz/issues/1
https://android.googlesource.com/platform/external/libhevc/+/refs/heads/main/test/decoder/main.c#563
https://android.googlesource.com/platform/external/libhevc/+/refs/heads/main/test/decoder/main.c#563

SOTA Library Type #LOC Version Synth. fuzz driver #LOC Host Initial corpus AP M.#C.

FUZZGEN
libaom Video Codec 693.0k 3613e5d av1_dec_fuzzer 1131 aomdec sample av1 file 4 1.5
libvpx Video Codec 0.5k 1.12.0 simple_decoder 482 vpxdec sample vp9 file 5 2
libgsm Speech compressor 8.7k 1.0.22 cod2lin 371 STL/rpedemo sample wav file 3 1

FUDGE
htslib File parser 99.0k 1.16 hts_open 152 samtools sample sam 2 2

and fasta file
leptonica Image processor 320.0k 1.83.0 pix_rotate_shear 68 tesseract sample png file 18 1

with english text

TABLE III: Summary of setup for each test subjects for comparison against state-of-the-art (SOTA) fuzz driver generators.

0 6 12 18 24
time (hs)

0

10000

20000

30000

40000

lin
es

 c
ov

er
ed

(a) libaom (FUZZGEN)

0 6 12 18 24
time (hs)

8800

9000

9200

9400

9600
lin

es
 c

ov
er

ed

(b) libvpx (FUZZGEN)

0 6 12 18 24
time (hs)

400

625

850

1075

1300

lin
es

 c
ov

er
ed

(c) libgsm (FUZZGEN)

0 6 12 18 24
time (hs)

4500

5625

6750

7875

9000

lin
es

 c
ov

er
ed

(d) htslib (FUDGE)

0 6 12 18 24
time (hs)

0

1500

3000

4500

6000

lin
es

 c
ov

er
ed

(e) leptonica (FUDGE)

Library Bug Type ID
htslib NULL ptr. deref. [blinded]
htslib UAF [blinded]
htslib Buffer overflow [blinded]
htslib Out-Of-Memory [blinded]
htslib Out-Of-Memory [blinded]
htslib Assertion violation [blinded]
htslib Assertion violation [blinded]

(f) Crashes found

Fig. 3: Coverage-vs-time comparison between state-of-the-art
(dash-dots) and in-vivo fuzzing (solid), plus crashes found.

the synthesized fuzz harnesses. All campaigns were run for 24-
hours each on a AMD EPYC 7713P 64-Core processor with
256GB of RAM.

B. Experimental Results

Presentation. Figure 3 show the results in terms of coverage
over time and crashes found for all five subjects. The dashed
vertical line indicates when, on the average, AFLLIVE switched
from screening to the main fuzzing loop. In all cases, only
coverage achieved within the library is counted, excluding any
coverage information about the host or the fuzz driver.

Coverage results. For the entire duration of the campaign
and for all subjects, AFLLIVE achieves substantially more
coverage than the campaigns via the synthesized fuzz drivers.
Both seem to plateau at around the same time. However, in-
vivo fuzzing has the capability to cover substantially more
code before reaching that plateau. It is interesting to note
that AFLLIVE constistently achieves more initial coverage than

AFL via the synthesized fuzz drivers when the campaign is
started. We find that a synthesized fuzz driver only exercises
a handful of API functions in a rather shallow manner while
a host application often interacts with a library via a complex
series of API function calls. The synthesized fuzz drivers do
not seem to be able to mimic these complex interactions.

The case libgsm seems pathological since there is little
coverage increase over time for both fuzzers. Upon closer
inspection, we found that the encoding and decoding routines
in this library consisted almost entirely of sequential blocks
of instructions with no control flow statements. This explains
why neither fuzzer was able to increase coverage substantially
via the selected amplifier points.

Bug finding results. Our in-vivo fuzzer AFLLIVE found
seven previously unknown crashes in htslib (cf. Fig. 3.f).
Five were memory safety bugs: a null pointer dereference and
two out-of-memory errors within cram/cram_encode.c
as well as a heap overflow in header.c, and a use-after-free
in md5.c. The remaining two crashes were assertion viola-
tions in cram/cram_io.c and cram/cram_codecs.c.
AFLLIVE found these seven memory corruption bugs despite
the FUDGE-synthesized (and later manually adjusted)11 having
continuously fuzzed the library for four years12. No further
crashes were reported by other campaigns.

False positives. All of the reported crashes were true pos-
itives which could be reproduced after the campaigns were
finished. Moreover, manual inspection revealed that all seven
crashes were reproducible via the host program by providing
an appropriate system-level input which, we confirmed, could
be under attacker-control.

