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ABSTRACT

A fuzzer can literally run forever. However, as more resources are

spent, the coverage rate continuously drops, and the utility of the

fuzzer declines. To tackle this coverage-resource tradeo�, we could

introduce a policy to stop a campaign whenever the coverage rate

drops below a certain threshold value, say 10 new branches covered

per 15 minutes. During the campaign, can we predict the coverage

rate at some point in the future? If so, how well can we predict the

future coverage rate as the prediction horizon or the current cam-

paign length increases? How can we tackle the statistical challenge

of adaptive bias, which is inherent in greybox fuzzing (i.e., samples

are not independent and identically distributed)?

In this paper, we i) evaluate existing statistical techniques to

predict the coverage rate* (C0 + :) at any time C0 in the campaign

after a period of : units of time in the future and ii) develop a new

extrapolation methodology that tackles the adaptive bias. We pro-

pose to e�ciently simulate a large number of blackbox campaigns

from the collected coverage data, estimate the coverage rate for

each of these blackbox campaigns and conduct a simple regression

to extrapolate the coverage rate for the greybox campaign.

Our empirical evaluation using the Fuzztastic fuzzer benchmark

demonstrates that our extrapolation methodology exhibits at least

one order of magnitude lower error compared to the existing bench-

mark for 4 out of 5 experimental subjects we investigated. Notably,

compared to the existing extrapolation methodology, our extrapola-

tor excels in making long-term predictions, such as those extending

up to three times the length of the current campaign.
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ging; • Security and privacy→ Software security engineering.

KEYWORDS

greybox fuzzing, extrapolation, coverage rate, adaptive bias, statis-

tical method

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’24, April 14–20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3639198

1 INTRODUCTION

At the turn of the millennium, the late Mary-Jean Harrold drew a

research roadmap for the software testing community of the future

[13]. She highlighted the "development of techniques and tools for

use in estimating, predicting, and performing testing on evolving

software systems" as one of �ve research pointers. While there has

been some recent progress in the estimation of pertinent quantities

in the testing process, we have yet to start exploring methodologies

for prediction.

The rate at which new coverage is achieved is considered a fun-

damental measure of the e�ciency of a fuzzing campaign. A fuzzer

is an automated software testing tool, and with increasing cover-

age, we mean the generation of inputs that cover new program

elements, such as a branch or a statement. If the coverage rate drops

below a certain threshold, the tester will abort the ongoing fuzzing

campaign for the lack of progress. Terminating a fuzzing campaign

early will help release computational resources and reduce the car-

bon footprint [17, 26]. If, throughout the campaign, the tester could

accurately predict the coverage rate at some point in the future,

they could conduct a cost-bene�t analysis to assess the resources

required to achieve the targeted testing progress. Since fuzzing is a

preliminary testing technique that constitutes sophisticated testing

frameworks (e.g., a hybrid/ensemble fuzzing, an automated test

case generation framework, etc.), such a prediction would allow the

tester to adequately allocate resources (time and computing power)

for the entire testing process in advance [29].

One of the most successful fuzzing techniques is called greybox

fuzzing, which takes a mutation-based, coverage-guided approach.

A greybox fuzzer is mutation-based because it uses a corpus of pro-

gram inputs that are randomly mutated to slightly corrupt the seed

�le while preserving much of the unknown but required input for-

mat. A greybox fuzzer is coverage-guided because it adds generated

inputs to the corpus that have been observed to increase coverage.

The hope is that an input generated from a coverage-increasing

input is itself more likely coverage-increasing. Since the probability

of covering a speci�c program element changes in this process, the

underlying distribution over these elements is not invariant. How-

ever, invariance is a key assumption in most statistical estimation

and extrapolation methodologies. Hence, a key statistical challenge

in the domain of greybox fuzzing is thus to tackle the resulting

adaptive bias.

In this paper, we introduce a novel extrapolation methodology

that allows us to predict the coverage rate* (C0 +<C0) in a greybox

campaign of length C0 if the campaign length was extended< more

times while accounting for adaptive bias. We systematically select



coverage data from sub-campaigns of the ongoing greybox cam-

paign to bootstrap random blackbox campaigns. Conceptually, each

blackbox campaign samples inputs from an invariant distribution.

Since these blackbox campaigns are not subject to adaptive bias,

they can be used for estimation. Collectively, the coverage rates esti-

mated for the (overlapping) blackbox campaigns thus bootstrapped

can be used for extrapolation by rendering the following empirical

observation actionable. We observed that the log-log plot of the

“blackbox” estimates against campaign length shows a straight line.

We use this observation for linear regression and, ultimately, for

extrapolation.

We evaluate our extrapolation methodology against an existing

extrapolation methodology in biostatistics that does not account

for adaptive bias on thirty-week-long fuzzing campaigns for each

of the �ve programs from the Fuzztastic fuzzer evaluation bench-

mark. Regarding the coverage rate prediction accuracy directly, our

extrapolator exhibits a lower error, at least one order of magnitude

smaller than Chao and Jost’s extrapolator for 4 out of 5 chosen sub-

jects. Evaluation on the practical scenario, where one estimates the

time to reach the target coverage rate, we �nd that the empirically

observed coverage rate at the time predicted by our extrapolator

is signi�cantly closer to the target coverage rate than the existing

extrapolation methodology for 3 out of 5 experimental subjects

with moderate to large e�ect sizes. For signi�cant improvement,

our extrapolator achieves 35-77% closer to the target coverage rate

than the baseline extrapolator.

In summary, this paper makes the following contributions:

• We introduce the problem of extrapolating coverage rate in auto-

matic software testing, and speci�cally in greybox fuzzing, and

evaluate Chao and Jost’s state-of-the-art biostatistical extrapola-

tion methodology [8] as the �rst means to tackle this problem.

• We develop a novel extrapolation methodology that tackles the

adaptive bias problem in greybox fuzzing by constructing black-

box campaigns from the invariant average distribution of sub-

campaigns of the greybox campaign and conducting the extrapo-

lation by regression to the corresponding “blackbox” estimates.

• We evaluate the e�ectiveness of our approach to tackling adaptive

bias by comparing our extrapolation methodology against Chao

and Jost’s methodology on the greybox campaigns on multiple

real-world software programs across di�erent campaign lengths

and prediction horizons.

• As our methodology is parameterized, we conduct an ablation

study to evaluate the degree to which the estimator performance

depends on the choice of parameter values.
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2 PRELIMINARIES

2.1 A Statistical Model for Fuzzing

Fuzzing is essentially a sampling process where inputs are sampled

from the program’s input space and result in a testing outcome.

