
Software Regression as Change of Input Partitioning

Marcel Böhme*
School of Computing

National University of Singapore
marcel.boehme@nus.edu.sg

Abstract—It has been known for more than 20 years. If the
subdomains are not homogeneous, partition testing strategies,
such as branch or statement testing, do neither perform
significantly better than random input generation nor do they
inspire confidence when a test suite succeeds. Yet, measuring
the adequacy of test suites in terms of code coverage is still
considered a common practice. The main target of our research
is to develop strategies for the automatic evolution of a test suite
that does inspire confidence. When the program is changed, test
cases shall be augmented that witness changed output for the
same input (test suite augmentation). If two test cases witness
the same partition, one is to be discarded (test suite reduction).

Keywords-Partition Testing; Software Evolution; Reliability;
Automated Test Generation

I. RESEARCH PROBLEM

A. Introduction

Software regresses when existing functionality that used
to work does not anymore. The aim of regression testing
is to create and maintain a test suite that stresses much
of the program’s behavior, so that when the program is
changed at least one test case should fail upon execution
on the changed program when the behavior regresses. The
adequacy of test suites can be measured in terms of code
coverage. For instance, a test suite achieves hundred percent
branch coverage if every branch in the program is exercised
by at least one test in the test suite. Branch testing devides
the input space into (non-disjoint) subdomains [1], with
every subdomain consisting of all test cases that exercise a
particular branch. There is one subdomain per branch. A test
suite is branch-coverage adequate if it contains at least one
test case of each subdomain. Testing strategies that devide
the input space into classes whose points are somehow “the
same” are summarized under partition testing [2].

Code coverage is an insufficient measure of adequacy to
determine whether a test suite exposes software regression;
so is mutation-based or specification-based, functional test-
ing. The respective subdomains are not homogeneous w.r.t.
failure. For instance, it is not true that if a test case exercises
a certain branch and exposes an error, then every test case ex-
ercising the same branch exposes an error. Hamlet et al. [2]
argue that partition testing shall not inspire confidence in
program correctness, even if all tests of an adequate test suite

* Research Profile: http://comp.nus.edu.sg/~mboehme

run successful. Duran and Ntafos [3] experimentally show
that partition testing does not perform significantly better in
terms of revealing an error than random input (that does not
follow a partitioning scheme). Weyuker et al. [1] theoreti-
cally analyzed the results and observe that the effectiveness
of partition testing varies substantially and conclude that
“partition testing is most successful when the sub-domain
definitions are fault-based”, that is, homogeneous w.r.t. fail-
ure - if one test fails, every test in the same partition fails.
Interestingly, if the input spaces of original and changed
program are devided into (disjoint) homogeneous subdo-
mains, then we could expose software regression as well as
progression at the intersection of the subdomains of original
and changed program. Software progression is observed
if input that used to fail passes in the changed program.

In summary, if the subdomains are not homogeneous, par-
tition testing does neither perform significantly better than
random input generation nor does it inspire confidence when
a test suite succeeds. Yet, measuring the adequacy of test
suites in terms of code coverage is still considered a common
practice. The main target of our research is to develop stra-
tegies for the automatic evolution of a test suite that does
inspire confidence. When the program is changed, test cases
shall be augmented that witness changed output for the same
input (test suite augmentation). If two test cases witness the
same partition, one is to be discarded (test suite reduction).

Only recently, we have begun to understand the definition
and automatic exploration of homogeneous subdomains.
Godefroid et al. [4] introduce dynamic symbolic execution
and show that if a concrete test case exercises a certain
path, then every test case satisfying the same path condition
exercises that path. Qi et al. [5] introduce path exploration
based on symbolic output and show that if a concrete test
case computes some symbolic output, then every test case
satisfying the same relevant slice condition computes the
same symbolic output. We can say, that such partitions
are homogeneous w.r.t. program behaviour. Using dynamic
program dependencies, symbolic execution, and constraint
solving, test cases are automatically generated that witness
“adjacent” partitions.

We want to explain software pro- and regression as
change of partitioning. A set of inputs that belongs to one
partition and uniformly computes some symbolic output in
program P may belong to different partitions and compute

978-1-4673-1067-3/12/$31.00 c© 2012 IEEE
ICSE 2012, Zurich, Switzerland
Doctoral Symposium

1523

different symbolic output in changed program P ′. Using
the program dependencies, e.g., the relevant slice, we can
determine those partitions affected by the changes. Using
logic operators and constraint solving, we can find input
that is at the intersection of the partitions of P and P ′

that compute different symbolic output. Thereby, test cases
witnessing the old partitions can be reused as witnesses
of some of the new partitions. The remainder of the new
partitioning shall further be explored. As of now, it is not
possible to predict the new partitioning. This may be one of
the reasons why non-evolving test suites are inadequate w.r.t.
exposing software regression. For example, if after a change,
one partition is “split” into two partitions, one of which
computes the “wrong” output. The test case witnessing the
old partition may or may not expose this regression.