V. AMPLIFYING THE PROGRAM’S MANUAL TEST SUITE

AFLLIVE can amplify any execution, including one that is
generated by a manually constructed test suite. Test cases often
cover certain edge cases or are designed to catch regressions
similar to previously discovered bugs. Over 40% of 0-days
exploited in-the-wild are variants of previously discovered
vulnerabilities [25]. Amplifying test cases allows us to search
their ”neighborhood” and bring to light new bugs or those that
have been incompletely fixed. Since test suite are designed
with code coverage in mind, amplifying test executions might
allow us to reach deep into the code, effectively rendering
every function ammenable to fuzzing.

11https://github.com/samtools/htslib/commits/develop/test/fuzz/hts open fuzzer.c
12https://github.com/google/oss-fuzz/commit/af319543

https://github.com/samtools/htslib/commits/develop/test/fuzz/hts_open_fuzzer.c
https://github.com/google/oss-fuzz/commit/af319543

Initial
Library Type #LOC Version %Coverage AP M.#C.
openssl Cryptography 1M 3.0.6 60% 93 2
libxml2 Parsing 308k 2.10.3 61% 14 2
opus Speech 80k 1.3.1 93% 9 2

compressor

TABLE IV: Information about libraries and manual test suites.

Distributing energy. Ideally, we would like to fuzz every
amplifier point that is executed by the test suite for the same
amount of time. However, some amplifier points are executed
by a large number of test cases while other amplifier points
are executed just by a single test case. So, how much “energy”
do we assign to each test case to achieve this objective?

Algorithm 4 Test amplification
Input: Test suite S
Input: Amplifier points F , Types T , Constraints C, Time t0

1: Map test2func = ∅
2: Set funcs = ∅
3: for Test s ∈ S do
4: test2func[s] = get_exec_amplifiers(s, F)
5: funcs = funcs ∪ test2func[s]
6: end for
7: executed = |funcs|
8: fuzzed funcs= ∅
9: while not aborted do

10: for s in S do
11: unfuzzed = |test2func[s]− fuzzed funcs|
12: if unfuzzed > 0 then
13: Time budget t1 = unfuzzed/executed
14: fuzz(F, T,C,exec(s), t0, t1)
15: fuzzed funcs = fuzzed funcs ∪ test2func[s]
16: end if
17: end for
18: end while

Algorithm 4 illustrates our algorithm to distribute the avail-
able energy evenly over the amplifier points executed by
the test suite S. In Line 1–7, it finds the amplifier function
executed by each test case s ∈ S and counts how many
amplifiers are executed in total. In Line 8–18, it skips test cases
that execute no unfuzzed amplifier point (Line 12). Otherwise,
it computes the proportion of all executed amplifiers that are
executed by test case s and still unfuzzed as the time budget t1
for s (Line 13), and starts a corresponding fuzzing campaign
(Line 14). Specifically, the function fuzz implements the
proposed in-vivo fuzzing approach as defined in Algorithm 1.

A. Experimental Setup

Table IVshows the selected libraries, the corresponding test
suite coverage, and the number of executed amplifier points
(AP). We randomly chose libraries from diverse domains that
are security-critical, well-fuzzed (5+ years),13 and widely used
open-source C libraries. For test amplification, no host or host
input is needed, as all libraries had test suites and testing
frameworks readily available. Like for the other experiments,

132016 Commit contains OpenSSL & LibXML2: https://github.com/google/
oss-fuzz/commit/a143b9b3

0 6 12 18 24
time (hs)

135400

135600

135800

136000

136200

lin
es

 c
ov

er
ed

(a) openssl

0 6 12 18 24
time (hs)

58850.0

58962.5

59075.0

59187.5

59300.0

lin
es

 c
ov

er
ed

(b) libxml2

0 6 12 18 24
time (hs)

15500

16062

16625

17188

17750

lin
es

 c
ov

er
ed

(c) opus

Bug Type ID
Buffer overflow CVE-2022-3602
Buffer overflow PR 19166
Use-after-free CVE-[blinded]
Denial of Service PR [blinded]

(d) Bugs found in OpenSSL.

Fig. 4: Coverage and bugs in test amplification campaigns.

the amplifier points were auto-identified using our tool (§ II-A)
and manually constrained afterwards.

State of the art. There exists a fuzz driver generator specific
for test amplification, called UTOPIA [6]. Given a library-
under-test and the gtest or boost test suite, UTOPIA first
performs a lightweight static analysis before synthesizing fuzz
drivers for the tested library functions. The static analysis is
used to identify the precondition of every library function.
For every test case, the synthesis first identifies the library
functions used in the test case and the constants used as
parameters in a corresponding function call, and then generates
a fuzz driver for the library functions by rendering the constant
library function call parameters subject to fuzzing. For our ex-
periments, we reuse the identified functions and preconditions
as amplifier points and constraints using a straightforward
translation, to ensure the fairness of the comparison. This
demonstrates the versitality of our in-vivo approach which al-
lows diverse means of automatic amplifier point identification
and requires no specific test framework.

