Statistical Reasoning About Programs

Marcel Bohme
Max Planck Institute for Security and Privacy, Germany
Monash University, Australia
marcel.boehme@acm.org

ABSTRACT

We discuss the advent of a new program analysis paradigm that
allows anyone to make precise statements about the behavior of
programs as they run in production across hundreds and millions of
machines or devices. The scale-oblivious, in vivo program analysis
leverages an almost inconceivable rate of user-generated program
executions across large fleets to analyze programs of arbitrary size
and composition with negligible performance overhead.

In this paper, we reflect on the program analysis problem, the
prevalent paradigm, and the practical reality of program analysis
at large software companies. We illustrate the new paradigm us-
ing several success stories and suggest a number of exciting new
research directions.

ACM Reference Format:

Marcel Bohme. 2022. Statistical Reasoning About Programs. In New Ideas
and Emerging Results (ICSE-NIER’22), May 21-29, 2022, Pittsburgh, PA, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3510455.3512796

1 FORMAL REASONING ABOUT PROGRAMS

Informally, program analysis aims to answer interesting questions
about a program: Are there any bugs? Where are they located? What
is the average execution performance? Where are the bottlenecks?
Is there any information flow from a sensitive source to a public
sink? Does this commit introduce any bugs? Do these pointers point
to the same memory location? What is the type of this variable? Is
this program statement reachable? What are the typical values of
this variable? Can this assertion be violated?

Traditionally, we apply formal reasoning to analyze interesting
properties of a program. A program consists of a set of instructions
that tell the machine, which executes the program, precisely how
to process a given input. The structure of a program is governed by
syntactic rules of the programming language while the behavior
of the program, i.e., its model of computation, is governed by the
semantic rules of the language. To formally reason about a program
means (i) to interpret its instructions according to the given seman-
tic rules, (ii) to derive a model of computation that describes the
relationship between the inputs and outputs of that program, and
(iii) to compute the property of interest within this model of com-
putation. We can reason about all executions (as in static analysis)
or any specific execution (as in dynamic analysis).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE-NIER’22, May 21-29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9224-2/22/05.

https://doi.org/10.1145/3510455.3512796

There are several advantages to formal reasoning. We can ana-
lyze universal properties of a program that hold for all inputs. For
instance, software verification aims to to prove the absence of bugs
for all inputs, or to provide a counter-example. We can analyze the
program irrespective of the machine that it is running on. In fact,
we can analyze program properties at any level of abstraction. The
program does not even need to be executable. Today, there are many
industry-grade program analysis tools that leverage formal reason-
ing (specifically separation logic) to analyze program properties.
For instance, the ErrorProne static analysis tool is routinely used at
the scale of Google’s two-billion-line codebase [29]. The Infer tool
has substantial success at finding bugs at Facebook scale [5].

However, formal reasoning has fundamental limits. Landi argues
in the "undecidability of static analysis" [21] that even a simple pro-
gram analysis—such as determining whether two pointers point to
the same memory location—is undecidable (may aliasing) or worse,
uncomputable (must aliasing).! In fact, Rice’s theorem implies that
all interesting questions about the behavior of a program are unde-
cidable. In practice, this has been addressed with a sacrifice in terms
of soundness or completeness. For instance, the developers of some
widely-used program analysis tools set the clear expectation that
their tools may report false alarms, do not handle certain language
features, and can only report certain types of bugs (e.g., [10]). The
formally-minded reader might wonder about the formal guarantees
of an analysis that reports properties (or bugs) that do not exist
or fails to report those that do.? In fact, these developments are a
notable departure from the vision of formal reasoning for program
analysis which Hoare first laid out in 1969 [14]. Vardi recently re-
flected on Hoare’s vison: "In retrospect, the hope for 'mathematical
certainty’ was idealized, and not fully realistic, I believe" [35].

