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ABSTRACT

The missing mass refers to the proportion of data points in an unknown popula-
tion of classifier inputs that belong to classes not present in the classifier’s training
data, which is assumed to be a random sample from that unknown population. We
find that in expectation the missing mass is entirely determined by the number
fk of classes that do appear in the training data the same number of times and
an exponentially decaying error. While this is the first precise characterization
of the expected missing mass in terms of the sample, the induced estimator suf-
fers from an impractically high variance. However, our theory suggests a large
search space of nearly unbiased estimators that can be searched effectively and
efficiently. Hence, we cast distribution-free estimation as an optimization prob-
lem to find a distribution-specific estimator with a minimized mean-squared error
(MSE), given only the sample. In our experiments, our search algorithm discovers
estimators that have a substantially smaller MSE than the state-of-the-art Good-
Turing estimator. This holds for over 93% of runs when there are at least as many
samples as classes. Our estimators’ MSE is roughly 80% of the Good-Turing
estimator’s.

1 INTRODUCTION

How can we extrapolate from properties of the training data to properties of the unseen, underlying
distribution of the data? This is a fundamental question in machine learning (Orlitsky et al., 2003;
Orlitsky & Suresh, 2015; Painsky, 2022; Acharya et al., 2013; Hao & Li, 2020). The probability that
a data point belongs to a class that does not exist in the training data is also known as the missing
probability mass since empirically the entire probability mass is distributed over classes that do exist
in the training data. For instance, the missing mass measures how representative the training data
is of the unknown distribution. If the missing mass is high, the training is not very representative,
and a trained classifier is unlikely to predict the correct class. If we manually label training data, the
missing mass also measures saturation. We may decide that the labeling effort has been sufficient
and saturation has been reached when the missing mass is below a certain threshold.

1.1 BACKGROUND

Consider a multinomial distribution p = ⟨p1, · · · pS⟩ over a support set X where support size S = |X |
and probability values are unknown. Let Xn = ⟨X1, · · ·Xn⟩ be a set of independent and identically
distributed random variables representing the sequence of elements observed in n samples from p.
Let Nx be the number of times element x ∈ X is observed in the sample Xn. For k : 0 ≤ k ≤ n,
let Φk be the number of elements appearing exactly k times in Xn, i.e., Nx =

∑n
i=1 1(Xi = x) and

Φk =
∑

x∈X 1(Nx = k). Let fk(n) be the expected value of Φk (Good, 1953), i.e.,

fk(n) =

(
n

k

) ∑
x∈X

pkx(1− px)
n−k = E [Φk] (1)

Estimating rare/unobserved px. We cannot expect all elements to exist in Xn. While the empirical
estimator p̂Emp

x = Nx/n is generally unbiased, p̂Emp
x distributes the entire probability mass only over
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the observed elements. This leaves a “missing probability mass” over the unobserved elements. In
particular, p̂Emp

x given that Nx > 0 overestimates px, i.e., for observed elements

E
[
Nx

n

∣∣∣∣ Nx > 0

]
=

px
1− (1− px)n

. (2)

We notice that the bias increases as px decreases. Bias is maximized for the rarest observed element.

Missing mass, realizability, and natural estimation. Good and Turing (GT) (Good, 1953) dis-
covered that the expected value of the probability Mk =

∑
x∈X px1(Nx = k) that the (n + 1)-th

observation Xn+1 is an element that has been observed exactly k times in Xn (incl. k = 0) is a func-
tion of the expected number of colors fk+1(n + 1) that will be observed k + 1 times in an enlarged
sample Xn ∪Xn+1, i.e, E [Mk] =

k+1
n+1fk+1(n + 1). We also call Mk as total probability mass over

the elements that have been observed exactly k times. Since our sample Xn is only of size n, GT
suggested to estimate Mk using Φk+1. Concretely, M̂G

k = k+1
n Φk+1.

For k = 0, M0 gives the “missing” (probability) mass over the elements not in the sample. In
genetics and biostatistics, the complement 1−M0 measures sample coverage, i.e., the proportion of
individuals in the population belonging to a species not observed in the sample (Chao & Jost, 2012).
In the context of supervised machine learning, assuming the training data is a random sample, the
sample coverage of the training data gives the proportion of all data (seen or unseen) with labels not
observed in the training data.

A natural estimator of px assigns the same probability to all elements x appearing the same number
of times in the sample Xn (Orlitsky & Suresh, 2015). For k > 0, p̂x = Mk/Φk gives the hypothetical
best natural estimator of px for every element x that has been observed k times.

Bias of GT. In terms of bias, Juang & Lo (1994) observe that the GT estimator M̂G
k = k+1

n Φk+1 is
an unbiased estimate of Mk(X

n−1), i.e., where the n-th sample was deleted from Xn and find:∣∣∣E [M̂G
k −Mk

]∣∣∣ = ∣∣∣E [Mk(X
n−1)−Mk(X

n)
]∣∣∣ ≤ k + 2

n+ 1
= O

(
1

n

)
. (3)

Convergence/competitiveness of GT. McAllester & Schapire (2000) analyzed the convergence,
which is then improved by Drukh & Mansour (2004) and more recently by Painsky (2022). They
showed that, with high probability, M̂G

k converges at a rate of O(1/
√
n) for all k based on worst-

case mean squared error analysis. Using the Poisson approximation, Orlitsky & Suresh (2015)
showed that natural estimators from GT, i.e., p̂Gx = M̂G

Nx
/ΦNx

, performs close to the best natural
estimator. Regret, the metric of the competitiveness of an estimator against the best natural estimator,
is measured as KL divergence between the estimate p̂ and the actual distribution p, DKL(p̂||p). Their
study also showed that finding the best natural estimator for p is same as finding the best estimator
for M = {Mk}nk=0.

Poisson approximation. The Poisson approximation with parameter λx = pxn has often been
used to tackle a major challenge in the formal analysis of the missing mass and natural estimators
(Orlitsky & Suresh, 2015; Orlitsky et al., 2016; Acharya et al., 2013; Efron & Thisted, 1976; Valiant
& Valiant, 2016; Good, 1953; Good & Toulmin, 1956; Hao & Li, 2020). The challenge is the
dependencies between frequencies Nx for different elements x ∈ X . In this Poisson Product model,
a continuous-time sampling scheme with S = |X | independent Poisson distributions is considered
where the frequency Nx of an element x is represented as a Poisson random variable with mean pxn.
In other words, the frequencies Nx are modelled as independent random variables. Consequently,
the GT estimator is unbiased in the Poisson Product model (Orlitsky et al., 2016); yet, it is biased
in the multinomial distribution (Juang & Lo, 1994). Hence, we tackle the dependencies between
frequencies analytically, without approximation via the Poisson Product model.