Similar to recent studies [2–4, 24], we can statistically formalize

the fuzzing process as a stochastic process F = F (C) of length C

where C test inputs are sampled with replacement from the space

of program inputs D.

F = {-= | -= ∈ D}
C
==1

We divide the input space D into ( individual, overlapping subdo-

mains {D8 }
(
8=1 such that each subdomain corresponds to one of (

coverage elements. An input -= ∈ F is said to cover a new cover-

age element D8 if -= ∈ D8 and there does not exist a previously

sampled input -< ∈ F such that< < = and -< ∈ D8 (i.e., D8 is

sampled for the �rst time).

Since each input can cover one or more coverage elements, during

fuzzing we collect coverage information as sampling unit-based inci-

dence data and represent the sampling process within the Bernoulli

Product model [7, 9]. In other words, a sampling unit -= ∈ F is

a vector of binary variables ,= = ⟨,=,1,,=,2, . . . ,,=,( ⟩ where

,=,8 = 1 if -= covers D8 and,=,8 = 0 otherwise. The sampling

unit-based incidence data can be represented as a matrix , =

,C×( = ⟨,1,,2, . . . ,,C ⟩ where C is the number of sampling units

recorded during the campaign. The incidence frequency .8 of a

coverage element D8 is the number of sampling units in which

D8 is covered, i.e., .8 =
∑C
==1,=,8 . A coverage element D8 that

has not been covered by any sampling unit will have an incidence

frequency of zero; i.e., .8 = 0. In case of blackbox fuzzing, F is a set

of independent and identically distributed random variables. Thus,

the probability distribution for -= is

% (-= = xn) =

(∏

8=1

c
G=,8
8 (1 − c8 )

1−G=,8 ,

where where c8 is the probability that -= covers D8 and x= =

⟨G=,1, G=,2, . . . , G=,( ⟩ is the vector of binary variables indicating

whether -= covers D8 or not. The probability c8 is assumed to

be constant among all randomly selected sampling units. Generally,

the sum of all c8 values will not be equal to 1.

The marginal distribution for the incidence-based frequency

.8 for the 8-th coverage element (1 ≤ 8 ≤ () follows a binomial

distribution characterized by C and the detection probability c8 :

% (.8 = ~8 ) =

(
C

~8

)
c
~8
8 (1 − c8 )

C−~8 .

We denote the incidence frequency counts by (50, 51, . . . , 5C ) given

a set of samples, where 5: =
∑(
8=1 � (.8 = :) is the number of

elements covered in exactly : sampling units in the data (0 ≤ : ≤

C ). Here, 51 represents the number of singleton elements (those

that are covered in only one sampling unit), and 52 represents the

number of doubleton elements (those that are covered in exactly

two sampling units). The unobservable zero frequency count 50
denotes the number of coverage elements that are not covered by

any of the C sampling units. Then, the number of covered elements

in the current campaign is ( (C) =
∑
8>0 58 , and ( (C) + 50 = ( .

2.2 Estimation of Coverage Rate* (C)

In applied statistics, many estimators have been developed to quan-

tify di�erent aspects of the sampling process for the Bernoulli

Product model [6, 7, 9]. In this paper, we are concerned with es-

timating and extrapolating the coverage rate (also known as the

discovery rate in applied statistics).
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The coverage rate * (C) is de�ned as the number of new elements

covered at the (C + 1)-th sampling unit, i.e.,

* (C) = ( (C + 1) − ( (C). (1)

The expected value of* (C) stands for the current testing e�ciency

of the fuzzing campaign: if the expected coverage rate* (C) is below

a certain threshold, we might consider terminating the campaign.

An estimator of* (C) has been proposed by Chao et al. [7]:

*̂ (C) =
51

C

[
(C − 1) 51

(C − 1) 51 + 252

]
≲

51

C
. (2)

The estimator *̂ (C) is parameterized only by the number of single-

tons 51 and doubletons 52. We notice that the well-known Good-

Turing estimator [25] X̂ (C) =
51
C of the missing mass X (C) in the

multinomial model (where subdomains �8 are non-overlapping, s.t.∑(
8=1 c8 = 1) provides an upper bound on *̂ (C). In fact, we can

see that *̂ (C) = X̂ (C) when 52 = 0 and *̂ (C) ≈ X̂ (C) for C ≫ 2. For

greybox fuzzing, the Good-Turing estimator has previously been

studied as an estimator of an upper bound on the residual risk that

an errorless campaign still �nds an error [3].

2.3 Extrapolation of Coverage Rate* (C + :)

We are interested in predicting the future coverage rate *̂ (C + :) if

we extended the ongoing fuzzing campaign of length C by : more

sampling units [* (C + :) = ( (C + : + 1) − ( (C + :)]. Although ex-

trapolation has not been investigated within the domain of fuzzing,

a baseline methodology for extrapolating sampling-unit-based inci-

dence data can similarly be found in applied statistics developed

by Chao and Jost [8]. This extrapolator can serve as a reference for

developing extrapolation techniques in the context of fuzzing.

*̂ (C + :) = 5̂0


1 −

(

1 −
51

C 5̂0 + 51

):+1
(3)

where the total number of uncovered (but coverable) elements 5̂0
can be estimated using the Chao2 estimator [6]. Speci�cally, 5̂0 is

computed as follows:

5̂0 =




(C−1)
C

5 21
252

if 52 > 0
(C−1)
C 51

51−1
2 if 52 = 0.

From Equations (2) and (3) note that *̂ (C) = *̂ (C + :) when : = 0

and 52 ≠ 0.

2.4 E�ect of Adaptive Bias

The main statistical challenge in greybox fuzzing is adaptive bias: as

coverage-increasing inputs are added as new seeds, the distribution

c8 for 8 : 1 ≤ 8 ≤ ( changes throughout the fuzzing campaign. A

simplifying assumption for the Bernoulli Product model—like in

much of statistics and machine learning—is that the samples are

independent and identically distributed (iid). In other words, the

distribution remains invariant throughout the campaign. However,

in greybox fuzzing, the outcome of one sample does have an impact

on the outcome of the next sample (not independent). As a result,

applying existing statistical estimators to greybox fuzzing yields

estimates that are adaptively biased: They may systematically over-

or under-estimate the true value for greybox campaigns.

In this paper, we evaluate Chao and Jost’s extrapolation method-

ology [8] and develop a new methodology to extrapolate the cover-

age rate of a greybox campaign in the presence of adaptive bias.