Unfortunately, despite several months of experimentation,
we realized that on the UTOPIA benchmark programs using
the UTOPIA-identified amplifier points and constraints, all
crashing inputs generated by UTOPIA (and by our AFLLIVE)
only reveal false positives. Upon manual examination, we
discovered that the drivers synthesized by UTOPIA (as well
as the results of its analysis) did lead to an incorrect usage of
the libraries, and thus to a large amount of spurious crashes.
To be sure, we repeated the analysis by filtering inputs that
did not crash on the most recent version, assuming these
bugs would now be fixed, but only found that the remaining
crashers were flaky, i.e., crashed again if run repeatedly. Since
the prototype provided by the authors is highly automated
(i.e. it requires little intervention and there is not much room
for misusage), we conclude that an experimental comparison
would not provide much insight.

https://github.com/google/oss-fuzz/commit/a143b9b3
https://github.com/google/oss-fuzz/commit/a143b9b3

B. Experimental Results

Presentation. Figure 4 shows the average coverage over
time and the bugs found during test amplification. The vertical
dashed lines indicate a change in test case during the fuzzing
campaign (Line 14 of Alg. 4). The horizontal dashed line
indicates the initial coverage for the library’s test suite. We
only measure coverage of the library.

Coverage results. AFLLIVE achieved an increase over the
manual test suite by around 600 LoC for openssl and over
300 LoC for libxml2. No increase in coverage was achieved
for opus. Closer inspection revealed that the manual test suite
is of very high quality and nearly saturated, covering almost
95% of lines of code in opus. There are five test cases that
exercise all of the amplifier points selected for opus (which
explains why all of the time budget was invested into one test
case). The latter is true also for LibXML2, where the first test
case already exercises all but one amplifier point.

For openssl, we see that switching test cases to exercise
new amplifier points is effective and after saturation, code cov-
erage increases again when the next test case is fuzzed. This
highlights that, using our approach, once the amplifier points
have been identified and their constraints correctly specified
the user is able to setup several fuzzing campaigns with little
extra effort. Towards the end of the 24 hour campaign, it is also
interesting to note that coverage saturates despite switching to
test cases that exercise new amplifier points.

Bug finding results. AFLLIVE discovers 4 bugs in openssl,
two of which have previously been found only by manual
auditing, including the high-severity PunyCode vulnerability
(CVE-2022-3602), and two of which have not previously been
known, including a moderate-severity use-after-free (CVE-
[blinded]). In terms of false positives, no false positive crashes
were reported.

VI. SEMI-AUTOMATED IDENTIFICATION OF AMPLIFIER
POINTS AND CONSTRAINTS

The two main concepts of invivo fuzzing are amplifier
points (APs) and amplifier constraints (ACs). While APs
identify interesting functions, the purpose of ACs is to make
implicit function-preconditions explicit, just like like user-
defined preconditions in property-based testing (PBT) [18],
[19] or user-defined repOK-methods in search-based software
testing (SBST) [26], [27].

In general, ACs can be written manually to reduce false
positives, but they do not need to be added. In terms of
manual effort, there is a tradeoff between specifying ACs
versus going through the false positives. For instance, sup-
pose AFLLIVE finds a possible null-pointer-dereference on a
function-parameter, but that function is never called with a
null-pointer. This is a false positive. We allow users of invivo-
fuzzing to encode this implicit assumption explicitly.

A. Semi-Automatic Identification

For our experiments, we used a semi-automated approach.
An initial set of APs/ACs was first automatically identified
and then manually refined. For automation, we developed a

Inferred config. Curated config.
Subject Cov. (#LOC) T.P. F.P. Cov. (#LOC) T.P. F.P.
boringssl 40027.95 - 4 39511.95 - -
bzip2 - - - 1096.10 - -
libass 6553.40 - - 6168.25 - -
libexif - - - 2174.95 - -
htslib 5723.00 - - 8504.50 7 -
leptonica 3178.85 - - 5255.75 - -
libaom 11442.00 - - 38261.55 - -
libgsm - - - 1218.40 - -
libvpx 8203.00 - - 9565.80 - -
libxml2 59681.40 - - 59235.95 - -
openssl 135903.20 - 4 136162.90 4 -
opus 18804.95 - - 16642.00 - -

TABLE V: Coverage and bugs in fully automated campaigns.

CodeQL script to identify APs (113 LoC) and a Python script
to generate ACs (274 LoC).14 For manual refinement:

• For subjects where no executed APs where identified
(bzip2, libexif and libgsm), we added the main
entry points of the library as APs (via documentation).

• We added (or modified) ACs to ensure these conditions:
1) (sizeof(buf) = len ∧ len < C) which requires that

variable len determines the length of the buffer buf
and len is less than the constant C.

2) (sizeof(buf)<C) which requires that the length of
the buffer is smaller than the constant C, or

3) (is_file(filename)) which requires that the string
filename refers to a valid file where fuzzing input
will be dumped.

These patterns account for 98% of all ACs.
As an indicator of the additional manual effort for each

subject, we note that we either added or removed constraints
for no more than 12% of the automatically identified amplifier
points across all subjects. Even then, no more than two
constraints needed to be added/removed.