1.2 CONTRIBUTION OF THE PAPER

In this paper, we reinforce the foundations of multinomial distribution estimation with a precise
characterization of the dependencies between Nx =

∑n
i=1 1(Xi = x) across different x ∈ X (rather

than assuming independence using the Poisson approximation). The theoretical analysis is based on
the expected value of the frequency of frequencies E [Φk] = fk(n) between different k and n, which
is

fk(n)(n
k

) =
fk(n+ 1)(n+1

k

) −
fk+1(n+ 1)(n+1

k+1

) . (4)
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Exploring this new theoretical tool, we bring two contributions to the estimation of the total proba-
bility mass Mk for any k : 0 ≤ k ≤ n. Firstly, we show exactly to what extent E [Mk] can be estimated
from the sample Xn and how much remains to be estimated from the underlying distribution p and
the number of elements |X |. Specifically, we show the following.

Theorem 1.1.

E [Mk] =

(
n

k

)[
n−k∑
i=1

(−1)i−1fk+i(n)

/(
n

k + i

)]
+Rn,k (5)

where Rn,k =
(n
k

)
(−1)n−kfn+1(n+ 1) is the remainder.

This decomposition shows that the GT estimator is the first term of E [Mk] using the plug-in estimator
Φ1 for f1(n). Hence, it gives the exact bias of the GT estimator in the multinomial setting (which
would incorrectly be identified as unbiased using the Poisson approximation). We discuss bias and
variance for the estimator M̂B

k =
(n
k

) [∑n−k
i=1 (−1)i−1Φk+i

/( n
k+i

)]
that is induced by Theorem 1.1.

Secondly, using our new theory, we cast the distribution-free estimation of Mk as a search problem
whose goal it is to find a distribution-specific estimator with a minimized MSE. Using the rela-
tionship in Eqn. 4 in Theorem 1.1, we notice many representations of E [Mk], all of which suggest
different estimators for E [Mk]. We introduce a deterministic method to construct a unique estimator
from a representation, and show how to estimate the mean squared error (MSE) for such an estima-
tor. Equipped with a large search space of representations and a fitness function to estimate the MSE
of a candidate estimator, we can finally define our distribution-free estimation methodology.

We compare the performance of the minimal-bias estimator M̂B
k and the minimal-MSE estimators

discovered by our genetic algorithm to the that of the widely used GT estimator on a variety of multi-
nomial distributions used for evaluation in previous work. Our results show that 1) the minimal-bias
estimator has a substantially smaller bias than the GT estimator by thousands of order of magnitude,
2) Our genetic algorithm can produce estimators with MSE smaller than the GT estimator over 93%
of the time when there are at least as many samples as classes; their MSE is roughly 80% of the GT
estimator. We also publish all data and scripts to reproduce our results.

2 DEPENDENCIES BETWEEN FREQUENCIES Nx

We propose a new, distribution-free1 methodology for reasoning about properties of estimators of
the missing and total probability masses for multinomial distributions. The main challenge for the
statistical analysis of Mk has been reasoning in the presence of dependencies between frequencies
Nx for different elements x ∈ X . As discussed in Section 1.1, a Poisson approximation with param-
eter λx = pxn is often used to render these frequencies as independent (Orlitsky & Suresh, 2015;
Orlitsky et al., 2016; Acharya et al., 2013; Efron & Thisted, 1976; Valiant & Valiant, 2016; Good,
1953; Good & Toulmin, 1956; Hao & Li, 2020). In the following, we tackle this challenge by for-
malizing these dependencies between frequencies. Thus, we establish a link between the expected
values of the corresponding total probability masses.

2.1 DEPENDENCY AMONG FREQUENCIES

Recall that the expected value fk(n) of the number of elements Φk that appear exactly k times in the
sample Xn is defined as fk(n) =

∑
x∈X

(n
k

)
pkx(1−px)

n−k. For convencience, let gk(n) = fk(n)/
(n
k

)
.

We notice the following relationship among k and n:

gk(n+ 1) =

S∑
x=1

pkx(1− px)
n−k · (1− px) = gk(n)− gk+1(n+ 1) (6)

=

n−k∑
i=0

(−1)igk+i(n) + (−1)n−k+1gn+1(n+ 1) (7)

1A distribution-free analysis is free of assumptions about the shape of the probability distribution generating
the sample. In this case, we make no assumptions about parameters p or n.
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We can now write the expected value E [Mk] of the total probability mass in terms of the frequencies
with which different elements x ∈ X have been observed in the sample Xn of size n as follows

E [Mk] =
∑
x∈X

(
n

k

)
pk+1
x (1− px)

n−k =

(
n

k

)
gk+1(n+ 1) =

(
n

k

)[
n−k∑
i=1

(−1)i−1gk+i(n)

]
+Rn,k (8)

where Rn,k =
(n
k

)
(−1)n−kfn+1(n+ 1) is a remainder term. This demonstrates Theorem 1.1.
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Figure 1: gk(n) lower triangle matrix

Figure 1 illustrates the relationship between the expected
frequency of frequencies fk(n) = gk(n)/

(n
k

)
, the frequency

k, and the sample size n. The y- and x-axis represents the
sample size n and the frequency k, respectively. As per
Eqn. (6), for every 2×2 lower triangle matrix, the value of
the lower left cell (gk(n + 1)) is value of the upper left cell
(gk(n)) minus the value of the lower right cell (gk+1(n+1)).

We can use this visualization to quickly see how to rewrite
gk(n) as an alternating sum of values of the cells in the up-
per row, starting from the cell in the same column to the
rightmost cell, and adding/subtracting the value of the right-
most cell in the current row. For instance, the g0(13) in the
bottom-leftmost red cell in Figure 1 is equivalent to the var-
ious linear combinations of its surrounding cells: 1 with
g0(12) and g1(13) (blue colored), 2 with g0(11), g1(11),
· · · , g4(13) (purple colored), or 3 with g0(11), g1(11), · · · ,
g8(13) (green colored).