Whether the program functionality pro- or regresses can
be observed using input for which the output is computed
differently after the program has changed. Dually, input that
computes the same symbolic output before and after a pro-
gram changed, guarantees preserved functionality. Changed
output is derived by overlapping old and new partitions. The
behavior has changed for intersecting input partitions for
which an input computes different symbolic output.

B. Expected Contributions

The following overviews my current idea about the re-
search agenda towards the dissertation and the expected
contributions to relevant fields in Testing and Debugging.

1) Test Suite Augmentation: Assuming an existing test
suite determines that a program P behaves correctly.
When the program is changed to P ′, add those test
cases to the test suite that expose a semantic difference
when executed on P and P ′. In other words, for P
and P ′ the computed output should be different at the
intersection of input partitions which are homogeneous
w.r.t. program behavior.

2) Fault-based Test Suite Evolution: Continously and
incrementally generate test cases as witnesses of un-
explored, input partitions that are homogeneous w.r.t.
program failure. When the program is changed, auto-
matically remove test cases witnessing affected input
partitions and add those that witness new partitions.
Software regression can be derived from the intersect-
ing subdomains of new and old partitioning.

3) Debugging [Optional]: Input partitions that are ho-
mogeneous w.r.t. failure imply extensive knowledge
about when the program fails and when it does not.
Statements executed by many failing test cases are
positive evidence of a fault location (cp. [6]), while
statements executed by both, passing and failing test
cases are negative evidence (cp. [7], [8]). Faults shall
be localized automatically while the program is auto-
matically tested in a fault-based manner.

4) Predicting Regression [Optional]: Given a “correct”
program and a set of program changes. Is it possible
to predict, whether the changes introduce any bugs?
In other words, given a “correct” program, a set of
changes, and the “old” input partitions affected by the
change. Is it possible to predict the new partitioning
of the input space affected by the changes?

II. RELATED WORK

This section gives a compact and incomplete overview on
works related to test suite augmentation and evolution. In
Test Suite Augmentation (TSA), we want to generate test
cases that witness the impact of a change onto the output.
These test cases shall execute at least one changed state-
ment, at least one output statement and compute the output
differently for the old and new version of the program [9].

Change Impact: It is possible to statically determine
statements onto which a change has definitely no impact1.
Otherwise, via static analysis it can only be determined that
the change may or may not have an impact on a statement
for a particular execution2. For the same reason Chianti, the
change impact tool of Ren et al. [11], can statically only
determine which test cases do not execute a change (cp. test
selection) and which changes are not executed by a test case.
Change Execution: A change does only impact subsequent
statements (including the output) for test cases that actually
exercise the changed statement [12]. To determine whether
or not a statement can actually be exercised at all is called
infeasible path problem and generally undecidable [13].
However, there exist several approaches that generate input
incrementally until a path is found that executes a given
statement [14], [15]. Taneja et al. discuss eXpress as ap-
proach to generate test cases for every program path that
exercises a changed statement in a changed program [16].
Change Propagation: To witness the impact of the change
on the output, the generated test case shall Execute the
change, Infect the program state, and Propagate the effects
of the change to the output - the PIE requirements [17].
Santelices et al. [18] discuss the propagation of the effects
of a change along a dependence chain to a given maximal
distance. Qi et al. [14] examine an efficient approach of
executing and propagating a single change to the output.
Harmann et al. [19] show the execution and propagation
of multiple changes to the output and acknowledge that
incrementally executing every combination of the set of
program changes would be prohibitively expensive. Seman-
tic Approach to TSA: Person et al. introduce Differential
Symbolic Execution (DSE) to derive differential method
summaries [20]. A method summary is an attempt towards
the complete account of behavioral difference. However,
information that is relevant to actually generate input that

1cp. syntactic dependence [10].
2cp. syntactic as approximation of semantic dependence [10]

1524

witnesses behavioral difference is removed by the abstract-
ing uninterpreted functions. A detailed discussion of related
work pertaining TSA can be found in [9].

Test Suite Evolution (TSE) integrates the automatic reduc-
tion and augmentation of test cases to re-establish the ade-
quacy of a minimal test suite when a program evolves. A test
suite T is minimal if removing a test case from T would re-
duce its adequacy. While there are many works on test suite
reduction and augmentation, we are not aware of one that
integrates both as automatic test suite evolution approach.
Mirzaaghaei [21] presents an idea on repairing a test suite
according to patterns they have observed when developers
repair test suites when a program is changed. A repair pattern
example is: Introduction of Overloaded Method. While this
work is called Automatic Test Suite Evolution, our intention
is a more general, paradigm-independent, approach towards
test suite evolution.