In comparison to AC specification, writing a fuzz driver
from scratch could take an experienced developer several
hours, and would need to be maintained afterwards. For
instance, the driver integrated into OSS-Fuzz [1] for libass
was written over the course of two days by a core developer
of the project, and iterated upon several times.

B. Ablation Study

In order to study the impact of our additional manual effort
to reduce false positives, we compare the effectiveness of
AFLLIVE using only the auto-generated APs and ACs to the
effectiveness of AFLLIVE using the manually augmented set
of APs and ACs. All campaigns were run for 24-hours each
on a AMD EPYC 7713P 64-Core processor with 256GB of
RAM.

Coverage results. Table V shows the average coverage
achieved throughout the campaign, along with false and true
positives reported, for both the fully automated and manually
modified configurations. For all subjects with identifiable
amplifier points, coverage achieved via auto-generated APs

14https://anonymous.4open.science/r/afllive-598A/config generator

https://anonymous.4open.science/r/afllive-598A/config_generator

and ACs was on par (i.e., same order of magnitude) with the
coverage achieved through the semi-automatic approach.

For the subject where no executed APs were identified
automatically (i.e., bzip2, libexif and libgsm), the
campaigns failed to run. However, after manually specifying 6
amplifier points and 7 constraints across the three subjects, the
campaigns run and managed to increase coverage significantly
over the original execution (see Figure 2, Figure 3).

For some subjects the automatically inferred constraints led
to a higher code coverage, such as in the case of boringssl,
libass, libxml2 and opus. This can be attributed to
the fact that we were overly conservative when manually
modifying constraints in an effort to prevent a high false-
positive rate.

Bug finding results. Given only the automatically inferred
constraints, AFLLIVE failed to find the previously discovered
bugs. Expectedly, this also led to a higher number of false pos-
itives for two of the subjects (boringssl and openssl),
which were also the most complex subjects that we analyzed.
Still, no more than five false positives were reported in each
case, and could thus be triaged in a reasonable amount of time
(less than a few hours).

VII. RELATED WORK

Automatic unit-level testing. Long before fuzzing entered the
stage, the software engineering community studied automatic
approaches for unit-level test generation [18], [26], [28]–[30].
Examples of a unit are Java objects or C functions. One major
research challenge of automatic unit-level testing has been to
minimize the number of false positives, i.e., bugs that only
appear during automatic testing, but never in production when
the unit is properly used. There are two approaches to tackle
this problem: (a) to let the user specify conditions representing
the valid usage of that unit [18], [26], and (b) to observe
how the unit is used, e.g., during system-level testing, and
to enforce the infered protocol during unit-level testing [31].
For instance, the approach taken by the Daisy [23] fuzz driver
generator represents Approach (b) while our AFLLIVE takes
Approach (a) to minimize the number of false positives during
in-vivo fuzzing.

Valid calling context. Another major research challenge
of automatic unit-level testing has been to generate a valid
sequence of API calls and construct the required objects to
pass in as parameters to these calls. Given the preconditions
(called contract), Randoop [29] constructs the sequence of API
calls and objects in a feedback-directed manner, continuously
evolving test cases that do not violate the user-provided con-
tract. JQF [19] and CGPT [32] add coverage-guidance. How-
ever, fundamentally these tools follow a generational approach
where the API calls and objects are generated out of thin air
and validated only against a user-provided specification. In
contrast, ours is a mutational approach, where we piggyback
on a valid sequence of API calls that are passed valid objects.
Like the mutational approach on the system-level [3], [7], [20],
this allows us to reach much deeper into the code. Staying

within the neighborhood of a valid program state, there is a
low risk of false positives.

In-vivo fuzzing in production. Our long-term vision, assum-
ing several technical challenges are tackled, is to integrate in-
vivo fuzzing into the production system, so as to fuzz the
entire supply chain of a software system, including all of its
dependencies. The idea to integrate bug finding into production
is not very far fetched. For instance, Google is running a no-
overhead version of AddressSanitizer [33] on every Android
11 phone and every Chrome browser [34], [35]. Apart from
bug finding, Google has long been running Google-Wide
Profilers (GWP) which conduct light-weight program analysis
across entire fleets of machines [36]. Mozilla implemented
the approach for Firefox [37]. The open source community
implemented the approach for the Linux kernel [38].

VIII. CONCLUSION

A. Perspective

Existing fuzzers are designed to test a software system
in-vitro, i.e. under artificial lab conditions. However, the
effectiveness of in-vitro fuzzing is limited [39]. It is these
limitations which we sought to address in this paper.