3 EXTRAPOLATION IN THE PRESENCE OF
ADAPTIVE BIAS

To address the adaptive bias in greybox fuzzing, we turn the follow-

ing insight into an extrapolation methodology. In a greybox cam-

paign, the adaptive bias exists as a change of distribution {c8 }
(
8=1

over the coverage elements D8 every time a coverage-increasing

input is generated and added to the corpus. However, in a local

region of the greybox campaign, the change of distribution is much

smaller. If we could bootstrap random blackbox campaigns from

the invariant average distribution for local regions, we can tackle

adaptive bias for every such region. We propose to compute the

estimate *̂ (C) for a large number of such bootstrapped blackbox

campaigns and to leverage the approximately linear relationship

between log(C) and log(*̂ (C)) to extrapolate* by linear regression.

Figure 1 provides an overview of the proposed methodology.

Given the incidence matrix of the greybox campaign, we can extract

an arbitrary sub-campaign by subsetting the incidence matrix. The

resulting incidence matrix is shu�ed column-wise to sample the

(invariant) average distribution over the coverage elements for

this greybox sub-campaign. We call this procedure as blackbox

approximation. The resulting random blackbox campaign has the

same coverage pro�le as the original greybox coverage data, i.e.,

. = . ′. In other words, if a coverage element 8 was covered .8 = 10

times in the greybox sub-campaign, it will also be covered . ′8 = 10

times at the end of the resulting blackbox approximation. However,

the blackbox approximation is not subject to adaptive bias. Using

this procedure multiple times with coverage data from di�erent

(local) sub-campaigns of the (global) greybox campaign, we can

produce estimates *̂ (C) for every resulting blackbox campaign.

Finally, we describe the extrapolation technique that we propose to

predict the coverage rate of the greybox fuzzing campaign in the

future.

3.1 Bootstrapping Blackbox Campaigns from
Local Regions of the Greybox Campaign

Algorithm 1 provides a more detailed procedural overview of our

proposed extrapolation methodology. As input, it takes the inci-

dence matrix,C0×( for a greybox fuzzing campaign of length C0
and the prediction horizon<C0. In addition, it takes two parameters,

U and V , to control certain trade-o�s of the methodology. As output,

it produces the estimate *̂ (C0 +<C0) of the coverage rate predicted

if<C0 more sampling units were taken.

For every 8 from 1 to C0, we derive a greybox sub-campaign, ′

of length ΔU = U log(8) that starts at index BU and ends at index

4U = 8 of the greybox incidence matrix, (Line 1–7). Speci�cally,

, ′ = ,ΔU×( = ⟨,BU , ..,,8 ⟩ where BU = ⌊81−U ⌋. The coverage

pro�le . ′ of this sub-campaign is de�ned as the cumulative sum

of incidences for each coverage element 8 , i.e., . ′8 =
∑ΔU

9=1,
′
8, 9 for

every 8 : 1 ≤ 8 ≤ ( .
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Figure 1: Overview of our extrapolation technique for the coverage rate of the greybox fuzzing campaign.

Algorithm 1: Extrapolating Cov. Rate for Greybox Campaigns

Input :C0 and< as prediction point and horizon

, =,C0×( : Incidence matrix of the greybox campaign

U : Local region proportional window size

V : Linear regression proportional window size

1 Time-Estimate Pairs U = ∅

2 for Time 8 ← 1 to C0 do

3 Region start BU ← ⌊8
1−U ⌋

4 Region end 4U ← 8

5 if BU = 4U then

6 continue

7 Coverage data, ′ ← ⟨,BU , · · · ,,4U ⟩ // Campaign len. U log(8 )

8 Shu�ed data, � ← shu�e(, ′ )

9 for Index 9 ← 1 to 4U − BU + 1 do

10 Coverage pro�le . ′ ←
∑9

:=1
, �

:
// BB campaign of length 9

11 Singletons 51 ←
∑(

:=1 � (.
′
:
= 1)

12 Doubletons 52 ←
∑(

:=1 � (.
′
:
= 2)

13 Estimate *̂ ←
51
9

[
( 9−1) 51
( 9−1) 51+252

]
// cf. Equation (2)

14 U ← U ∪ {⟨BU + 9 − 1, *̂ ⟩}

15 Regression start BV ← ⌊C
1−V
0 ⌋

16 Regression end 4V ← C0

17 Regression region U′ ← U[BV : 4V ] // Pairs whose time ∈ [BV , 4V ]

18 ModelM ← LinearReg(log(C ) ∼ log(* (C ) ) ) , ∀⟨C,* (C ) ⟩ ∈ U′

19 Estimate *̂ (C0 +< · C0 ) ← exp(M(log(C0 +< · C0 ) ) )

Output :*̂ (C0 +< · C0 ) as our estimate.

The parameter U controls the trade-o� between tackling adaptive

bias and the length of the blackbox campaign for which the estimate

is computed. If U gets larger, the length of the sub-campaign in-

creases; having a longer blackbox campaign gives better estimates

of the quantities of the blackbox campaign, but it also increases the

adaptive bias in the greybox sub-campaign. On the other hand, if U

gets smaller, less data is used for the estimation, which makes the

estimation less reliable.

We bootstrap a random blackbox campaign from this greybox

sub-campaign by shu�ing the order of sampling units in the in-

cidence data (Line 8). Since this reordering does not change the

cumulative sum of incidences, we can obtain a new incidence ma-

trix, � whose coverage pro�le is equivalent to that of the greybox

sub-campaign. However, by sampling from the “average distribu-

tion,” the adaptive bias is eliminated within, � . We refer to, �

as the blackbox approximation of, ′. Blackbox approximation pro-

vides a hypothetical blackbox fuzzing campaign that is suitable for

applying the statistical estimation techniques. Finally, we estimate

the coverage rate *̂ for every data point 9 in the shu�ed incidence

matrix, � (Line 9–14).

3.2 Extrapolation of Coverage Rate

Figure 2: The behavior of the empirically observed coverage

rate * (C) (green dots) and estimated coverage rate *̂ (C) (grey

dots) against the number of sampling units C generated in

the log-log scale. Each red line and blue line represents the

linear regression model �tted to the estimated coverage rate

and empirically observed coverage rate with di�erent ranges

of data points, respectively.