Another challenge of formal reasoning is that the model of
computation—which is extracted from the program—may be in-
complete or incorrect. For instance, some third-party code may
not be available or loaded dynamically, e.g., by reflection. Some
program behavior is undefined whenever the semantic rules do not
apply (e.g., when accessing arrays out of bounds) [36]. Peculiari-
ties of the machine which executes the program are normally also
missing from the extracted model of computation. This prevents us
from formally reasoning about, e.g., micro-architectural attacks on
the program’s behavior [17, 20]. Moreover, large software systems
today are heterogeneous and written in many languages while pro-
gram analysis tools are often built to support the semantic rules
of only a handful of programming languages [38]. So, how can we
reduce this gap between the extracted model of computation and
the actual execution of the program in production?

!Ramalingam [28] gives an elegant proof of the undecidability of the aliasing problem.
2The desire to quantify the loss of guarantees during the trade for scalability and
efficiency is a key motivation of our vision paper: Just how reliable are these program
analysis results? Quantifying our confidence in a (stochastic) outcome, in the presence
of uncertainty, is virtually the mission statement of statistics.

https://doi.org/10.1145/3510455.3512796
https://doi.org/10.1145/3510455.3512796

ICSE-NIER’22, May 21-29, 2022, Pittsburgh, PA, USA

Figure 1: Differential flame graphs in Prodfiler, "the world’s
first whole-system multi-language continuous profiling
platform [..] to unearth inefficiencies and optimization op-
portunities throughout your entire fleet" [9].

2 STATISTICAL REASONING BY SAMPLING-
BASED PROGRAM ANALYSIS

Statistical reasoning about programs is enabled by a scale-oblivious,
sampling-based, in vivo program analysis approach. In the obser-
vational setting, the analysis measures the program property for
a random sample of program executions. In the experimentational
setting, the analysis iteratively generates and validates hypotheses
about the property by modifying and comparing forks (i.e., copies)
of a random sample of executions. For instance, MutaFlow [24] de-
tects information leaks by randomly forking executions, modifying
information from sensitive sources in the "shadow execution" and
monitoring public sinks across the original and shadow execution.

At the ever-growing scale of industrial software systems, a
sampling-based, in vivo program analysis can provide important in-
sights of the program’s runtime behavior in production that would
be impossible to obtain by formal reasoning. Better efficiency can
always be obtained by a lower sampling rate. However, unlike
for analyses based on formal reasoning, the (statistical) guarantees
remain in tact during the trade for efficiency.

Sound methodologies from statistics allow us to extrapolate, with
quantifiable accuracy, from the properties of the observed execu-
tions to properties of the program as it is running in production.
The probability to observe a given execution during production
is called as operational distribution. In other words, using samples
from the operational distribution, we can employ sound estimation
methodologies to make claims about the program’s behavior un-
der the operational distribution itself. Going forward, to be clear,
there are many statistical challenges to be tackled. Nevertheless,
we believe that the statistical framework provides us with a new
lens through which we can investigate the program analysis prob-
lem. Measuring the degree of uncertainty about certain facts is the
backbone of any statistical analysis.

Why now? When Tony Hoare formulated his vision of formal
reasoning about programs, only people in academic or research in-
stitutions had the opportunity for single-person use of a computer.
Today, one million computers are sold every day.> The heterogeneity

3https://www.tomshardware.com/news/over- 1-million-pcs-sold-every-day

Marcel B6hme

and scale of today’s software systems imposes an ostensibly insur-
mountable challenge on program analysis. Yet, new technology also
poses hitherto uncharted opportunities for program analysis:

e Virtualization and Ultra-Large-Scale [26, 34]. The need to
scale a software system across an arbitrary number of machines
has lead to the innovation of continuous and elastic deployment
of software systems (e.g., to efficiently deploy a program analysis
across all machines in a data center).

e Compiler passes [31]. Anyone can implement custom compiler
passes that instrument any program when it is compiled.

e Open-source OS kernel [8]. Anyone can contribute to an open-
source operating system kernel (e.g, to make no-overhead bug
detection available to all programs running on the Linux OS).

e Hardware-Assisted program analysis [32]. Software compa-
nies are working with hardware manufacturers to enable hardware-
assisted support for program analysis. This allows to make certain
kinds of analysis very efficient.

In the following, we will discuss three isolated efforts that together
point to a larger paradigm shift in program analysis for industrial-
scale software systems.