Solving dependency on fuzz driver quality. A fuzzer must
first be ”glued” to the software via fuzz drivers. Typically, fuzz
drivers are tediously developed and continuously updated over
months. For instance, Google pays up to 20k USD for fuzz
drivers of critical open source software [1], [40]. To reduce
some manual effort, recent research has focussed on generating
drivers automatically [4], [5], [41]. Whenever a security was
found by manual auditing, the developer would add a new fuzz
driver through which the fuzzer is able to find the security flaw.
While the drivers can be improved over time, this dependency
on driver quality cannot be avoided. OpenSSL has 16 drivers in
OSS-Fuzz which have been continuously fuzzed 24/7 over the
past six (6) years [42]. In contrast, in-vivo fuzzing eliminates
the need for fuzz drivers entirely. Just by amplifying the
developer test suite, our in-vivo prototype found a critical bug
in ”unfuzzed” code of OpenSSL (CVE-2023-0215).

Solving structure-aware fuzzing. A fuzzer’s effectiveness
depends critically on the quality of the initial seed corpus [43].
For instance, if we are fuzzing an PNG image library, inputs
that were generated by mutating valid PNG image files will
reach more deeply into the library than a random string of
bytes. However, valid input structures are easily broken and
new input structures are difficult to generate by chance. For
instance, if none of the seed images contains an optional eXIf
chunk specifying some metadata, it will hardly be generated.
Recent work, including ours [8], has addressed this using (or
learning) the input structure, and “inventing” the missing data
chunks [44]–[47]. However, the critical dependence on initial
seeds remains. In contrast, in-vivo fuzzing allows us to define
as amplifier point that function in the parser which handles
an interesting data chunk or set amplifier points deep in the
program functionality to entirely skip the parser.

Solving stateful fuzzing. Some software systems require
inputs in a certain order. For instance, the Transmission Con-

https://nvd.nist.gov/vuln/detail/CVE-2023-0215

trol Protocol (TCP) requires a three-way handshake between
client and server before data can actually be sent. Without
knowing precisely the implemented protocol, it is difficult
for a fuzzer to generate the right sequence of packets with
the correct structure. Recent work, including ours [12], has
used mutational, feedback-direct fuzzing that uses response
codes, state variables, or human annotations to identify and
leverage the sequence of software states for a sequence of
inputs/packets [14], [48]. However, these approaches heavily
depend on the recorded sequences of packets that are used to
seed the mutational fuzzers. In contrast, in-vivo fuzzing allows
us to define as amplifier point that function which handles a
certain state or state transition.

B. Paper Summary

Our approach allows the user to fuzz a library within the
context of a host application by exploring the neighborhood
of a valid program state induced by an actual host-generated
execution of that library. We do so by applying coverage-
guided mutation-based fuzzing on the arguments of each
function marked as an amplifier point, subject to a set of user-
specified constraints. By using real-world programs, we can
leverage our approach to fuzz the library within a production-
like usage context. Conversely, we can use a test-suite as a
host to explore variants of regression tests and corner cases
identified by the developers. In contrast to a fuzz-driver based
approach, selected amplifier points need not be part of the API,
implying that our approach can reach deeper into the code.

In our experiments we manage to increase coverage sig-
nificantly over non-amplified executions, indicating that am-
plification is indeed effective. Furthermore, we manage to
outperform existing state-of-the-art approaches for automated
fuzz-driver generation in terms of both code coverage and bug
finding. Providing empirical evidence is the discovery of seven
(7) previously unknown vulnerabilities in htslib, even as
this library has been continually fuzzed using synthetic fuzz
drivers for seven (7) years as of the time of writing. This not
only suggests that execution amplification is effective, but also
that real-world applications do indeed interact with libraries in
ways that are not properly captured by existing fuzz drivers.
Moreover, through test amplification we re-discover a high-
severity vulnerability in openssl and also uncover a novel
moderate severity vulnerability, both of which had not been
found through fuzzing before. Apart from the vulnerabilities,
we find a known bug and a novel one, as well.

We should note that the effectiveness of our approach
depends crucially on the choice of amplifier points and con-
straints. If we choose the wrong amplifiers, we might get false
positives crashes; but given the flexibility of our approach,
we did not find this to be an obstacle. For our experiments,
we developed a CodeQL script to come up with an initial
amplifier set.15 Via an interactive process, we refined the
constraints (i.e., preconditions) for every function as follows:
Whenever a constraint was incorrectly specified, the fuzzer

15https://anonymous.4open.science/r/afllive-598A/README.md#config-file-1

would fail within a few seconds, and the constraint would need
an obvious adjustment. Overall, the amplifier identification
process took no more than a few hours for every library.

There are still several interesting socio-technical challenges
ahead of us. Considering that the largest continuous fuzzing
platform, OSS-Fuzz [1], which fuzzes over 1000 open source
projects on 100k machines 24/7, is nothing but a collection of
manually generated fuzz drivers, we are truely excited about
the prospect that in-vivo fuzzing enables fuzzing for every
library that is used and compiled in a production environment.

REFERENCES

[1] K. Serebryany, “OSS-Fuzz - google’s continuous fuzzing service for
open source software,” in USENIX Security. Vancouver, BC: USENIX
Association, Aug. 2017.