Missing Mass. The missing probability mass M0 gives the proportion of all possible observations
for which the elements x ∈ X have not been observed in Xn. The expected value of M0 is

E [M0] = g1(n+ 1) =

[
n∑

k=1

(−1)k−1gk(n)

]
+ (−1)nfn+1(n+ 1) (9)

by Eqn. (8). The values in the second column of Figure 1 (k = 1) represents the expected values of
missing mass; E [M0] being the cumulative sum of (−1)k−1gk(n) is intuitively clear from the figure
(the red cell in the row n = 7). It is here where we observe that E [M0] = g1(n + 1) is almost
entirely determined by the g∗(n), the expected frequencies of frequencies in the sample Xn, and
not by the number of elements |X | or their underlying distribution p. In fact, the influence of p in

the remainder term decays exponentially, i.e., fn+1(n + 1) =
∑

x∈X pn+1
x ≤

∑
x∈X

(
e1−px

)−n−1

which is dominated by the discovery probability of the most abundant element max(p).

Total Mass. Similarly, the expected value of the total probability mass E [Mk] (the red cell in the row
n = 10), which is equal to

(n
k

)
gk+1(n+1), is almost entirely determined by the expected frequencies

of the sample Xn with remainder Rn,k =
(n
k

)∑
x∈X pn+1

x .

3 A LARGE CLASS OF ESTIMATORS

From the representation of E [Mk] in terms of frequencies in Eqn. (8) and the relationship across
frequencies in Eqn. (6), we can see that there is a large number of representations of the expected
total probability mass E [Mk]. Each representation might suggest different estimators.

3.1 ESTIMATOR WITH EXPONENTIALLY DECAYING BIAS

We start by defining the minimal bias estimator M̂B
k from the representation in Eqn. (8) and explore

its properties. Let

M̂B
k = −

(
n

k

)
n−k∑
i=1

(−1)iΦk+i( n
k+i

) (10)
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Table 1: E [Mk] preserving identites and example representations.

E [Mk] preserving identites Initial representation r0 Example representation r1

gi(j) =(1) ((1 − δ)gi(j) + δgi(j))

=(2) (gi(j + 1) + gi+1(j + 1))

=(3) (gi(j − 1) − gi+1(j))

=(4) (gi−1(j − 1) + gi−1(j))

αi,j =

{(
n
k

)
for i = k + 1 and j = n + 1

0 otherwise.
αi,j =



(
n
k

)/
2 for i = k + 1 and j = n + 1(

n
k

)/
2 for i = k + 1 and j = n

−
(
n
k

)/
2 for i = k + 2 and j = n + 1

0 otherwise.

Bias. For some constant k : 0 ≤ k ≤ n and some constant c > 1, the bias of M̂B
k is in the order

of O(nkc−n), i.e., |BiasB | =
∣∣∣E [M̂B

k −Mk

]∣∣∣ = Rn,k =
(n
k

)∑
x∈X pn+1

x ≤
(n
k

)∑
x∈X c−n

x ≤

nk∑
x∈X c−n

x , where cx > 1 for all x ∈ X are constants.

Variance. The variance of M̂B
k is given by the variances and covariances of the Φk+i for i ∈

[1..n− k]. Under the certain conditions, the variance of M̂B
k also decays exponentially in n.

Theorem 3.1. Var
(
M̂B

k

)
decreases exponentially with n if pmax < 0.5 or (1−pmax)(1−pmin)

pmax
< 1,

where pmax = maxx∈X px and pmin = minx∈X px. The proof is postponed to Appendix B.

Comparison to Good-Turing (GT). The bias of M̂B
k not only decays exponentially in n but is

also smaller than that of GT estimator M̂G
k by an exponential factor. For a simpler variant of GT

estimator, M̂G′

k = k+1
n−kΦk+1 (suggested in McAllester & Schapire (2000)), which corresponds to the

first term in the expected total probability mass E [Mk] in Eqn. (8), we show that its bias is larger by
an exponential factor than the absolute bias of M̂B

k . To see this, we provide bounds on the individual
sums and then on the bias ratio:

E
[
M̂G′

k −Mk

]
≥

(
n

k

)
pk+2
min (1− pmin)

n−k−1 (11)

∣∣∣E [M̂B
k −Mk

]∣∣∣ ≤ (n
k

)
Spn+1

max , (12)

∴

∣∣∣∣BiasG′

BiasB

∣∣∣∣ ≥ pk+2
min

Spk+2
max

(
1− pmin

pmax

)n−k−1,

where S = |X |. Noticing that (1− pmin)/pmax > 1 for all distributions over X , except where S = 2
and p = {0.5, 0.5}, the ratio decays exponentially in n for k ≪ n. The same can be shown for the
original GT estimator M̂G

k = k+1
n Φk+1 for a sufficiently large sample size (see Appendix A). For

instance, the missing mass M0 for the uniform distribution is overestimated by M̂G
0 on the average

by (S − 1)n−1/Sn while M̂B
0 has a bias of (−1)n/Sn, which is lower by a factor of 1/(S − 1)n−1.

While the bias of our estimator M̂B
k is lower than that of M̂G

0 by an exponential factor, the variance
is higher. The variance of M̂B

k depends on the variances of and covariances between Φk+is:

Var
(
M̂B

k

)
=

n−k∑
i=1

c2iVar (Φk+i) +
∑
i ̸=j

(−1)i+jcicjCov
(
Φk+i,Φk+j

)
, (13)

where ci =
(n
k

)/ ( n
k+i

)
. In contrast, the variance of M̂G

k depends only on the variance of Φk+1.
Later, we empirically investigate the bias and the variance of the two estimators.

3.2 ESTIMATION WITH MINIMAL MSE AS SEARCH PROBLEM

There are many representations of E [Mk] =
(n
k

)
gk+1(n + 1) that can be constructed by recursively

rewriting terms according to the dependency among frequencies we identified (cf. Eqn. (6 & 8)).
The representation used to construct our minimal-bias estimator M̂B

k was one of them. However, we
notice that the variance of M̂B

k is too high to be practical.

To find a representation from which an estimator with a minimal mean squared error (MSE) can be
derived, we cast the estimation of Mk as an optimization problem. We first define the search space
of representations of E [Mk] and the fitness function to estimate the MSE of a candidate estimator.