Given the set U constructed in Line 1–14 in Algorithm 1, we

suggest to conduct a linear regression on log(C) ∼ log(*̂ (C)) and

compute the extrapolation *̂ (C0 +<C0) by applying the resulting

model (Line 15–19). This method follows from the empirical ob-

servation that the coverage rate* (C) emerges approximately as a

straight line in the log-log scale.

Figure 2 illustrates the behavior of the empirically observed

coverage rate * (C) (green dots) and estimated coverage rate *̂ (C)
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(grey dots) obtained for a single AFL++ greybox campaign on the

freetype2 program run for one week (C0) in log-log scale. We use the

U = 0.3 for the estimation. The darkness of the grey dots indicates

which time 8 the estimates are computed from; the black dots are

estimated from 0.8C0 < 8 < 0.9C0, the dark grey dots are estimated

from 0.7C0 < 8 < 0.8C0, and the light grey dots are estimated from

8 < 0.7C0. Similarly, the darkness of the green dots indicates the

time C the empirical coverage rates come from.

From the �gure, we can observe a decreasing, yet heavily scat-

tered, trend of the empirical coverage rate and the linearly decreas-

ing trend of the estimates in the log-log scale. The linear model

�tted to each of the coverage rates further explains the trend. The

blue-colored lines represent the linear regression model �tted to

the empirical coverage rate, and the red-colored lines represent

the linear regression model �tted to the estimates. The darkness

of the lines indicates the range of data points used for the linear

regression; the darkest, middle darkness, and lightest lines are �t-

ted to the data points until 0.9C0, 0.8C0, and 0.7C0, respectively. The

resulting regression shows that, while the regression model for the

empirical coverage rate may change its slope signi�cantly due to

the high variance of the empirically observed coverage rate, the

regression model for the estimates is more stable. This is because

the estimates are obtained from the blackbox approximation, which

is not subject to adaptive bias. Thus, we choose to �t a linear model1

to the estimates inU instead of the empirical coverage rate in our

extrapolation method.

Still, the coverage rate estimates in Figure 2 tend to have a higher

variability when the number of sampling units C is small. The pa-

rameter V is designed to manage the trade-o� between stability

and accuracy of the regression from this variability. By choosing

V closer to one (1), plentiful data is used for the regression model,

which may result in a more accurate extrapolation. However, due

to the high degree of variability at the early stages of the campaign,

the regression model may not be stable. By choosing V closer to zero

(0), it can avoid the variability at the early stages, yet the regression

model has less data to learn the trend, which may result in poor

extrapolation.

4 EXPERIMENTAL SETUP

We aim to evaluate the performance of statistical estimation to pre-

dict the coverage rate of a greybox fuzzing campaign at a given time

in the future, how our own extrapolation methodology can account

for the adaptive bias in greybox fuzzing, and how parameters U and

V in Algorithm 1 impact the performance of our methodology.

4.1 Research Questions

Our experiments seek to answer the following research questions:

RQ1: Performance. How does the performance of our methodol-

ogy to extrapolate the coverage rate compare to the biostatistical

extrapolator by Chao and Jost [8]?

We evaluate the performance of our extrapolator against the exist-

ing estimator (cf. Section 2.3). As parameters, we choose U = 0.11

and V = 0.5. We consider two perspectives:

1We also attempt to �t a higher-order polynomial (orders ranging from 2 to 10) regres-
sion models, but the di�erence in the �tted models is negligible.

1-A For a given campaign length C0 and prediction horizon< · C0, how

accurate is the coverage rate prediction of the existing versus our

extrapolator if the campaign was extended by a period of< · C0
sampling units? For a set of benchmark programs, we compare

the performance of the extrapolators against the distribution of

coverage rate empirically observed in the future.

1-B For a given threshold coverage rate *2 , how accurate are the ex-

trapolators in predicting the point in time when the coverage rate

falls below *2? We evaluate the accuracy of the predicted time

point by comparing the target coverage rate *2 against the ac-

tual coverage rate at the predicted time point. This evaluates the

utility of our extrapolator in the context of assessing an extended

campaign’s coverage-resource tradeo�.

RQ2: Sensitivity. What is the impact of the choice of parameters U

and V on the performance of our extrapolator? Our methodology is

parameterized to control certain trade-o�s:

• U de�nes the width of the local region of the sub-campaigns

for blackbox approximation (Sec. 3.1). We expect for large U

the adaptive bias has a stronger in�uence while for small U the

estimate will positively biased.

• V represents the �nal proportion of the estimate *̂ � (C) used in

the linear regression model (Sec. 3.2). We expect the regression

for large V to be unstable due to the scarcity of data, while for

small V , it may su�er from small data size.

4.2 Experimental Data Generation

Subject Project Version LoC # BBs

ftfuzzer FreeType2 2.7 44,686 27,521

gif2png Gift2png 2.5.3 988 700

jsoncpp_fuzz JsonCpp 1.8.4 7,251 5,938

jasper JasPer 1.900.0 17,385 14,417

readelf Binutils 2.29 22,347 18,578

Total 92,657 67,154

Figure 3: Fuzztastic programs and their statistics.

4.2.1 Programs, Fuzzer, and Infrastructure. Figure 3 shows the �ve

open-source C programs from the Fuzztastic fuzzer benchmarking

platform [16] we used for our experiments. These programs or

libraries cover awide range of applications, including the processing

of binary, movie, font, image, and JSON�les. For the listed programs,

Fuzztastic uses the provided command line options for the subject

programs as fuzz harnesses and the initial seeds from AFL’s GitHub

repository.2 We excluded ffmpeg due to its extremely high number

of basic blocks.3

For each subject program, we ran 30 fuzzing campaigns, each

lasting for one week (7 days), to address the randomness in the

empirical evaluation. We used AFL++ fuzzer [11] (version: 2.64c;

command line options: -m none), one of the most popular and

widely used fuzzers today. It is also currently the best-performing

2https://github.com/google/AFL/tree/master/testcases
3For our experiments, we found that the memory demand exhibits near-linear growth
(8GB for every 50,000 basic blocks). The �mpeg program has 432, 373 basic blocks
preventing us from running the week-long campaigns.
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fuzzer on Fuzzbench [21]. Each fuzzing campaign was run on one

of four (4) virtual machines with 32x 2GHz x86_64 CPU cores, 32

GB of RAM, and 200 GB of disk space each. All VMs were running

in the Nectar Research Cloud.