[2] OSS-Fuzz, “Integration rewards,” https://google.github.io/oss-fuzz/
getting-started/integration-rewards/, 2021, accessed: 2023-01-11.

[3] LLVM, “Libfuzzer,” https://llvm.org/docs/LibFuzzer.html, accessed:
2023-01-11.

[4] K. Ispoglou, D. Austin, V. Mohan, and M. Payer, “FuzzGen:
Automatic fuzzer generation,” in 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Aug. 2020, pp.
2271–2287. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/ispoglou

[5] D. Babić, S. Bucur, Y. Chen, F. Ivančić, T. King, M. Kusano,
C. Lemieux, L. Szekeres, and W. Wang, “Fudge: Fuzz driver generation
at scale,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2019. New
York, NY, USA: Association for Computing Machinery, 2019, p.
975–985. [Online]. Available: https://doi.org/10.1145/3338906.3340456

[6] B. Jeong, J. Jang, H. Yi, J. Moon, J. Kim, I. Jeon, T. Kim, W. Shim, and
Y. H. Hwang, “Utopia: Automatic generation of fuzz driver using unit
tests,” in 2023 IEEE Symposium on Security and Privacy (SP), 2023,
pp. 2676–2692.

[7] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’16. New York, NY, USA: Association for Computing
Machinery, 2016, p. 1032–1043. [Online]. Available: https://doi.org/10.
1145/2976749.2978428

[8] V.-T. Pham, M. Böhme, A. E. Santosa, A. R. Căciulescu, and A. Roy-
choudhury, “Smart greybox fuzzing,” IEEE Transactions on Software
Engineering, vol. 47, no. 9, pp. 1980–1997, 2021.

[9] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and
D. Teuchert, “Nautilus: Fishing for deep bugs with grammars.” in NDSS,
2019.

[10] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware
greybox fuzzing,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 724–735.

[11] P. Srivastava and M. Payer, “Gramatron: Effective grammar-aware
fuzzing,” in Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ser. ISSTA 2021. New
York, NY, USA: Association for Computing Machinery, 2021, p.
244–256. [Online]. Available: https://doi.org/10.1145/3460319.3464814

[12] V.-T. Pham, M. Böhme, and A. Roychoudhury, “Aflnet: a greybox fuzzer
for network protocols,” in 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST). IEEE, 2020, pp.
460–465.

[13] X. Feng, R. Sun, X. Zhu, M. Xue, S. Wen, D. Liu, S. Nepal,
and Y. Xiang, “Snipuzz: Black-box fuzzing of iot firmware via
message snippet inference,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
337–350. [Online]. Available: https://doi.org/10.1145/3460120.3484543

[14] S. Schumilo, C. Aschermann, A. Jemmett, A. Abbasi, and T. Holz,
“Nyx-net: Network fuzzing with incremental snapshots,” in Proceedings
of the Seventeenth European Conference on Computer Systems, ser.
EuroSys ’22. New York, NY, USA: Association for Computing
Machinery, 2022, p. 166–180. [Online]. Available: https://doi.org/10.
1145/3492321.3519591

https://anonymous.4open.science/r/afllive-598A/README.md#config-file-1
https://google.github.io/oss-fuzz/getting-started/integration-rewards/
https://google.github.io/oss-fuzz/getting-started/integration-rewards/
https://llvm.org/docs/LibFuzzer.html
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou
https://doi.org/10.1145/3338906.3340456
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/3460319.3464814
https://doi.org/10.1145/3460120.3484543
https://doi.org/10.1145/3492321.3519591
https://doi.org/10.1145/3492321.3519591

[15] H. Gascon, C. Wressnegger, F. Yamaguchi, D. Arp, and K. Rieck,
“Pulsar: Stateful black-box fuzzing of proprietary network protocols,”
in Security and Privacy in Communication Networks: 11th EAI Interna-
tional Conference, SecureComm 2015, Dallas, TX, USA, October 26-29,
2015, Proceedings 11. Springer, 2015, pp. 330–347.

[16] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis and transformation,” in CGO, San Jose, CA, USA,
Mar 2004, pp. 75–88.

[17] Github, “Codeql,” https://codeql.github.com/, 2021, accessed: 2023-01-
11.

[18] K. Claessen and J. Hughes, “Quickcheck: A lightweight tool for random
testing of haskell programs,” in Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming, ser. ICFP ’00.
New York, NY, USA: Association for Computing Machinery, 2000, p.
268–279. [Online]. Available: https://doi.org/10.1145/351240.351266

[19] R. Padhye, C. Lemieux, and K. Sen, “Jqf: Coverage-guided property-
based testing in java,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2019. New York, NY, USA: Association for Computing Machinery,
2019, p. 398–401. [Online]. Available: https://doi.org/10.1145/3293882.
3339002

[20] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “Afl++: Combining
incremental steps of fuzzing research,” in Proceedings of the 14th
USENIX Conference on Offensive Technologies, ser. WOOT’20. USA:
USENIX Association, 2020.