2.1 Fleet-Wide Profiling in Production

ProdFiler [9] is a fleet-wide whole-system continuous performance
profiling platform developed by Optimyze Cloud. Figure 1 shows
an example of a differential flame graph generated by ProdFiler.
A flame graph shows the executed stack traces for a program in
the order of their execution. The y-axis shows the depth of the call
stack (one function calls another) while the x-axis shows the order
of the calls (one function is called after the other). In this differential
call graph, the red color represents calls stacks that take longer
to return while green call stacks return more quickly than in the
reference profile (here, when the workload was smaller). Perfor-
mance profiling is a simple, yet very powerful program analysis.
Gprof [13] was one of the first performance profilers and it already
used a sampling-based approach to measure the execution time of
functions and basic blocks with low overhead. ProdFiler essentially
scales the gprof ideas from a single program running on a single
machine to many programs running on an entire fleet of machines.

ProdFiler monitors the execution of a programs using a Linux
kernel extension called eBPF* which allows run sandboxed pro-
grams directly in the kernel. With this technology, ProdFiler can
avoid the need for source code, instrumentation, debug symbols, or
binary rewriting. Despite being always on even in production, the
startup company reports extremely low overhead for their analyzes.

Google’s GWP [34] goes beyond performance profiling and col-
lects information such as stack traces, hardware events, lock con-
tention profiles, heap profiles, and kernel events. GWP is routinely
used at Google and was introduced as the first fleet-wide continu-
ous profiling tool for cloud applications that are run in their data
centers. In addition to performance bottlenecks, GWP can iden-
tify contended locks, micro-architectural peculiarities, the worst
memory hogs, and the best memory allocation scheme for an appli-
cation. When GWP was first published, it was run on thousands of
machines across several data centers.

“https://ebpf.io/

https://www.tomshardware.com/news/over-1-million-pcs-sold-every-day
https://ebpf.io/

Statistical Reasoning About Programs

ALL MODERN DIGITAL
INFRASTRUCTURE

A PROTECT S0ME
RANDOM PERSON
IN NEBRASKA HAS
BEEN THANKLESSLY
MAINTAINING
SINCE. 2003

Figure 2: ‘Dependency’ by Randall Munroe (CC BY-NC 2.5).
https://xked.com/2347/

2.2 Fleet-Wide Bug Detection in Production

Software security is important. At Google, fuzzing is the first line
of defense.> A fuzzer generates inputs for a program while a bug
detector crashes the program whenever a bug is found. For instance,
ASAN [31] detects memory-safety issues that could otherwise be
exploited to mount arbitrary code execution or privilege escalation
attacks. The bug detector is instrumented directly into the program
simply be enabling a compiler flag. However, not all bugs can be
found during fuzzing and almost all software—that is running on
the members of your fleet—remains untouched from your fuzzing
efforts, but part of your supply chain (cf. Figure 2). Unfortunately,
enabling bug detectors like ASAN in production is prohibitively
expensive. In production, performance is critical. In this sense,
sampling-based, no-overhead bug detection in production is the
last line of defense.

GWP-ASAN [26, 33] is a sampling-based bug detection system
that runs in every Chrome-browser, across all of Google’s server-
side applications, and every phone running Android 11 onwards
[26, 33]. GWP-ASan uses an "electric fence" to guard some allocated
memory. The allocated memory lives between two guard pages
that throw a signal when accessed to detect buffer overflows. Freed
memory is protected with mprotect to detect use-after-frees. A
memory (de)allocation is subject to these measures with a very
low probability (e.g., 1 in 10° executions). Hence, GWP-ASan can
be employed in production with negligible performance overhead.
However, across a large fleet of machines the signal is strong enough
that bugs can reliably be discovered. GWP-ASan is on-by-default on
every Chrome browser running on Windows and MacOS machines
and on every phone running Android 11. In the past 18 months, it
has found over 140 bugs in Chrome run in production, over 2k bugs
in other Google products in production. Similar sampling-based
bug detection techniques have recently been integrated into Firefox
[15] and the Linux kernel [8].

Shttps://security.googleblog.com/2021/09/an-update-on-memory-safety-in-
chrome.html

ICSE-NIER’22, May 21-29, 2022, Pittsburgh, PA, USA

In terms of root-causing detected bugs, Liblit explored statistical
approaches to localize a bug based on sparse (debugging) feedback
generated in production from instrumentation trampolines [22, 23].