4.2.2 Data transformation. We recorded the hit counts of basic

blocks (BB) at 15-minute intervals for each week-long fuzzing cam-

paign. We considered all the inputs generated within this time

interval as a single sampling unit. In other words, the C-th sampling

unit,C = ⟨,C,1,,C,2, . . . ,,C,( ⟩ is a boolean vector of length ( that

indicates whether the Bth BB was hit at least once during the C-th

15-minute interval. The �nal matrix, = ⟨,1,,2, · · ·,C0 ⟩ corre-

sponds to the incidence-based data model described in Section 2.

The incidence matrix, is used to calculate the incidence fre-

quencies (51, 52, . . . ), which are necessary for performing extrap-

olations at di�erent points in the campaign using both Chao and

Jost’s as well as our method. Yet, the number of singletons 51 (and

doubletons 52) often becomes zero through the campaign due to the

high sparsity of the data. With 51 = 0, the outcome of both extrap-

olators becomes zero (0). To tackle this challenge, we add 1 to all

the incidence frequencies (51, 52, . . . ) before performing any estima-

tion/extrapolation. Regarding our extrapolator, the ‘add-1’ heuristic

has less impact: in Equation 2, increasing incidence frequencies

by 1 results in only a marginal increase in *̂ (C). Additionally, this

increase exponentially diminishes with the increase of the cam-

paign length C . From our evaluation (Section 5), the ‘add-1’ heuristic

reduces the bias of what the existing extrapolator would have been

without the heuristic. It generally underestimates the coverage rate

in our experiment with ‘add-1’, which would be ampli�ed without

‘add-1.’

4.2.3 Ground Truth and Extrapolation. We compute the ground

truth (i.e., the estimand) for the prediction *̂ (C0, :) from empiri-

cally observed coverage rate, i.e., using the cumulative matrix ( of

the greybox fuzzing campaign F ; ( (C) =
∑C
8=1,8 . At an arbitrary

evaluation point (C0 + :) from the extrapolation point C0, the dif-

ference ( (C0 + : + 1) − ( (C0 + :) represents the number of basic

blocks (BBs) discovered within that sampling unit. Again, because

of the sparsity of the data, a considerable number of sampling

units may not discover any new BBs. In such cases, the di�erence

( (C0 + : + 1) − ( (C0 + :) becomes zero. Hence, we apply a moving

average �lter to smooth the empirical coverage rate [14]. We choose

= = 5 consecutive raw empirical observations for both the left and

right window sizes of the moving average �lter. However, if none

of the windows have any non-zero values, we extend the window

size to the left and right until we �nd a non-zero value. Finally,

to address the randomness from the shu�ing in our algorithm,

we conduct �ve repetitions of the extrapolation for each of the 30

fuzzing campaigns per subject program.

4.3 Performance Measures

Evaluation matric. For RQ1.A and RQ2, we are given a campaign

length C0 and prediction horizon<C0 and compare the performance

of estimating * (C0 +<C0). To compare the estimator performance,

we calculate the average di�erence in the log scale for a campaign

involving a series of predictions *̂ (C0 + :) for the ground truth

estimand* (C0 +:), where 1 ≤ : ≤ < · C0, at the prediction point C0:

L̄(C0,<) =

∑<C0
:=1

(
log(*̂ (C0 + :)) − log(* (C0 + :))

)

< · C0
(4)

The log error, denoted as !̄(C0,<), measures the di�erence inmag-

nitude and solves a problem of scale. We observe that the empirical

coverage rate distribution is highly skewed: Approximately 90%

of the values fall within the range of [0, 1] while a few but heavy

outliers impact the error. However, in the log scale, the coverage

rate distribution becomes more symmetric. Therefore, we choose

the log scale to evaluate the performance of the extrapolators in

both RQ1.A and RQ2.

We compute the log error !̄(C0,<) from C0 to <C0 to indicate

the performance for a single campaign because the ground truth

* (C0+:) (i.e., the empirically observed coverage rate) is itself subject

to substantial variance—while the estimate *̂ (C0 + :) is not. For

a given prediction point C0 and horizon : = < · C0, we report the

distribution of the log error across all 30 fuzzing campaigns.

For RQ1.B, we are given a campaign length C0 and a threshold

coverage rate *2 and compare the performance of estimating <

such that *̂ (C0 +<̂C0) = *2 . To evaluate the prediction performance

of the estimator for <̂, we compare the target coverage rate *2

against the observed coverage rate around the predicted time point

C0 + <̂C0 within a �xed windowF :

∆̄(C0, <̂) =

(∑F
8=−F * (C0 + <̂C0 + 8)

2 ·F
−*2

)/
*2 (5)

We compute the relative bias, denoted as Δ̄(C0, <̂), within a �xed

window C ∈ [C0 + <̂C0 −F, C0 + <̂C0 +F] again because the ground

truth * (C) (i.e., the empirically observed coverage rate) is itself

subject to substantial variance. It represents how far the observed

coverage rate around the predicted time point C0 + <̂C0 is from the

target coverage rate *2 relative to *2 ; a value of E indicates that

the observed coverage rate is (E + 1) times higher than the target

coverage rate*2 . When selecting fuzzing trials for this evaluation,

we only consider trials that contain at least one *̂ (C0 +<C0) for

both extrapolators falling below*2 . If all coverage rate predictions

*̂ (C0 + <̂C0) of the extrapolator are below*2 , then we choose the

<̂ that maximizes *̂ (C0 + <̂C0). Unlike the log error, !̄, the relative

bias Δ̄ is computed in the linear scale as the number of observed

coverage rates involved in the computation is small; thus, the impact

of outliers is negligible. For a given prediction point C0 and threshold

rate*2 , we report the distribution of the bias across all 30 fuzzing

campaigns.

Signi�cance. We perform a two-sided hypothesis test to check

whether the median !̄ of our extrapolator signi�cantly di�ers from

that of Chao and Jost’s extrapolator [8]. Since the normality of the

obtained !̄ values cannot be guaranteed for the limited number of

data points, we use theWilcoxon sign-ranked test, a non-parametric

equivalent of the t-test:

• H0: There is no di�erence between the median !̄ of Chao and

Jost’s extrapolator and that of our extrapolator.

• H1: There is a di�erence between the median !̄ of Chao and

Jost’s extrapolator and that of our extrapolator.
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We use a con�dence level of U = 99% to check whether our

extrapolator exhibits a statistically signi�cant improvement over

Chao and Jost’s extrapolator in terms of !̄.