[21] M. Weiser, “Program slicing,” in Proceedings of the 5th International
Conference on Software Engineering, ser. ICSE ’81. IEEE Press, 1981,
p. 439–449.

[22] M. Zhang, J. Liu, F. Ma, H. Zhang, and Y. Jiang, “Intelligen: Automatic
driver synthesis for fuzz testing,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 2021, pp. 318–327.

[23] M. Zhang, C. Zhou, J. Liu, M. Wang, J. Liang, J. Zhu, and Y. Jiang,
“Daisy: Effective fuzz driver synthesis with object usage sequence
analysis,” in 2023 IEEE/ACM 45th International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP), 2023, pp.
87–98.

[24] H. Green and T. Avgerinos, “Graphfuzz: Library api fuzzing with
lifetime-aware dataflow graphs,” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 1070–1081.
[Online]. Available: https://doi.org/10.1145/3510003.3510228

[25] M. Stone, “The ups and downs of 0-days: Our review of 0-days exploited
in-the-wild in 2022,” July 2023, accessed: 2023-01-11.

[26] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated testing
based on java predicates,” in Proceedings of the 2002 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
’02. New York, NY, USA: Association for Computing Machinery, 2002,
p. 123–133. [Online]. Available: https://doi.org/10.1145/566172.566191

[27] D. Marinov and S. Khurshid, “Testera: a novel framework for automated
testing of java programs,” in Proceedings 16th Annual International
Conference on Automated Software Engineering (ASE 2001), 2001, pp.
22–31.

[28] G. Fraser and A. Arcuri, “Evolutionary generation of whole test suites,”
in International Conference On Quality Software (QSIC). IEEE
Computer Society, 2011, pp. 31–40.

[29] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
directed random test generation,” in ICSE 2007, Proceedings of the 29th
International Conference on Software Engineering, Minneapolis, MN,
USA, May 2007, pp. 75–84.

[30] P. McMinn, “Search-based software test data generation: a survey,”
Software Testing, Verification and Reliability, vol. 14, no. 2, pp.
105–156, 2004. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/stvr.294

[31] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil, “Carving
differential unit test cases from system test cases,” in Proceedings
of the 14th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. SIGSOFT ’06/FSE-14. New York,
NY, USA: Association for Computing Machinery, 2006, p. 253–264.
[Online]. Available: https://doi.org/10.1145/1181775.1181806

[32] L. Lampropoulos, M. Hicks, and B. C. Pierce, “Coverage guided,
property based testing,” Proc. ACM Program. Lang., vol. 3, no.
OOPSLA, oct 2019. [Online]. Available: https://doi.org/10.1145/
3360607

[33] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker,” in Proceedings of the 2012
USENIX Conference on Annual Technical Conference, ser. USENIX
ATC’12. USA: USENIX Association, 2012, p. 28.

[34] M. Morehouse, M. Phillips, and K. Serebryany, “Crowdsourced bug
detection in production: Gwp-asan and beyond,” in Proceedings of the
C++ Russia, 2020.

[35] V. Tsyrklevich, “Gwp-asan: Sampling heap memory error detection in-
the-wild,” https://www.chromium.org/Home/chromium-security/articles/
gwp-asan, accessed: 2023-01-11.

[36] G. Ren, E. Tune, T. Moseley, Y. Shi, S. Rus, and R. Hundt,
“Google-wide profiling: A continuous profiling infrastructure for
data centers,” IEEE Micro, pp. 65–79, 2010. [Online]. Available:
http://www.computer.org/portal/web/csdl/doi/10.1109/MM.2010.68

[37] C. Holler, “Phc (probabilistic heap checker): a port of chromium’s gwp-
asan project to firefox,” https://bugzilla.mozilla.org/show bug.cgi?id=
1523268, 2021, accessed: 2023-01-11.

[38] L. K. Developers, “Kernel electric-fence (kfence),” https://www.kernel.
org/doc/html/latest/dev-tools/kfence.html, 2021, accessed: 2023-01-11.

[39] M. Böhme, C. Cadar, and A. Roychoudhury, “Fuzzing: Challenges and
reflections,” IEEE Software, vol. 38, no. 3, pp. 79–86, 2021.

[40] O.-F. Team, “Oss-fuzz integration awards,” https://google.github.io/
oss-fuzz/getting-started/integration-rewards/, accessed: 2023-01-11.

[41] C. Zhang, X. Lin, Y. Li, Y. Xue, J. Xie, H. Chen, X. Ying,
J. Wang, and Y. Liu, “APICraft: Fuzz driver generation for
closed-source SDK libraries,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp.
2811–2828. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/zhang-cen

[42] “Openssl at oss-fuzz: Commit history,” https://github.com/google/
oss-fuzz/commits/master/projects/openssl, accessed: 2023-01-11.