There are many opportunities of statistical reasoning for sampling-
based bug detection. Using species richness estimation [3, 12], we
could estimate the total number of bugs in the code base, given
the sampling rate and bugs found over time. Using Good Turing
theory [4], we could estimate the probability to discover a previ-
ously unseen bug. Using extreme value theory, we could estimate
the likelihood of a production-disrupting or highly-critical type
of bugs occurring. Using hypothesis testing, we could determine
whether a bug has really been fixed. Applied statistics provides the
right set of tools for us to answer such questions for systems of
arbitrary scale, with arbitrarily high confidence.

2.3 Specification Mining for Microservice
Architectures

Most industrial microservice architectures are complex networks
of dependent microservices that are continuously updated and
dynamically reorganized [38]. It is nearly impossible to untangle
these dependencies, much less to analyze the entire system.

To tackle this challenge, the Akita analysis tool [39] builds pow-
erful "API behavior models" from the message exchange among the
constituent web services. These API models represent "endpoints,
fields, data formats, latency, and more" [37]. To build these models,
Akita passively watches the traffic on the network. The tool then
draws a current map of the webservice-endpoints, the data that is
sent, and the cross-service dependencies in the distributed software
system. By tracking behavior models over time, Akita is able to
detect breaking changes or data leaks before they cause any harm.

3 OPEN CHALLENGES AND OPPORTUNITIES

The ever-growing scale at which our software systems are run
demand program analysis techniques that are scale-oblivious. On
a single machine, a sampling-based program analysis can always
trade a lower sampling rate for better efficiency. Across an entire
fleet of machines, a sampling-based program analysis can employ
statistical reasoning to quantify the (un)certainty with which we
can make statements about interesting properties of the program
as it is running in production. Unlike for formal-reasoning-based
program analysis, the (statistical) guarantees remain in tact during
the trade for better efficiency.

The only requirement for statistical reasoning is to inject analy-
sis probes into the program or the machine executing the program.
An analysis probe checks or measures certain properties of interest
during the execution of the program in production. To extrapolate
from the observed executions, applied statistics provides a rich
toolset of methodologies that can be adopted for our purposes. To
inject the required analysis probes, we can leverage recent tech-
nological advances. For instance, many compilers support custom
instrumentation passes that can be used to inject analysis probes
directly into the program binary during the build process [33]. Hy-
pervisors, virtual machines, or operating system kernels can be
modified to inject analysis probes into the execution of any pro-
gram [8, 9, 34]. We can passively monitor the interaction of the
program with other programs or the environment [38] to analyze
properties of the program.

https://xkcd.com/2347/
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html

ICSE-NIER’22, May 21-29, 2022, Pittsburgh, PA, USA

3.1 Open Opportunities

Foundations. For the research community there are opportunities
to develop the probabilistic and statistical framework that will be un-
derpinning a sound statistical reasoning about program properties.
There is a large body of work in applied statistics [7], probability
theory [1], and machine learning [25] that can be readily adopted to
solve important program analysis questions that are currently out of
reach from the formal perspective. For the statistician, the program
analysis problem provides a diverse set of interesting statistical
challenges that can be scientifically explored.

Conceptual Integration. We are also excited about the possi-
bility to integrate formal and statistical reasoning about programs.
From a formal perspective, statistical reasoning attaches probabil-
ities to certain facts. For instance, a data flow that has not been
observed in the sample has a certain probability to be observed
in future executions, and this probability decreases as the sample
increases. In statistics, this is the problem of estimating the missing
probability mass, and many estimators have been proposed.

Techniques. The evolving need to analyze programs at the very-
large-scale and the availability of emerging new technologies will
generate a renewed research interest in the development of ad-
vanced sampling-based program analysis techniques (cf. Section 2).
Given the tremendous success of GWP [34] and GWP-ASAN [26],
we are excited about the opportunities of future scale-oblivious,
in vivo program analysis techniques.