E�ect size. Further, we assess the e�ect size usingWilcoxon e�ect

size A [28] that is the ratio between the Wilcoxon test statistic

and the square root of the sample size. It provides a measure of

the di�erence between the median !̄ for both extrapolators. The

magnitude of A indicates the degree of separation between the two

techniques. Using the standard interpretation, we interpret the

e�ect size as negligible when A < 0.1, small when 0.1 ≤ A < 0.3,

moderate when 0.3 ≤ A < 0.5, and large when 0.5 ≤ A .

5 EXPERIMENTAL EVALUATION

5.1 RQ1-A. Coverage Rate Prediction Accuracy

The log error !̄ of the coverage rate prediction we evaluate in this

section is expected to increase as the prediction horizon extends

further into the future from the current point C0. Nevertheless, we

would like to be able to predict the coverage rate as far into the

future as possible with maximal accuracy. We �rst evaluate the

accuracy of extrapolators when the prediction horizon is �xed to

< = 0.5C0 (i.e., extending by half of the current campaign length).

This gives the baseline ability of the extrapolators to predict the

coverage rate. We then extend our study to evaluate the coverage

rate extrapolation as we vary both the prediction point C0 and

prediction horizon<.

5.1.1 Varying the prediction point. Figure 4 shows the log error

distribution of the predicted coverage rates for the existing method-

ology by Chao and Jost (CJ) [8] (red box plots) and our extrapolator

(blue box plots) when the prediction horizon is �xed to< = 0.5C0
for varying prediction points 50.

Our extrapolator generally outperforms the CJ extrapolator for

all subjects in terms of the magnitude of the log error. The average

!̄ of our extrapolator is 0.07-0.9, while that of CJ’s extrapolator is

0.2-2.9 across all the subject programs. On average, the di�erence of

the absolute !̄ between the two extrapolators is 1.47, which shows

that our extrapolator’s prediction is one order of magnitude closer

to the ground truth than CJ’s extrapolator’s prediction.

Except for readelf, the CJ extrapolator produces negatively biased

predictions irrespective of the prediction point C0. In contrast, the

median !̄ for our extrapolator is small in magnitude and remains

close to zero for most of the subjects (i.e., freetype2, jasper, and

readelf )—particularly when the campaign length increases. For

gif2png and jsoncpp, the median !̄ slightly deviates from zero while

the di�erence to the ground truth is at least one order of magnitude

smaller than that of the baseline.

One exception is observed for short campaigns up to C0 = 50

hours in freetype2, where the median !̄ values for our extrapolator

are marginally higher (< 10 on linear scale) than those for CJ for

< < 1. This behavior is expected, as our extrapolation relies on

a limited number of estimates *̂ (C) during the early stages of the

fuzzing campaign. Due to the implementation of Fuzztastic, cover-

age data is available only at 0.25-hour intervals. At this granularity,

there are not many data points available for regression in the early

stages of the campaign.

For subjects gif2png and jsoncpp, we observe higher variance in !̄

for our approach compared to the existing extrapolator. This could

be explained by the higher variability in the coverage achieved

across program runs. That was evident for these two subjects even

when the initial conditions remained the same. For the other sub-

jects, the variability in !̄ is similar for both extrapolators.

When making short-term predictions (i.e.,< = 0.5) of* (C) in

the log-log scale, our extrapolator exhibits at least one order of

magnitude lower absolute !̄ than Chao and Jost’s extrapolator

for 4 out of 5 chosen subjects, especially for greybox campaigns

longer than 50 hours.

5.1.2 Varying the prediction horizon. Figure 5 shows the results

in the same format as Figure 4 but for varying prediction horizons

< ∈ {0.5, 0.75, 1, 1.5, 2, 3}. For the baseline (CJ) estimator, similar to

Figure 4, we observe that the log error !̄ are consistently negative

across all subjects, excluding readelf. Additionally, the magnitude of

the log error generally increases as the prediction horizon increases.

In cases such as freetype2 with C0 = 37.5 hours, the magnitude of

the median !̄ value for the CJ extrapolator has increased by more

than two orders of magnitude.

For our estimator, we notice that it consistently maintains nearly

the same median log error as the prediction horizons increase,

especially for campaign lengths exceeding 50 hours. Notably, as

campaign duration extends, the median log error of our approach

tends to approach zero for freetype2, jasper, and readelf. As indicated

in Figure 3, this trend is attributed to the substantial number of

basic blocks in these subjects. This prompts the greybox fuzzer to

consistently discover new coverage actively, exhibiting no signs of

saturation even after one week [19]. This underscores the capacity

of our extrapolation methodology to converge towards the ground

truth coverage rate in ongoing greybox campaigns more e�ectively

than CJ’s extrapolator, as we believe, owing to its consideration of

adaptive bias.

Our extrapolator consistently exhibits a positive log error across

all prediction points C0 for freetype2. In contrast, for jasper, the me-

dian log error across runs remains nearly zero for various prediction

points C0 and horizons<. In the case of gif2png and jsoncpp, the

median log error tends below zero for smaller campaign lengths,

such as C0 = 25 hours. However, as previously mentioned, these

predictions exhibit less error compared to the baseline. Notably, the

performance discussed for< = 0.5 in Section 5.1.1 holds true for

all values of< less than one.

Our extrapolation technique consistently demonstrates a lower

median log error than Chao and Jost’s extrapolator, irrespective

of the duration of the greybox campaign (C0) and the extent of

the extrapolation into the future for coverage rate.

5.1.3 Statistical Assessment. Figure 6 shows the e�ect size and

statistical signi�cance of the di�erence between two extrapolators.

Concretely, the heatmap color and the value in each cell represent

the e�ect size for the di�erence in Δ̄ between the two extrapolators;

the three asterisks (∗∗∗) on top of the cell indicate the statistical

signi�cance of the di�erence. Our statistical analysis indicates a sub-

stantial e�ect size (A ≥ 0.5) with statistically signi�cant di�erences
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Figure 4: Log error !̄ distribution over 30 runs of the predictions for di�erent campaign lengths C0 if the campaign was extended
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Figure 5: Log error !̄ distributions for Chao and Jost’s- and our proposed extrapolator at di�erent prediction points C0 for

varying prediction horizons<C0.
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in median !̄ observed at each C0 and < for all subject programs

except for readelf. In the case of readelf, except for a couple of short-

term predictions (i.e.,< = 0.5) made at early prediction points such

as C0 = 50 or 62.5 hours, the two-sided hypothesis test did not reveal

statistical signi�cance.