[43] A. Herrera, H. Gunadi, S. Magrath, M. Norrish, M. Payer, and A. L.
Hosking, “Seed selection for successful fuzzing,” in Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 230–243. [Online]. Available:
https://doi.org/10.1145/3460319.3464795

[44] W. You, X. Liu, S. Ma, D. Perry, X. Zhang, and B. Liang,
“Slf: Fuzzing without valid seed inputs,” in Proceedings of the
41st International Conference on Software Engineering, ser. ICSE
’19. IEEE Press, 2019, p. 712–723. [Online]. Available: https:
//doi.org/10.1109/ICSE.2019.00080

[45] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and
A. Tiu, “Steelix: Program-state based binary fuzzing,” in Proceedings
of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2017. New York, NY, USA: Association
for Computing Machinery, 2017, p. 627–637. [Online]. Available:
https://doi.org/10.1145/3106237.3106295

[46] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“Redqueen: Fuzzing with input-to-state correspondence,” in Symposium
on Network and Distributed System Security (NDSS), 2019.

[47] A. Fioraldi, D. C. D’Elia, and E. Coppa, “Weizz: automatic grey-box
fuzzing for structured binary formats,” in Proceedings of the 29th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1–13. [Online]. Available:
https://doi.org/10.1145/3395363.3397372

[48] C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz, “Ijon: Exploring
deep state spaces via fuzzing,” in 2020 IEEE Symposium on Security
and Privacy, ser. S&P 2020, 2020, pp. 1597–1612.

[49] P. Godefroid, “Micro execution,” in Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: Association for Computing Machinery, 2014, p.
539–549. [Online]. Available: https://doi.org/10.1145/2568225.2568273

[50] W. Gao, V.-T. Pham, D. Liu, O. Chang, T. Murray, and B. I.
Rubinstein, “Beyond the coverage plateau: A comprehensive study
of fuzz blockers (registered report),” in Proceedings of the 2nd
International Fuzzing Workshop, ser. FUZZING 2023. New York, NY,
USA: Association for Computing Machinery, 2023, p. 47–55. [Online].
Available: https://doi.org/10.1145/3605157.3605177

[51] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code
fragments,” in 21st USENIX Security Symposium (USENIX
Security 12). Bellevue, WA: USENIX Association, Aug. 2012,

https://codeql.github.com/
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1145/3510003.3510228
https://doi.org/10.1145/566172.566191
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.294
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.294
https://doi.org/10.1145/1181775.1181806
https://doi.org/10.1145/3360607
https://doi.org/10.1145/3360607
https://www.chromium.org/Home/chromium-security/articles/gwp-asan
https://www.chromium.org/Home/chromium-security/articles/gwp-asan
http://www.computer.org/portal/web/csdl/doi/10.1109/MM.2010.68
https://bugzilla.mozilla.org/show_bug.cgi?id=1523268
https://bugzilla.mozilla.org/show_bug.cgi?id=1523268
 https://www.kernel.org/doc/html/latest/dev-tools/kfence.html
 https://www.kernel.org/doc/html/latest/dev-tools/kfence.html
https://google.github.io/oss-fuzz/getting-started/integration-rewards/
https://google.github.io/oss-fuzz/getting-started/integration-rewards/
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-cen
https://www.usenix.org/conference/usenixsecurity21/presentation/zhang-cen
https://github.com/google/oss-fuzz/commits/master/projects/openssl
https://github.com/google/oss-fuzz/commits/master/projects/openssl
https://doi.org/10.1145/3460319.3464795
https://doi.org/10.1109/ICSE.2019.00080
https://doi.org/10.1109/ICSE.2019.00080
https://doi.org/10.1145/3106237.3106295
https://doi.org/10.1145/3395363.3397372
https://doi.org/10.1145/2568225.2568273
https://doi.org/10.1145/3605157.3605177

pp. 445–458. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/holler

[52] T. Dullien, “Introducing prodfile,” https://prodfiler.com/blog/, 2021, ac-
cessed: 2023-01-11.

[53] Google, “Syzkaller: an unsupervised coverage-guided kernel fuzzer,”
https://github.com/google/syzkaller, 2021, accessed: 2023-01-11.

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://prodfiler.com/blog/
https://github.com/google/syzkaller

	Introduction
	In-Vivo Fuzzing
	Overall Procedure
	In-Vivo Fuzzing Algorithm
	Mutational Fuzzing of Function Arguments
	Serialization and Deserialization

	Is Execution Amplification Effective?
	Experimental Setup
	Experimental Results

	Onboarding Libraries Without Fuzz Drivers
	Experimental Setup
	Experimental Results

	Amplifying the Program's Manual Test Suite
	Experimental Setup
	Experimental Results

	Semi-Automated Identification of Amplifier Points and Constraints
	Semi-Automatic Identification
	Ablation Study

	Related Work
	Conclusion
	Perspective
	Paper Summary

	References