Technical Integration. By integrating in vivo analysis into
static analysis, we could overcome several well-known challenges of
static analysis, like resolving the targets of register-indirect jumps,
or making precise claims about program behavior in the presence
of undefined behavior, dynamic loading, garbage collection, or re-
flection. Many static analyses techniques start by building a knowl-
edge base that can then be efficiently queried. An sampling-based
approach can feed facts into this knowledge base. The resulting
analysis would be under-approximating (which is compatible with
incorrectness-logic-based static analysis [27]).

3.2 Open Challenges

Observation effects. Techniques deployed in production should
minimize any unintended impact on the system in production. For
instance, in the debugging research community;, it is well known
that some bugs cannot be observed inside the debugger but only
outside. Unintentionally, the debugger modifies the behavior of the
program. Similarly, in-vivo program analyses should be carefully
designed not to affect the attack surface or reliability of a system.

Privacy concerns. Program analysis deployed in production
should never reveal information about any specific user. If at all such
data is recorded, any user data must be anonymized and aggregated
to prevent privacy violations. Colleagues developed technologies
to preserve privacy when bugs are automatically reported "in the
field" and later patched "in house" [16, 22, 23].

Bounding the improbable and the adversarial. Of particular
interest is the development of statistical methodologies to make
claims about program properties that are benign but improbable,
or that are outright adversarial. For instance, Serebryany clearly
states that GWP-ASAN is not supposed to detect or prevent ongoing
attacks [26]. The probability that GWP-ASan is effective for any

Marcel B6hme

given execution is just too small. On the other hand, if we do not
observe an event despite a substantial sampling effort does not
mean that the event is impossible. It might just be improbable.
There is an entire field in applied statistics dedicated to assessing
and quantifying the rare and extreme. For instance, rare event
analysis [11] and extreme value theory [6] have become substantial
fields of research with applications, e.g., in economics, meteorology,
actuarial science, physics, and ecology. In program analysis, extreme
value theory has recently been introduced to tackle the problem of
estimating a program’s worst case execution time (WCET) [30].
Operational distribution. A useful assumption in estimation
theory (and machine learning) is that samples are independent
and identically distributed (iid). Informally, we assume that the
probability that a certain execution occurs today is the same as
the probability that this execution occurs tomorrow (identically
distributed), and that there is no dependence between executions
(independence). For most "real world" systems (not only for soft-
ware systems), the iid assumption does not hold. We should study
estimator performance empirically and account for potential shift
during estimation, e.g., one could consider the data as time series.

4 DISCUSSION

We are excited about the opportunities and challenges of analyzing
large-scale heterogeneous software systems in production. We ar-
gue that statistical reasoning is the only realistic approach to reason
about programs in this setting. Statistical reasoning is enabled by a
sampling-based analysis. For a better efficiency of the analysis, we
can always trade a lower sampling rate. However, unlike for formal
reasoning, which trades soundness or completeness for efficiency,
statistical reasoning can always maintain the guarantees, if only at
a quantifiable loss of accuracy.

As an analytical method, formal reasoning will remain one of the
most important program analysis approaches. It has enabled the
formal verification of an entire OS microkernel [18, 19], is the only
means to guarantee correctness for safety-critical programs, and
powers extremely successful bug finding tools [2, 5, 29]. However,
we also believe that we should study the program analysis problem
from a statistical perspective and find out how we can reason about
program properties in vivo.® We are thrilled about the research
opportunities that this emerging paradigm presents for the software
engineering community and look forward to the development of
the probabilistic and statistical foundations of program analysis.

ACKNOWLEDGMENTS

I would like to thank Peter O’'Hearn of UCL & Lacework, Kostya
Serebryany of Google, Lukas Dresel of UCSB, Carson Harmon of
Square & Trail of Bits, Zac Hatfield-Dodds of Anthropic & ANU as
well as Toby Murray of Uni Melbourne for their valuable feedback
on earlier versions of this draft. This work grew out of my desire
to recover some kind of guarantee for program analysis at scale,
seeing that the most popular static analysis tools report bugs that
do not exist or fail to report bugs that do indeed exist. Yet, we can’t
seem to quantify the degree to which our analyses are incorrect.

®In biology, some researchers would study the properties of a complex organism in
silico, i.e., by modelling and simulating the organism, while others would study the
same organism in vivo, i.e., within its natural environment.