5.2 RQ1-B. Point-in-Time Prediction Accuracy
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(a) Relative bias Δ̄ of the coverage rate predictions beyond a given threshold at
various prediction points (C0) of existing and our extrapolators (left) and the
di�erence between the absolute relative bias of the two extrapolators (right,
existing − ours).

Subject *2 Trials < (Δ̄CJ ) < (Δ̄Our ) p-value E�ect size

freetype2 0.52 18 1.49 0.72 8.0E-07 (moderate) 0.32
gif2png 0.02 27 0.88 0.53 2.0E-24 (large) 0.54
jsoncpp 0.02 26 1.22 0.85 1.1E-22 (large) 0.56
jasper 0.12 17 1.54 0.37 0.1883 (small) 0.09
readelf 0.22 13 0.97 1.43 0.3537 (small) 0.07

(b) Statistics of RQ1-B.< shows the median of the relative bias. ?-value and
the e�ect size are computed between the absolute relative bias of the two
extrapolators using the two-sided Wilcoxon paired signed-rank test with 95%
con�dence level.

Figure 7: Result of RQ1-B

We extend our evaluation to assess the e�cacy of our extrapola-

tor in attaining prede�ned coverage rate thresholds *2 . Realistic

subject-speci�c thresholds are established based on the median em-

pirically observed coverage rate in the remainder of the available

campaign data (i.e., a total of seven days), which are presented in

the second column of 7b, along with the number of trials involved

in the analysis (third column). We choose 2 ·F = 75 hours so that

the window does not exceed 10% of the entire campaign length.

The left side of 7a shows the relative bias Δ̄ of the coverage rate

predictions beyond a given threshold at various prediction points

(C0) of existing and our extrapolators, and the right side shows

their di�erences (existing − ours) between the absolute relative bias

of the two extrapolators. The result shows that, for gif2png and

jsoncpp, our extrapolator consistently exhibits a lower relative bias

than the baseline extrapolator for all C0 except C0 = 25 hours, and

so does freetype2 for the majority of C0 values. We con�rm this

observation by performing a two-sided Wilcoxon paired signed-

rank test with 95% con�dence level, whose results are shown in 7b.

All the p-values are signi�cantly lower than 10
−6, and the e�ect

sizes are moderate for freetype2 and large for gif2png and jsoncpp.

The median relative bias further explains how far the observed

coverage rate at the prediction point is from the target coverage

rate; our extrapolator achieves 35-77% closer to the target coverage

rate than the baseline extrapolator.

While the median relative bias of our estimator is signi�cantly

closer to zero than the baseline estimator for jasper, both visual

inspection and the e�ect size indicate that the di�erence is not

signi�cant. As we have seen in Figure 5, our estimator has no big

improvement over the baseline for readelf. The BB accumulation

curves for readelf, which exhibit approximately linear trends in

log-log scales and lower variance across fuzzing trials, suggest

that the in�uence of adaptive bias is less prominent compared to

other subjects. In situations with a diminished impact of adaptive

bias, we can expect the baseline extrapolator to perform at a level

comparable to our extrapolator. Also, notice that the number of

trials involved in the analysis is relatively small for readelf com-

pared to the other subject, which could be another reason for the

insigni�cant di�erence.

Given the target coverage rate, our extrapolator predicts the

time when the empirically observed coverage rate reaches the

target coverage rate sigini�cantly better than the existing ex-

trapolation methodology for 3 out of 5 subjects with moderate

to large e�ect sizes. For signi�cant improvement, our extrap-

olator achieves 35-77% closer to the target coverage rate than

the baseline extrapolator.

5.3 RQ2. Evaluation of Parameter Sensitivity

To empirically study the impact of the choice of parameters on the

performance of our methodology, we conduct an ablation study.

Both parameters are chosen within the interval [0, 1]. For computa-

tional e�ciency, we selected distinct values: 0.1, 0.3, 0.5, 0.7, and 1

for each parameter. When varying one parameter, we kept the other

�xed. By default, U = 0.3 and V = 0.5. The extrapolation algorithm

was repeatedly executed for each parameter combination (C0 = 75,

< = 1).

Results are shown in Figure 8. The parameter U controls the

length of the greybox sub-campaign used for bootstrapping the

blackbox campaigns (Line 7 in Alg. 1). We can see that a choice

of the small U in RQ1 is optimal for the majority of the subjects
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Figure 8: The behaviour of median !̄ while varying the pa-

rameters U and V (C0 = 75ℎAB,< = 1).

(i.e., gif2png, jasper, jsoncpp, and readelf ). The only exception is

freetype2, where U = 0.5 is the best choice, yet the di�erence due to

the choice of U is smallest for this subject. The parameter V controls

the proportion of training data used for the regression (Line 18

in Alg. 1). In general the di�erence in the median !̄ is small for

di�erent values of V for all subjects compared to the di�erence due

to the choice of U . The best V also varies across subjects: a bigger V

is better for freetype2, jasper, and readelf, while a smaller V is better

for jsoncpp; gif2png is not sensitive to the choice of V .

A low value of U (0.1) is optimal for most subjects, while the

choice of V is less critical for the performance of the extrapolator.

6 THREATS TO VALIDITY

As with any empirical study, several threats exist to the validity of

our results and conclusions. The �rst threat arises with respect to

external validity, which relates to the extent to which our �ndings

can be generalized. As the subject of our study, we selected the

AFL++ greybox fuzzer [11], one of the most popular and widely

used fuzzers today that is also currently the best-performing fuzzer

on Fuzzbench [21]. As objects of our study, we selected �ve widely-

used open-source C programs from the Fuzztastic fuzzer bench-

marking suite [16], representing a wide range of applications, in-

cluding some processing binary, movie, font, image, and JSON �les.

To maximize campaign length within the available resources, we

generated fuzzing campaigns of length seven (7) days and started on

the available seed corpus. However, we do not claim that our results

generalize to other types of programs written in other languages,

to other types of fuzzers started on other types of seed corpora, or

to fuzzing campaigns that are much longer than one week.

The second threat arises concerning internal validity, which is

the extent to which the presented evidence supports our claims

about cause and e�ect within the context of our study. To mitigate

the impact of randomness, we prepare 30 independent fuzzing cam-

paigns for each of the �ve subjects and conduct our extrapolation

method �ve times for each campaign. We cannot claim that our

analysis scripts are free from error, but we release all our scripts

and data for the reviewers and community to scrutinize.