Search space. Let E [Mk] be represented by a suitable choice of coefficients {αi,j} such that
E [Mk] =

∑n+1
i=1

∑n+1
j=i αi,jgi(j); the search space of our optimization problem is the set of all

possible representations of E [Mk]. One representation of E [Mk] =
(n
k

)
gk+1(n+ 1) is r0 in Table 1.
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Different encodings can be used to express the search space. In a Markov chain encoding, we
realize that the four identities (1-4) in the first column of Table 1 can be recursively applied to the
initial representation r0 in the second column of Table 1 to explore the search space. For instance,
applying identity (1) with δ = 0.5 and identity (3) to r0, we obtain the representation r1 in Table 1.
In a continuous optimization problem encoding, we realize that the coefficients αi,j must satisfy the
following constraints: for ∀1 ≤ k′ ≤ n+ 1,

n+1∑
i=1

n+1∑
j=i

ci,jαi,j =

{(n
k

)
if k′ = k + 1,

0 otherwise,
where ci,j =

{(n+1−j
k′−i

)
if 0 ≤ k′ − i ≤ n+ 1− j,

0 otherwise,
(14)

and any choice of αi,j that satisfy Eqn. (14) is in the search space. Appendix C provides proof of
how each encoding expresses the search space.

Estimator instantiation. To construct a unique estimator M̂r
k of Mk from a representation r of

E [Mk], we propose a deterministic method. But first, we define our random variables on subsamples
of Xn. For any m ≤ n, let Nx(m) be the number of times element x ∈ X is observed in the subsample
Xm = ⟨X1, · · ·Xm⟩ of Xn. Let Φk(m) be the number of elements appearing exactly k times in Xm,
i.e., Nx(m) =

∑m
i=1 1(Xi = x), Φk(m) =

∑
x∈X 1(Nx(m) = k). Note that Nx = Nx(n) and

Φk = Φk(n). Hence, given a representation r, we can construct M̂r
k as

M̂r
k =

 n∑
i=1

n∑
j=i

αi,j(j
i

) Φi(j)

+

[
n∑

i=1

αi,n+1(n+1
i

) Φi

]
(15)

Notice that Φi(j)
/(j

i

)
is just the plug-in estimator for gi(j).

Fitness function. To define the quantity to optimize, any optimization problem requires a fitness
(objective) function. Our fitness function takes a candidate representation r and returns an estimate
of the MSE of the corresponding estimator M̂r

k . We decompose the MSE as the sum of the squared
bias, variances of, and the covariance between Mk and M̂r

k . For convenience, let fn+1(n) = 0.

MSE(M̂r
k ) =

 ∑
1≤i≤j≤n

β2
i,jfi(j)−

(
n

k

)
gk+1(n+ 1)

2

+
∑

1≤i≤j≤n
1≤l≤m≤n

βi,jβl,mCov (Φi(j),Φl(m))

+ Var (Mk)− 2
∑

1≤i≤j≤n

βi,jCov (Φi(j),Mk) ,

(16)

where βi,j is the coefficient of Φi(j) in M̂r
k . We expand on the MSE computation in Appendix D.

The resulting estimator M̂r
k minimizing the fitness function provides a estimator with a minimal

MSE regarding the arbitrary sample of size n from the underlying distribution.

Since the underlying distribution {px}x∈X is unknown, we can only estimate the MSE. For any
element x that has been observed exactly k > 0 time in the sample Xn, we use p̂x = M̂G

k /Φk as
natural estimator of px, where M̂G

k is the GT estimator. To handle unobserved elements (k = 0),
we first estimate the number of unseen elements E [Φ0] = f0(n) using Chao’s nonparamteric species
richness estimator f̂0 = n−1

n
Φ2

1
2Φ2

(Chao, 1984), and then estimate the probability of each such unseen
element as p̂y = M̂G

0 /f̂0, where M̂G
0 is the GT estimator. Finally, we plug these estimates into

Eqn. (16) to estimate the MSE. It is interesting to note that it is precisely the GT estimator whose
MSE our approach is supposed to improve upon.

Optimization algorithm. With the required concepts in place, different optimization algorithms
can be used to find the representation of E [Mk] that minimizes the MSE of the estimator. The per-
formance guarantee for the discovered estimator inherently depends on the optimization algorithm.

We develop a genetic algorithm (GA) (Mitchell, 1998) for the optimization problem encoded with
the Markov chain encoding. Appendix E provides the GA in detail. Here, we briefly sketch the
general procedure. Starting from the initial representation r0 in Table 1, our GA iteratively im-
proves a population of candidate representations Pg , called individuals. For every generation g, our
GA selects the m fittest individuals from the previous generation Pg−1, mutates them by randomly
applying the E [Mk] preserving identites (1-4) in Table 1, and creates the current generation Pg by

6



adding the Top-n individuals from the previous generation, i.e., the elitism strategy that guarantees
that the best individuals are not lost. The GA repeats this process for the iteration limit GL and
outputs the best evolved estimator M̂Evo

k . Later, we empirically evaluate the performance of the
discovered estimator M̂Evo

k against the GT estimator M̂G
k .

Another approach one could use is a quadratic programming (Nocedal & Wright, 2006) on the con-
tinuous optimization problem encoding. The fitness function, Eqn (16), is quadratic in the coeffi-
cients βi,j , and the constraints, Eqn (14), are linear. Also, the search space is convex as the quadratic
term in the fitness function (i.e., the sum of the variance and the square of the expected value of the
estimator) is non-negative. By Ye & Tse (1989), quadratic programming finds the optimal solution
in a number of iterations that is polynomial in the sample size n. However, we notice that the fit-
ness evaluation is prohibitively high, in the order of O(n4) due to the number of covariance terms
in Eqn (16), which makes using quadratic programming less practical for large n. Unlike quadratic
programming, we found our GA is more practical for large n as only the variance and covariance
terms that are needed to compute the fitness function are computed.

Adapting to a larger sample. The estimator M̂Evo
k discovered by the optimization for samples

of size n can be converted to an estimator for a sample of arbitrary size m ≥ n. Notice that the
representation of E [Mk] of the sample of size n can be converted to a representation of E

[
M ′

k

]
of a

larger sample of size m by multiplying the coefficients αi,j by
(m
k

)
/
(n
k

)
. Especially for the missing

mass (k = 0), the representation is valid for any sample size m ≥ n without modification. This
property can be used to easily derive the missing mass estimator for a larger sample size m > n.
Given the coefficients αi,j discovered by the optimization for the missing mass of a sample Xn ∼ p,
the estimator of the missing mass for any sample Xm ∼ p is given as n∑

i=1

m∑
j=i+m−n

αi,j+n−m(j
i

) Φi(j)

+

[
n∑

i=1

αi,n+1(n+1
i

) Φi

]
. (17)

It is worth noting that the adapted estimator from the minimal-MSE estimator for a sample of size n
to a sample of size m is not necessarily the minimal-MSE estimator for the sample of size m. Yet,
it lessens the computational burden of finding the minimal-MSE estimator for a larger sample size
and may have a lower MSE (than the GT estimator) if the (relative variance of the) frequencies Φ
are similar in the extended sample. We empirically investigate this property in our experiments.