For the lack of space, we only want to mention mutation
adequacy as instance of predicting software regression. A
test suite is mutation adequate if, when the program is
changed, at least one test case executes these changes (i.e.,
weakly killing a mutant) and propagates their effects to the
output (i.e., strongly killing a mutant; cp. [19]). As such, a
“good” (mutation-adequate, non-evolving) test suite should
anticipate any program change to be better prepared for
detecting software regression. The intention of our future
work is to predict the new partitioning of the input domain,
given a change to a statement. This enables the prediction
of software pro- or regression for any program change.

III. OUR APPROACH

A. Partitioning in Terms of Computation and Reachability

At the core of our approach is the partitioning of the
input space into subdomains that are homogeneous w.r.t. a
certain property like reachability or computation of a certain
statement like the output or a change.

Qi et al. [5] started foundational, theoretical work on
partitioning the input space in terms of the computation of
the output. Every input in the same partition computes the
same symbolic output. Statement instances that contribute
in computing the symbolic output value for some input
are summarized as relevant slice3 of the output statement
instance. The condition computed upon program input that
yields the same relevant slice is called relevant slice condi-
tion4. The authors also provide an algorithm, that explores
these subdomains to find all symbolic values the output can
have. Qi et al. prove homogenity of the subdomains when
the input is partitioned based on relevant slice conditions
and the completeness of the provided algorithm to explore
all of these subdomains.

3Definition of relevant slice see [22].
4Definition of relevant slice condition see [5].

In [9], we discuss the partitioning of the input space
in terms of the reachability of a given statement. Every
input that does (not) exercise a given statement “for the
same reason” is in the same partition. The condition to be
satisfied for input in the same partition is called reachability
condition5. We adapt the exploration algorithm of Qi et
al. [5] and prove the homogenity of the subdomains when
the input is partitioned based on the reachability condition.

It is possible to sub-partition subdomains based on rele-
vance. In TSA, only paths that exercise at least one changed
statement and one output can possibly propagate the impact
of a change to the output. Paths that do not exercise a
changed statement are less relevant. So, the input space is
first partitioned in terms of the reachability of a change. If
an input does not exercise a change, the algorithm explores
partitions adjacent to witnessed reachability partition of the
change. If the input does exercise a changed statement, the
algorithm further explores reachability and ultimately com-
putation subpartitions of the output within this reachability
partition of the exercise change. The partitioning is based on
the change condition6 which basically is the conjunction of
the reachability conditions of every change and output and
the relevant slice conditions of the exercise output statement
instances if at least one change is exercised. The change
condition is proven to yield homogeneous subdomains. If
an input executes a set of changed statement instances Ci, a
set of output statement instances Oi and computes symbolic
values V for the variables used in Oi, then every input in
the same change partition exercises Ci and Oi and computes
V for Oi.

B. Software Regression as Change of Partitioning

Software regression is found in the part of the input space
that is affected by a program change. If for the same input
the output is the same, we cannot observe any behavioral
difference. It follows, in order to observe a semantic program
change, for overlapping input partitions the symbolic output
states must be different.

Our approach to test suite augmentation [9] partitions the
input into homogeneous subdomains based on the change
condition yielding change partitions. We determine for every
change partition the output state computed after exercising
at least one changed statement for both, the original and
changed version of the program. Then, the semantic differ-
ence is determined so that for overlapping change partitions,
the computed output state must be different. The generated
test cases are witnesses of the behavioral difference of
both programs. Semantic change is defined formally based
on the notion of change partitions overlapping for original
and changed program. Both, the change condition and the
program output are quantifier-free first-order formulae on

5Definition of reachability condition see [9].
6Definition of change condition see [9].

1525

the input variables. For every change partition of P and
P ′, it is solved the conjunction of both change conditions
and that both symbolic output values are to be different7.
Furthermore, it is shown that the sole evaluation of the
changed program while disregarding the original program
is insufficient and propose the number of exposed semantic
changes as measure of adequacy for augmented test suites.

Our research on automatic test suite evolution is ongoing.
As intermediate result, we can report that is possible to con-
cisely derive the affected input partitions, when the program
is changed. Gyimóthy et al. [22] discuss the relevant slice
as the set of statements that are involved in computing the
symbolic value of a statement instance. Thus, if a statement
is changed which is in the relevant slice of the output, the
input partition is affected that exercises this relevant slice. It
is possible to start with random test generation to achieve an
initial saturation of witnessed change partitions in the input
space and proceed exploring “low-probability” subdomains.