Statistical Reasoning About Programs

REFERENCES

(1]

1
=

(71

>
&

[10]

[11

[12]

[13

[14]

[15]

[16

[17]

[18

[19

[20]

[21]

[22

Dana Angluin. 1992. Computational Learning Theory: Survey and Selected
Bibliography. In Proceedings of the Twenty-Fourth Annual ACM Symposium on
Theory of Computing (STOC ’92). Association for Computing Machinery, New
York, NY, USA, 351-369. https://doi.org/10.1145/129712.129746

Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schéfer. 2016.
QL: Object-oriented Queries on Relational Data. In 30th European Conference on
Object-Oriented Programming (ECOOP 2016) (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 56), Shriram Krishnamurthi and Benjamin S. Lerner
(Eds.). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
2:1-2:25. https://doi.org/10.4230/LIPIcs. ECOOP.2016.2

Marcel Bohme. 2018. STADS: Software Testing as Species Discovery. ACM
Transactions on Software Engineering and Methodology 27, 2, Article 7 (June 2018),
52 pages. https://doi.org/10.1145/3210309

Marcel B6hme, Danushka Liyanage, and Valentin Wiistholz. 2021. Estimating
Residual Risk in Greybox Fuzzing. In Proceedings of the 15th Joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE). 494-504. https://doi.org/10.
1145/3468264.3468570

Cristiano Calcagno, Dino Distefano, Peter W. O’'Hearn, and Hongseok Yang. 2011.
Compositional Shape Analysis by Means of Bi-Abduction. J. ACM 58, 6, Article
26 (Dec. 2011), 66 pages. https://doi.org/10.1145/2049697.2049700

Enrique Castillo. 1988. Extreme Value Theory in Engineering. Academic Press,
San Diego. https://doi.org/10.1016/B978-0-08-091725-2.50005-1

Anne Chao and Colwell Robert K. 2017. Thirty years of progeny from Chao’s
inequality: Estimating and comparing richness with incidence data and incom-
plete sampling. SORT-Statistics and Operations Research Transactions 1, 1 (June
2017), 3-54.

Linux Kernel Developers. 2021. Kernel Electric-Fence (KFENCE). https://www.
kernel.org/doc/html/latest/dev-tools/kfence.html. [Online; accessed 15-Oct-
2021].

Thomas Dullien. 2021. Introducing Prodfiler. https://prodfiler.com/blog/
introducing-prodfiler/. [Online; accessed 15-Oct-2021].

Facebook. 2018. FBInfer - Limitations. http://web.archive.org/web/
20180903104416/http://fbinfer.com/docs/limitations.html. [Archived; accessed
15-Oct-2021].

M. Falk, J. Husler, J. Hiisler, and R.D. Reiss. 1994. Laws of Small Numbers: Extremes
and Rare Events. Birkhduser Verlag.

NJ. Gotelli and RK. Colwell. 2011. Estimating Species Richness. Biological
Diversity: Frontiers in Measurement and Assessment (2011), 39-54.

Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. 1982. Gprof: A
Call Graph Execution Profiler. In Proceedings of the 1982 SIGPLAN Symposium on
Compiler Construction (Boston, Massachusetts, USA) (SIGPLAN ’82). Association
for Computing Machinery, New York, NY, USA, 120-126. https://doi.org/10.
1145/800230.806987

C. A.R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun.
ACM 12, 10 (Oct. 1969), 576-580. https://doi.org/10.1145/363235.363259
Christian Holler. 2021. PHC (Probabilistic Heap Checker): a port of Chromium’s
GWP-ASan project to Firefox. https://bugzilla.mozilla.org/show_bug.cgi?id=
1523268. [Online; accessed 15-Oct-2021].