Distribution-free. While our approach itself is distribution-free, the output is distribution-specific,
i.e., the discovered estimator has a minimal MSE on the specific, unknown distribution.

4 EXPERIMENT

We design experiments to evaluate the performance (i) of our minimal-bias estimator M̂B
k and (ii) of

our the minimal-MSE estimator M̂Evo
k that is discovered by our genetic algorithm against the perfor-

mance of the widely-used Good-Turing estimator M̂G
k (Good, 1953).

Distibutions. We use the same six multinomial distributions that are used in previous evalua-
tions (Orlitsky & Suresh, 2015; Orlitsky et al., 2016; Hao & Li, 2020): a uniform distribution
(uniform), a half-and-half distribution where half of the elements have three times of the proba-
bility of the other half (half&half), two Zipf distributions with parameters s = 1 and s = 0.5 (zipf-1,
zipf-0.5), and distributions generated by Dirichlet-1 prior and Dirichlet-0.5 prior (diri-1, diri-0.5, re-
spectively).

Open Science and Replication. For scrutiny and replicability, we publish all our evaluation scripts
at: https://anonymous.4open.science/r/Better-Turing-157F.

4.1 EVALUATING OUR MINIMAL-BIAS ESTIMATOR

• RQ1. How does our estimator for the missing mass M̂B
0 compare to the Good-Turing estimator

M̂G
0 in terms of bias as a function of sample size n?

• RQ2. How does our estimator for the total mass M̂B
k compare to the Good-Turing estimator M̂G

k
in terms of bias as a function of frequency k?

• RQ3. How do the estimators compare in terms of variance and mean-squared error?
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Figure 2: Absolute bias of M̂B
0 and M̂G

0 (a) as a
function of n for k = 0 and (b) as a function of k
for n = 2000 (S = 1000, log-scale).

n M̂0 Bias Var MSE

100 GT 3.6973e-003 2.3372e-03 2.3508e-03
ours 1.0000e-200 2.3515e-03 2.3515e-03

500 GT 6.6369e-005 1.1430e-05 1.1434e-05
ours < 1.00e-200 1.1445e-05 1.1445e-05

1000 GT 4.3607e-007 4.3439e-08 4.3439e-08
ours < 1.00e-200 4.3441e-08 4.3441e-08

Table 2: Bias, variance, and MSE of M̂B
0 and

M̂G
0 for three values of n. (uniform, S = 100).

More results are in Appendix F.

We focus specifically on the bias of M̂B
k , i.e., the average difference between the estimate and the

expected value E [Mk]. We expect that the bias of the missing mass estimate M̂B
0 as a function of

n across different distributions provides empirical insight for our claim that how much is unseen
chiefly depends on information about the seen.

RQ.1. Figure 2(a) illustrates how fast our estimator M̂B
k and the baseline estimator M̂G

k (GT) ap-
proach the expected missing mass E [M0] as a function of sample size n. As it might difficult for the
reader to discern differences across distributions for the baseline estimator, we refer to Appendix F,
where we zoom into a relevant region. The magnitude of our estimator’s bias is significantly smaller
than the magnitude of GT’s bias for all distributions (by thousands of orders of magnitude). Fig-
ure 2(a) also nicely illustrates the exponential decay of our estimator in terms of n and how our
estimator is less biased than GT by an exponential factor.

In terms of distributions, a closer look at the performance differences confirms our suspicion
that the bias of our estimator is strongly influenced by the probability pmax of the most abun-
dant element. In fact, by Eqn. (12) the absolute bias of our estimator is minimized when pmax

is minimized. If we ranked the distributions by values of pmax with the smallest value first
⟨uniform, half&half, zipf-0.5, zipf-1⟩,2 we would arrive at the same ordering in terms of performance
of our estimator as shown in Figure 2(a). Similar observations can be made for GT, but the ordering
is different (check Appendix F).

RQ2. Figure 2(c) illustrates for both estimators of the total mass Mk how the bias behaves as k
varies between 0 and n = 2000 when S = 1000. The trend is clear; the bias of our estimator is
strictly smaller than the bias of GT for all k and all the distributions. The difference is the most
significant for rare elements (small k) and gets smaller as k increases. The bias of our estimator is
maximized when k = 1000 = 0.5n, the bias for GT when k = 0.

RQ3. Table 2 shows variance and MSE of both estimators for the missing mass M0 for the uniform
and three values of n. As we can see, the MSE of our estimator is approximately the same as that of
GT. The reason is that the MSE is dominated by the variance. We make the same observation for all
other distributions (see Appendix F). The MSEs of both estimators are comparable.

4.2 EVALUATING OUR ESTIMATOR DISCOVERY ALGORITHM

• RQ1 (Effectiveness). How does our estimator for the missing mass M̂Evo
0 compare to the Good-

Turing estimator M̂G
0 in terms of MSE?3

• RQ2 (Efficiency). How long does it take for our GA to generate an estimator MEvo
k ?

• RQ3 (Larger Sample). How does M̂Evo
k generated from a sample of size n perform on a sample of

size m > n?
• RQ4 (Distribution-awareness). How well does an estimator discovered from a sample from one

distribution perform on another distribution in terms of MSE?
• RQ5 (Empirical Application) How does our estimator perform in a real-world application?

2diri-1 and diri-0.5 are not considered because multiple distributions are sampled from the Dirichlet prior.
3We also considered more recent related work that can be considered to estimate the missing mass (Painsky,

2023; Valiant & Valiant, 2017; Wu & Yang, 2019); the results are in Appendix G.
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Table 3: The MSE of the best evolved estimator MEvo
0 and GT estimator M̂G

0 for the missing mass
M0, the success rate Â12, and the ratio (Ratio, MSE(M̂Evo

0 )/MSE(MG
0 )) for three sample sizes n

and six distributions with support size S = 100.