The last threat arises concerning construct validity, which is the

degree to which a test measures what it claims to measure. In the

context of our study, one challenge has been that the ground truth

coverage rate is not directly available and can only be observed

indirectly. Speci�cally, technically, the actual coverage rate is an

expected value, while the observable (and measured) coverage rate

is only a random variable. To address this issue, we used the moving

average to smooth the measured coverage rate and measure the

relative bias (Δ̄) relative to the baseline to tackle the substantial

variance of the measured coverage rate when evaluating relative

performance. Again, to facilitate scrutiny and reproducibility, we

have made the source code and all data available.

7 RELATED WORK

The signi�cance of predicting the future progression of a software

testing campaign is as crucial as determining the current status of

a testing campaign. It enables security engineers to make informed

decisions regarding resource allocation and campaign continuation

to meet required security standards. Harrold’s [13] pointer for fu-

ture research on developing techniques and tools for estimating,

predicting, and performing testing on evolving software systems

highlights the importance of prediction in future software engineer-

ing research. In this work, we focus on extrapolating the greybox

fuzzing process, especially the coverage rate.

Extrapolating program behaviours for fuzzing. In recent years, the

popularity of fuzzing techniques has grown signi�cantly, leading to

a demand for methods capable of extrapolating observed program

behaviors in fuzzing to unseen ones. The pioneering STADS frame-

work [2] proposed approaches to extrapolate parameters such as

residual risk and the e�ectiveness of the blackbox fuzzing campaign,

drawing inspiration from the mature discipline of bio-statistics. Yet,

it is hard to apply the STADS framework to greybox fuzzing cam-

paigns due to the adaptive nature of greybox fuzzers [2]. Recently,

inspired by the STADS framework, statistical estimation of residual

risk and maximum reachability have been introduced for greybox

fuzzing [3, 19]. Unlike those works, we focus on the coverage rate

of greybox fuzzing campaigns, a key decision-making parameter

for practitioners.

Other extrapolation in so�ware testing. Due to the nature of cost

and time constraints, the extrapolation of software testing is well-

studied across di�erent domains. For example, in the context of

software reliability, Cavano introduced a model-based approach

for predicting software failure rates by considering factors such

as functional complexity, coverage, test method, and current test

e�ort [5]. Such an e�ort to predict the reliability using Software

Reliability Modeling (SRMs) is preceded further by Littlewood and

Strigini [18] and Lyu [20] by proposing more sophisticated models,

for example, considering the user-centric nature or the end-to-end

software reliability model.

Several statistical techniques have also been used to predict the

defect density and the number of software faults [1, 10, 22, 27].

For instance, Neil and Fenton developed a statistical model using
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Bayesian Belief Networks to predict the number of residual software

defects, considering factors such as test complexity [23]. Lately, a

machine learning (ML) based method has been incorporated to

predict the software testing parameters, such as fault rate and the

number of discoverable bugs within a given time budget for ongoing

testing campaigns for future time points. Grano et al. investigated

the feasibility of using source-code metrics and machine learning

(ML) techniques to predict the coverage achieved by test-data gen-

eration tools in continuous integration platforms [12]. Similarly,

Zakeri et al. introduced an ML model capable of predicting the

coverage of a test for a class, and they evaluated it on over 300 Java

classes [30]. Most recently, given the sample of program executions

from the (unknown) operational environment, a statistical extrapo-

lation also enables predicting the reaching probability of a certain

program state, even if it is not reached in the sample executions,

using the statistical estimators from bio-statistics [15].

8 DISCUSSION

Recent research clearly depicts the adverse e�ect of adaptive bias

in statistical estimation on testing parameters, particularly in the

case of residual risk [3], which arises as a result of the sampling

process failing to meet crucial distributional assumptions like in-

variance. Additionally, our description of the existing extrapolator

in this paper revealed that it also su�ers from the adaptive bias

problem, as it does not account for the variability in the species

distribution from which we sample test inputs. We have observed

that this extrapolator fails to predict the coverage rate for greybox

fuzzers in an unbiased manner and tends to under-approximate

even in short-term predictions. Recalling that the primary objective

of the work presented in this paper was to introduce a novel extrap-

olation technique for coverage rate that e�ectively addresses the

adaptivity challenges encountered in greybox fuzzing campaigns.

Our empirical results serve as a testament to the success of our

approach, as it outperforms the existing extrapolator by Chao and

Jost [8] in terms of prediction bias.

In our approach, we divide the ongoing greybox campaign into

many overlapping sub-campaigns and then generate blackbox equiv-

alents for each sub-campaign by shu�ing the incidences of coverage

elements. These blackbox approximations retain many properties

of their respective greybox sub-campaigns, such as coverage accu-

mulation while eliminating the adaptive bias. As a result, we are able

to generate a large number of coverage rate estimates *̂ (C) for the

current greybox campaign. This algorithm is speci�cally designed

for sampling unit-based incidence data, where each data point in

the original campaign represents whether a coverage element is

exercised from at least one out of the collection of individual test in-

puts generated within a speci�c time period. Similar to the observed

behavior for Δ in [3], these resulting coverage rate estimates *̂ (C)

also appear to follow a linear decline in log-log scale along with

the campaign length. Therefore, we proposed to perform linear ex-

trapolation to predict the coverage rate approximations beyond the

current campaign length C0. Our �ndings showed that our proposed

extrapolation technique outperforms the baseline extrapolator by

Jost and Chao in terms of relative bias Δ̄ for the majority of the sub-

jects, prediction point, and prediction proportion combinations; the

di�erence in Δ̄ between the two methods generally increases as the

prediction horizon< increases. Notably, this is due to the consis-

tent relative bias of our extrapolation technique, irrespective of the

campaign length. Moreover, the magnitudes of the relative bias of

our approach are comparatively low, no more than approximately

two orders of magnitude.

The ability to accurately predict and extrapolate the fuzzing cam-

paign’s coverage rate for a speci�ed time horizon o�ers substantial

bene�ts. It enables security engineers to conduct thorough cost-

bene�t analyses, assessing whether the available resources (e.g.,

time, processing power) are su�cient to meet the required test-

edness and correctness targets. If the target is deemed achievable

and the progress is satisfactory, organizations can identify surplus

machine time that can be utilized to optimize resource allocation.

In contrast, when the available resources are considered insu�-

cient to achieve the desired target, it becomes essential to assess

the additional resource requirements needed to make the target

attainable.

To summarize, this paper o�ers practical guidance to entities in-

volved in fuzzing by providing themwith valuable foresight. Armed

with accurate long-term predictions, they can make proactive and

informed decisions, ensuring successful test outcomes while meet-

ing recommended hurdles.
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