ACKNOWLEDGMENT

I would like to express my deepest gratitude to my advi-
sor, Abhik Roychoudhury (abhik@comp.nus.edu.sg), for his
support and guidance throughout this research.

REFERENCES

[1] E. J. Weyuker and B. Jeng, “Analyzing partition testing
strategies,” IEEE Trans. Softw. Eng., vol. 17, pp. 703–711,
July 1991.

[2] D. Hamlet and R. Taylor, “Partition testing does not inspire
confidence (program testing),” IEEE Transactions on Soft-
ware Engineering, vol. 16, pp. 1402–1411, 1990.

[3] J. W. Duran and S. C. Ntafos, “An evaluation of random
testing,” IEEE Transactions on Software Engineering, vol.
SE-10, no. 4, pp. 438 –444, july 1984.

[4] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed au-
tomated random testing,” in Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation, ser. PLDI ’05. New York, NY, USA: ACM,
2005, pp. 213–223.

[5] D. Qi, H. D. Nguyen, and A. Roychoudhury, “Path explo-
ration based on symbolic output,” in Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, ser. ESEC/FSE ’11,
2011, pp. 278–288.

[6] R. Santelices, J. A. Jones, Y. Yu, and M. J. Har-
rold, “Lightweight fault-localization using multiple coverage
types,” in ICSE, 2009, pp. 56–66.

[7] T. Wang and A. Roychoudhury, “Automated path generation
for software fault localization,” in Proceedings of the 20th
IEEE/ACM international Conference on Automated software
engineering, ser. ASE ’05, 2005, pp. 347–351.

7Formula: inputP ∧ inputP ′ ∧ (outputP 6= outputP ′).

[8] M. Renieris and S. P. Reiss, “Fault localization with nearest
neighbor queries,” Automated Software Engineering, Interna-
tional Conference on, vol. 0, p. 30, 2003.

[9] M. Böhme and A. Roychoudhury, “Comprehensive test suite
augmentation,” National University of Singapore, https://dl.
comp.nus.edu.sg/dspace/handle/1900.100/3543, Tech. Rep.,
November 2011.

[10] A. Podgurski and L. A. Clarke, “A formal model of program
dependences and its implications for software testing, debug-
ging, and maintenance,” IEEE Trans. Softw. Eng., vol. 16, pp.
965–979, September 1990.

[11] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley,
“Chianti: a tool for change impact analysis of java programs,”
in Proceedings of the 19th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and
applications, ser. OOPSLA ’04, 2004, pp. 432–448.

[12] J. Law and G. Rothermel, “Whole program path-based dy-
namic impact analysis,” in Proceedings of the 25th Interna-
tional Conference on Software Engineering, ser. ICSE ’03,
2003, pp. 308–318.

[13] A. Goldberg, T. C. Wang, and D. Zimmerman, “Applications
of feasible path analysis to program testing,” in Proceedings
of the 1994 ACM SIGSOFT international symposium on
Software testing and analysis, ser. ISSTA ’94, 1994, pp. 80–
94.

[14] D. Qi, A. Roychoudhury, and Z. Liang, “Test generation to
expose changes in evolving programs,” in ASE, 2010, pp.
397–406.

[15] P. Godefroid, A. V. Nori, S. K. Rajamani, and S. D. Tetali,
“Compositional may-must program analysis: unleashing the
power of alternation,” in Proceedings of the 37th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, ser. POPL ’10, 2010, pp. 43–56.

[16] K. Taneja, T. Xie, N. Tillmann, and J. de Halleux, “express:
guided path exploration for efficient regression test genera-
tion,” in ISSTA. ACM, 2011, pp. 1–11.

[17] J. M. Voas, “Pie: A dynamic failure-based technique,” IEEE
Transactions on Software Engineering, vol. 18, pp. 717–727,
1992.

[18] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso,
and M. J. Harrold, “Test-suite augmentation for evolving
software,” in ASE, 2008, pp. 218–227.

[19] M. Harman, Y. Jia, and W. B. Langdon, “Strong higher order
mutation-based test data generation,” in ESEC/SIGSOFT FSE,
2011, pp. 212–222.

[20] S. Person, M. B. Dwyer, S. G. Elbaum, and C. S. Pasareanu,
“Differential symbolic execution,” in SIGSOFT FSE, 2008,
pp. 226–237.

[21] M. MirzaAghaei, “Automatic test suite evolution,” in SIG-
SOFT FSE, 2011, pp. 396–399.

[22] T. Gyimóthy, A. Beszédes, and I. Forgács, “An efficient
relevant slicing method for debugging,” in ESEC/SIGSOFT
FSE, 1999, pp. 303–321.

1526