Dist. n = S/2 n = S n = 2S

MSE(M̂G
0 ) MSE(MEvo

0 ) Â12 Ratio MSE(M̂G
0 ) MSE(MEvo

0 ) Â12 Ratio MSE(M̂G
0 ) MSE(MEvo

0 ) Â12 Ratio

uniform 1.09e-02 7.94e-03 0.88 72% 6.05e-03 4.29e-03 0.97 70% 1.93e-03 1.73e-03 0.96 89%
half&half 1.14e-02 7.16e-03 0.90 63% 5.46e-03 4.07e-03 0.98 74% 1.57e-03 1.42e-03 0.93 90%
zipf-1 8.09e-03 7.37e-03 0.87 91% 3.42e-03 3.04e-03 0.89 88% 1.26e-03 1.08e-03 0.94 85%
zipf-0.5 1.08e-02 8.13e-03 0.91 75% 5.23e-03 4.16e-03 0.96 79% 1.73e-03 1.54e-03 0.97 88%
diri-1 1.10e-02 7.97e-03 0.92 72% 4.36e-03 3.47e-03 0.92 79% 1.23e-03 1.05e-03 0.91 85%
diri-0.5 9.90e-03 8.02e-03 0.87 81% 3.47e-03 2.86e-03 0.88 82% 9.41e-04 8.08e-04 0.86 85%

Avg. 0.89 76% 0.93 79% 0.93 87%

Dist. c = 2 c = 5 c = 10
Ratio p < .05 Ratio p < .05 Ratio p < .05

uniform 1.00 False 1.00 False 0.99 True
half&half 0.95 True 0.96 True 0.98 True
zipf-0.5 0.97 True 0.98 True 0.99 True
zipf-1 0.93 True 0.95 True 0.97 True
diri-1 0.91 True 0.93 True 0.95 True
diri-0.5 0.93 True 0.95 True 0.96 True

Table 4: The MSE comparison for the missing mass
M0 (S = 100, n = 100) for extended samples
Xcn (c ∈ {2, 5, 10}) between the GT estimator M̂G

0

and the adapted estimator from the evolved estima-
tor M̂Evo

0 for Xn. ‘Ratio’ is the ratio of the MSE
(MSE(M̂Evo

0 )/MSE(MG
0 )) and ‘p < .05’ is the re-

sult of the (one-sided) Wilcoxon signed-rank test.

uniform half&half zipf-0.5 zipf-1
Target distribution

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

1e 2
Evolved from

uniform
half&half
zipf-0.5
zipf-1

Figure 3: The MSE of an estimator discov-
ered using a sample (S, n = 100, 200) from
one distribution (individual boxes) applied
to another target distribution (box clusters).

To handle the randomness in our evaluation, we repeat each experiment we repeat the experiments
100 times, i.e., we take 100 different samples Xn of size n. More details about our experimental
setup can be found in Appendix E.

RQ.1 (Effectiveness). Table 3 shows average MSE of the estimator MEvo
0 discovered by our genetic

algorithm and that of the GT estimator M̂G
0 for the missing mass M0 across three sample sizes. We

measure effect size using Vargha-Delaney Â12 (Vargha & Delaney, 2000) (success rate), i.e., the
probability that the MSE of the estimator discovered by our genetic algorithm has a smaller MSE
than the GT estimator (larger is better). Moreover, we measure the MSE of our estimator as a
proprtion of the MSE of GT, called ratio (smaller is better). Results for other S is in Appendix F.

Overall, the estimator discovered by our GA performs significantly better than GT estimator in terms
of MSE (avg. Â12 > 0.89; ratio < 87%). The performance difference increases with sample size n.
When the sample size is twice the support size (n = 2S), in 93% of runs our discovered estimator
performs better. The average MSE of our estimator is somewhere between 76% and 87% of the MSE
of GT. The high success rate and the low ratio of the MSE shows that the GA is effective in finding
the estimator with the minimal MSE for the missing mass M0. A Wilcoxon signed-rank test shows
that all performance differences are statistically significant at α < 10−9. In terms of distributions,
the performance of our estimator is similar across all distributions, showing the generality of our
algorithm. The worst performance is for the zipf-1 distribution, though it is still 85-91% of the
GT estimator’s MSE. The potential reason for this is due to the overfitting to the approximated
distribution p̂x. Since the zipf-1 is the most skewed distribution, there are more elements unseen in
the sample than in other distributions, which makes the approximated distribution p̂x less accurate.

RQ.2 (Efficiency). The time GA takes is reasonable; to compute an estimator in Table 3, it takes
57.2s on average (median: 45.3s). The average time per iteration is 0.19s (median: 0.16s).

RQ.3 (Larger Sample). Table 4 shows how the estimator M̂Evo
0 that is discovered for a given sample

Xn of size n performs on an extended larger sample Xcn (c ∈ {2, 5, 10}) by adapting the coefficients
αi,j for the larger sample as described in Eqn. (17). To evaluate the performance, we sample Xcn−n

additional samples from the same distribution and compute the missing mass M0 for the extended
sample Xcn using the adapted estimator as well as the GT estimator M̂G

0 ; the entire process is
repeated 10K times to calculate the MSE. The results show that the adapted estimator performs
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better than the GT estimator for most distributions and sample sizes. The ratio of the MSE is
between 0.91 and 1.00, indicating that the adapted estimator performs better than the GT estimator
but not as much as the evolved estimator for the original sample Xn, as they are not genuinely
designed for the larger sample. The performance of the adapted estimator degraded for the uniform
distribution. The possible reason is that because uniform has, technically, no rare classes, it is easier
to find the unseen/rarely seen classes in the extended sample, making the relative variance between
frequencies of frequencies (Φ) differ a lot from the original sample. For instance, when n = 100,
the variance of the number of singletons Var (Φ1(100)) (≈ 23.37) is much larger than the variance of
the number of doubletons Var (Φ2(100)) (≈ 11.63) for the uniform distribution. However, the order
already reverses when n = 200 (Var (Φ1(200)) ≈ 16.04 < Var (Φ2(200)) ≈ 19.84), which becomes
more significant when n = 1000 (Var (Φ1(1000)) ≈ 0.043 ≪ Var (Φ2(2000)) ≈ 0.216).

RQ.4 (Distribution-awareness). Figure 3 shows the performance of an estimator discovered from
a sample from one distribution (source) when applied to another distribution (target). Applying an
estimate from the zipf-1 on the zipf-1 gives the optimal MSE (right-most red box). However, applying
an estimator from the zipf-1 on the uniform (left red box) yields a huge increase in variance. In terms
of effect size, we measure a Vargha Delaney Â12 > 0.95 between the “home” and “away” estimator.
While the uniform also shows that the home estimator performs best on the home distribution (Â12 =
0.61 (small)), the difference between the estimators from uniform, half&half, and zipf-0.5 is less
significant. Perhaps unsurprisingly, an estimator performs optimal when the source of the samples
is similar to the target distribution.