Wei Jin and Alessandro Orso. 2012. BugRedux: Reproducing field failures for in-
house debugging. In Proceedings of the 34th International Conference on Software
Engineering, Martin Glinz, Gail C. Murphy, and Mauro Pezzé (Eds.). IEEE, 474-484.
https://doi.org/10.1109/ICSE.2012.6227168

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping Bits in Memory
without Accessing Them: An Experimental Study of DRAM Disturbance Errors.
SIGARCH Comput. Archit. News 42, 3 (June 2014), 361-372. https://doi.org/10.
1145/2678373.2665726

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell,
Rafal Kolanski, and Gernot Heiser. 2014. Comprehensive Formal Verification of
an OS Microkernel. ACM Trans. Comput. Syst. 32, 1, Article 2 (Feb. 2014), 70 pages.
https://doi.org/10.1145/2560537

Gerwin Klein, June Andronick, Ihor Kuz, Toby Murray, Gernot Heiser, and
Matthew Fernandez. 2018. Formally Verified Software in the Real World. Commun.
ACM 61 (Oct. 2018), 68-77. Issue 10. https://doi.org/10.1145/3230627

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
2019 IEEE Symposium on Security and Privacy (SP). 1-19. https://doi.org/10.1109/
SP.2019.00002

William Landi. 1992. Undecidability of Static Analysis. ACM Letters on Program-
ming Languages and Systems 1, 4 (Dec. 1992), 323-337. https://doi.org/10.1145/
161494.161501

Ben Liblit, Mayur Naik, Alice X. Zheng, Alexander Aiken, and Michael I. Jordan.
2005. Scalable statistical bug isolation. In Proceedings of the ACM SIGPLAN
2005 Conference on Programming Language Design and Implementation, Chicago,

[23

[24

[25

[27

[28

[29

[30

[31

[32

[33

[34

[36

[37

[38

[39

]

ICSE-NIER’22, May 21-29, 2022, Pittsburgh, PA, USA

IL, USA, June 12-15, 2005, Vivek Sarkar and Mary W. Hall (Eds.). ACM, 15-26.
https://doi.org/10.1145/1065010.1065014

Benjamin Robert Liblit. 2004. Cooperative Bug Isolation. Ph.D. Dissertation.
University of California, Berkeley.

Bjérn Mathis, Vitalii Avdiienko, Ezekiel O. Soremekun, Marcel Bohme, and An-
dreas Zeller. 2017. Detecting Information Flow by Mutating Input Data. In Pro-
ceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). 263-273. https://doi.org/10.5555/3155562.3155598

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. 2018. Foundations
of machine learning. MIT press.

Matt Morehouse, Mitch Phillips, and Kostya Serebryany. 2020. Crowdsourced
bug detection in production: GWP-ASan and beyond. In Proceedings of the C++
Russia.

Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter O’Hearn, and
Jules Villard. 2020. Local Reasoning About the Presence of Bugs: Incorrectness
Separation Logic. In Computer Aided Verification, Shuvendu K. Lahiri and Chao
Wang (Eds.). Springer International Publishing, Cham, 225-252.

G. Ramalingam. 1994. The Undecidability of Aliasing. ACM Trans. Program. Lang.
Syst. 16, 5 (Sept. 1994), 1467-1471. https://doi.org/10.1145/186025.186041
Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera
Jaspan. 2018. Lessons from Building Static Analysis Tools at Google. Commun.
ACM 61, 4 (March 2018), 58-66. https://doi.org/10.1145/3188720

Luca Santinelli, Jérome Morio, Guillaume Dufour, and Damien Jacquemart. 2014.
On the Sustainability of the Extreme Value Theory for WCET Estimation. In 14th
International Workshop on Worst-Case Execution Time Analysis, WCET 2014, July 8,
2014, Ulm, Germany (OASICS, Vol. 39), Heiko Falk (Ed.). Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 21-30. https://doi.org/10.4230/OASIcs. WCET.2014.21
Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Proceed-
ings of the 2012 USENIX Conference on Annual Technical Conference (Boston, MA)
(USENIX ATC’12). USENIX Association, USA, 28.

Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad Tsyrklevich,
and Dmitry Vyukov. 2019. Memory Tagging and how it improves C/C++ memory
safety. USENIX ;login 44, 2 (2019). Issue Summer 2019.

Vlad Tsyrklevich. 2021. GWP-ASan: Sampling heap memory error detection
in-the-wild. https://www.chromium.org/Home/chromium-security/articles/gwp-
asan. [Online; accessed 15-Oct-2021].