RQ.5 (Empirical Application). We briefly demonstrate the performance of our estimator in two
real-world applications. We first use the Australian population-data-by-region dataset ((Arvidsson,
2023), S = 104) to estimate M0 for n = 50 random data points. The ground truth M0 is 0.476. The
GT estimator M̂G

0 estimates M0 as [0.322, 0.638] with a 95% confidence interval (CI) demonstrating
a huge variance. In contrast, our estimator M̂Evo

0 estimates M0 as [0.409, 0.565] (95%-CI) demon-
strating only 25% of the MSE of GT. We also apply our method to the Shakespeare dataset (Sha)
(S = 935, |Datatset| = 111, 396), commonly used in the literature (Efron & Thisted, 1976), fo-
cusing on missing mass for player frequency. For n = ⟨100, 200, 500⟩, the MSE of our estimator is
⟨3.0×10−3, 2.1×10−3, 8.8×10−4⟩ compared to the GT estimator with ⟨4.2×10−3, 2.6×10−3, 9.0×10−4⟩,
respectively, showing that our method consistently outperforms the Good-Turing estimator across
all sample sizes. The result shows that our approach lead to a substantial and significant decrease of
the MSE in the real-world application.

Summary. To summarize, our GA is effective in finding the estimator with the minimal MSE for
the missing mass M0 with the smaller MSE than GT estimator M̂G

0 for all distributions and sample
sizes. The effect is substantial and significant and the average decrease of the MSE is roughly one
fifth against GT estimator M̂G

0 . We report results of additional experimental results in Appendix F
& G.

5 DISCUSSION

Beyond the General Estimator. In this study, we propose a “meta” estimation methodology that can
be applied to a set of samples from a specific unknown distribution. The conventional approach is to
develop an estimator for an arbitrary distribution. Yet, each distribution has its own characteristics,
and, because of that, the “shape” of the (frequencies of) frequencies of the classes in the sample
differs across distributions (e.g., between the uniform and the Zipf distribution). In contrast to the
conventional approach, we propose a distribution-free methodology to discover the a distribution-
specific estimator with low MSE (given only the sample). Note that, while we use the genetic
algorithm to discover the estimator, any optimization method can be used to discover the estimator,
for instance, a constrained optimization solver.

Extrapolation. Estimating the probability to discover a new species if the sample was enlarged by
one is a well-known problem in many scientific fields, such as ecology, linguistics, and machine
learning, and software testing (Lee et al., 2025; Liyanage et al.; Lee & Böhme, 2023; Böhme, 2022;
2018; Böhme et al., 2021). Given a sample of size n, what is the expected number E [U(t)] of new
species discovered if t times more samples were taken (E [U(t)] = f0(n) − f0(n + nt))? Good &
Toulmin (1956) proposed a seminal estimator based on Φk. Using the Poisson approximation, this
estimator has been improved in several ways (Hao & Li, 2020). We believe that our analysis can be
extended to the Good-Toulmin estimator seeking more accurate estimators for U(t).
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Marcel Böhme. Statistical reasoning about programs. In Proceedings of the ACM/IEEE 44th Inter-
national Conference on Software Engineering: New Ideas and Emerging Results, ICSE-NIER
’22, pp. 76–80, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450392242. doi: 10.1145/3510455.3512796. URL https://doi.org/10.1145/
3510455.3512796.
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A COMPARING THE BIAS OF THE ESTIMATORS

In Section 3.1, we have shown that the bias of a simpler variant of GT, M̂G′

k = k+1
n−kΦk+1, is larger

by an exponential factor than the absolute bias of our minimal bias estimator M̂B
k . In this section,

we show that the bias of the original GT estimator M̂G
k = k+1

n Φk+1 is also larger by an exponential
factor than the absolute bias of M̂B

k for a sufficiently larger sample size. Recall that

BiasG′ = E
[
M̂G

k −Mk

]
=

k + 1

n− k
fk+1(n)−

(
n

k

)
gk+1(n+1) =

∑
x

(
n

k

)
pk+2
x (1−px)

n−k−1, (18)

and

BiasG = E
[
M̂G

k −Mk

]
=

(
n

k

)
gk+2(n+ 1)− k(k + 1)

n(n− k)
fk+1(n) (19)

=

(
n

k

)
gk+2(n+ 1)−

(
n− 1

k − 1

)
gk+1(n) (20)

=
∑
x

pk+2
x (1− px)

n−k−1

((
n

k

)
− 1

px
·

(
n− 1

k − 1

))
(21)

=
∑
x

(
n

k

)
pk+2
x (1− px)

n−k−1
(
1− k

n · px

)
(22)

≥
(
1− k

n · pmax

)
BiasG′ , (23)

where 1− k
n·pmin

> 0 when n is sufficiently large. Above inequality leads to the following:

BiasG
BiasG′

≥
(
1− k

n · pmax

)
, while BiasB

BiasG′
≤ Spk+2

max

pk+2
min

(
1− pmin

pmax

)−n+k+1

, (24)

which proves our claim.

B BOUNDING THE VARIANCE OF M̂B
k

The variance of the linear combination of random variables is given by

Var

(∑
i

ciXi

)
=
∑
i

c2iVar (Xi) +
∑
i ̸=j

cicjCov
(
Xi, Xj

)
. (25)

Therefore, the variance and the covariance of Φi(n)s are the missing pieces to compute the variance
of M̂B

k .

Theorem B.1. Given the multinomial distribution p = (p1, . . . , pS) with support size S, the variance
of Φi = Φi(n) from n samples Xn is given by

Var (Φi(n)) =

{
fi(n)− fi(n)

2 +
∑

x̸=y
n!

i!2(n−2i)!
pixp

i
y(1− px − py)

n−2i if 2i ≤ n,
fi(n)− fi(n)

2 otherwise.
(26)
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Proof.

Var (Φi) = E
[
Φ2
i

]
− E [Φi]

2 (27)

E
[
Φ2
i

]
= E

(∑
x

1(Nx = i)

)2
 (28)

= E

∑
x

1(Nx = i) +
∑
x ̸=y

1(Nx = i ∧Ny = i)

 (29)

=

{
fi(n) +

∑
x ̸=y

n!
i!2(n−2i)!

pixp
i
y(1− px − py)

n−2i if 2i ≤ n,
fi(n) otherwise.

(30)

∴ Var (Φi) =

{
fi(n) +

∑
x̸=y

n!
i!2(n−2i)!

pixp
i
y(1− px − py)

n−2i − fi(n)
2 if 2i ≤ n,

fi(n)− fi(n)
2 otherwise.

(31)

Now we compute the upper bound of the variance of M̂B
k .

Lemma B.2.