E. Tune, G. Ren, T. Moseley, R. Hundt, Y. Shi, and S. Rus. 2010. Google-Wide
Profiling: A Continuous Profiling Infrastructure for Data Centers. IEEE Micro 30,
04 (jul 2010), 65-79. https://doi.org/10.1109/MM.2010.68

Moshe Y. Vardi. 2021. Program Verification: Vision and Reality. Commun. ACM
64, 7 (June 2021), 5. https://doi.org/10.1145/3469113

Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama.
2016. A Differential Approach to Undefined Behavior Detection. Commun. ACM
59, 3 (Feb. 2016), 99-106. https://doi.org/10.1145/2885256

Jean Yang. 2021. Modeling API Traffic to Catch Breaking Changes.
https://www.akitasoftware.com/blog- posts/modeling-api- traffic-to- catch-
breaking-changes. [Online; accessed 15-Oct-2021].

Jean Yang. 2021. The Software Heterogeneity Problem, or Why We Didn’t
Build on GraphQL. https://www.akitasoftware.com/blog-posts/the-software-
heterogeneity-problem-or-why-we-didnt-build-on-graphql. [Online; accessed
15-Oct-2021].

Jean Yang. 2021. Where My Specs At: From the Front to the Back.
https://www.akitasoftware.com/blog-posts/where-my-specs-at-from- the-
front-to-the-back. [Online; accessed 15-Oct-2021].

https://doi.org/10.1145/129712.129746
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.1145/3210309
https://doi.org/10.1145/3468264.3468570
https://doi.org/10.1145/3468264.3468570
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1016/B978-0-08-091725-2.50005-1
https://www.kernel.org/doc/html/latest/dev-tools/kfence.html
https://www.kernel.org/doc/html/latest/dev-tools/kfence.html
https://prodfiler.com/blog/introducing-prodfiler/
https://prodfiler.com/blog/introducing-prodfiler/
http://web.archive.org/web/20180903104416/http://fbinfer.com/docs/limitations.html
http://web.archive.org/web/20180903104416/http://fbinfer.com/docs/limitations.html
https://doi.org/10.1145/800230.806987
https://doi.org/10.1145/800230.806987
https://doi.org/10.1145/363235.363259
https://bugzilla.mozilla.org/show_bug.cgi?id=1523268
https://bugzilla.mozilla.org/show_bug.cgi?id=1523268
https://doi.org/10.1109/ICSE.2012.6227168
https://doi.org/10.1145/2678373.2665726
https://doi.org/10.1145/2678373.2665726
https://doi.org/10.1145/2560537
https://doi.org/10.1145/3230627
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1145/161494.161501
https://doi.org/10.1145/161494.161501
https://doi.org/10.1145/1065010.1065014
https://doi.org/10.5555/3155562.3155598
https://doi.org/10.1145/186025.186041
https://doi.org/10.1145/3188720
https://doi.org/10.4230/OASIcs.WCET.2014.21
https://www.chromium.org/Home/chromium-security/articles/gwp-asan
https://www.chromium.org/Home/chromium-security/articles/gwp-asan
https://doi.org/10.1109/MM.2010.68
https://doi.org/10.1145/3469113
https://doi.org/10.1145/2885256
https://www.akitasoftware.com/blog-posts/modeling-api-traffic-to-catch-breaking-changes
https://www.akitasoftware.com/blog-posts/modeling-api-traffic-to-catch-breaking-changes
https://www.akitasoftware.com/blog-posts/the-software-heterogeneity-problem-or-why-we-didnt-build-on-graphql
https://www.akitasoftware.com/blog-posts/the-software-heterogeneity-problem-or-why-we-didnt-build-on-graphql
https://www.akitasoftware.com/blog-posts/where-my-specs-at-from-the-front-to-the-back
https://www.akitasoftware.com/blog-posts/where-my-specs-at-from-the-front-to-the-back

	Abstract
	1 Formal Reasoning about Programs
	2 Statistical Reasoning by Sampling-based Program Analysis
	2.1 Fleet-Wide Profiling in Production
	2.2 Fleet-Wide Bug Detection in Production
	2.3 Specification Mining for Microservice Architectures

	3 Open Challenges and Opportunities
	3.1 Open Opportunities
	3.2 Open Challenges

	4 Discussion
	Acknowledgments
	References