Var (Φi)

{
≤ Sfi(n)− fi(n)

2 if 2i ≤ n.
= fi(n)− fi(n)

2 otherwise.
(32)

Proof. From Theorem B.1,

E
[
Φ2
i

]
= fi(n) + E

∑
x ̸=y

1(Nx = i ∧Ny = i)

 (33)

≤ fi(n) + (S − 1)E

[∑
x

1(Nx = i)

]
(34)

= Sfi(n) (if 2i ≤ n). (35)
(36)

The lemma directly follows from the above inequality.

Lemma B.3.
gi(n) ≤ S · β−n

mino
i
max,

where S = |X |, pmax = maxx∈X px, βmin = 1
1−pmin

, and omax = pmax
1−pmax

.

Proof. 1
1−x and x

1−x are increasing functions for x ∈ (0, 1). Therefore,

gi(n) =
∑
x∈X

pix(1− px)
n−i =

∑
x∈X

(
1

1− px

)−n(
px

1− px

)i

≤ |X | · β−n
mino

i
max.

Theorem B.4. The variance of the estimator M̂B
k is bounded as follows:

Var(M̂B
k ) ≤ c1 · n2k+1 · c−n

2 ,

where c1 = S ·
(
e
k

)2k, c2 = min
(

1
1−pmin

, 1−pmax

pmax(1−pmin)

)
. In other words, Var(M̂B

k ) = O(n2k+1 ·
β−n
min ·max(1, onmax)).
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Proof. From Lemma B.2 in the supplementary, we have Var(Φi) ≤ Sfi(n)− fi(n)
2. Thus,

Var

(
Φk+i( n
k+i

)) ≤
Sfk+i(n)− fk+i(n)

2( n
k+i

)2 ≤ S ·
gk+i(n)( n

k+i

) ≤
S2 · β−n

mino
k+i
max( n

k+1

) (by Lemma B.3)

(37)(
n

k

)2

Var

(
Φk+i( n
k+i

)) ≤ Sβ−n
min

(n
k

)2( n
k+1

)ok+i
max ≤ Sβ−n

min

(
e2n2

k2

)k
(

n
k+i

)k ok+i
max ≤ Sβ−n

min

(
e2n(k + i)

k2

)k

ok+i
max

(38)

≤ Sβ−n
min

(
e2n2

k2

)k

OM = Sβ−n
min

(en
k

)2k
OM , where OM = max(okmax, o

n
max),

(39)

Var(M̂B
k ) =

(
n

k

)2

Var

(
n−k∑
i=1

(−1)i−1 Φk+1( n
k+1

)) (40)

≤ (n− k)

(
n

k

)2

Var

(
Φk+1( n
k+1

)) (41)

≤ S(n− k)
(en

k

)2k
· β−n

minOM = O(n2k+1) · β−n
minOM , (42)

where equation 41 follows from Cauchy-Schwarz inequality (Var(
∑M

j=1 Xi) ≤ M ·
∑M

j=1 Var(Xi)).
The proof follows from dividing the variance of the estimator into two cases: omax < 1 and omax > 1:
If omax < 1, OM = okmax, and Var(M̂B

k ) = O(n2k+1β−n
min). If omax > 1, OM = onmax, and,

Var(M̂B
k ) = O(n2k+1β−n

mino
n
max).

Therefore, the variance exponentially decreases with n if pmax < 0.5 or 1−pmax

pmax(1−pmin)
< 1.

Corollary B.5. There exists a constant c > 1 such that

MSE(M̂B
k ) ≤ O(n2k+1c−n).

Proof. From Equ. (12) in the manuscript, the bias |E(M̂B
k )−Mk| ≤ S · pmax · nk · pnmax. The proof

follows from the fact that MSE = Var + Bias2 and the bound of the variance and the bias.

C CONSTRAINTS FOR THE COEFFICIENTS OF THE E [Mk] REPRESENTATIONS
IN THE SEARCH SPACE

In this section, we proof that any coefficients αi,j such that
∑n+1

i=1

∑n+1
j=i αi,jgi(j) = E [Mk] =

k+1
n+1fk+1(n+ 1) =

(n
k

)
gk+1(n+ 1) should satisfy the following constraints:

n+1∑
i=1

n+1∑
j=i

ci,jαi,j =

{(n
k

)
if k′ = k + 1,

0 otherwise,
where ci,j =

{(n+1−j
k′−i

)
if 0 ≤ k′ − i ≤ n+ 1− j,

0 otherwise,
(43)

and vice versa.

Proof. Assume the coefficients {αi,j}1≤i≤j≤n+1 of the representation r satisfy∑n+1
i=1

∑n+1
j=i αi,jgi(j) = E [Mk]. The proof starts by recursively applying the identity

gi(j) = gi(j + 1) + gi+1(j + 1) to the linear combination of the coefficients from j = 1 to
n transmiting the coefficients to the downward (to the direction of increasing n) until all the
coefficients of gi(j) where j ≤ n become zero. The resulting coefficients r′ = {α′

i,j}1≤i≤j≤n+1 is
the following linear combination of the coefficients of r:

α′
i,j = 0 if j ≤ n, otherwise, α′

i,n+1 =

n+1∑
i′=1

n+1∑
j′=i′

ci,jαi′,j′ , (44)
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where ci,j is defined as in Equ. (43). This is because αi′,j′ , the coefficient of gi′(j′) in r is transmitted
to α′

i′,n+1, the coefficient of gi′(n+1) in r′ as many times as the number of propagation paths from
gi′(j

′) to gi′(n + 1) through the identity gi(j) = gi(j + 1) + gi+1(j + 1). Everytime the coefficient
is transmitted, the coefficient moves either to the down (k increases by 1) or to the down and right
(both n and k increase by 1) in the 2×2 matrix. Therefore, the number of propagation paths from
gi′(j

′) to gi(n+1) is equal to
(n+1−j′

i−i′
)
, choosing i− i′ times to change k from i′ to i among n+1−j′

steps.

r0 =

{
αi,j =

{(n
k

)
for i = k + 1 and j = n+ 1

0 otherwise.

}

The resulting coefficients of r′ from r is in fact the same as the coefficients of the initial rep-
resentation r0 due to the following reason: the final sum of the coefficients of r′ becomes∑n+1

k=1 αk,n+1gk(n + 1) = E [Mk] =
(n
k

)
gk+1(n + 1). This is true for any set of probabilities

⟨p1, . . . , pS⟩ and n. Since,
(n+1
k+1

)
pk+1(1 − p)n−k for 0 ≤ k ≤ n forms the basis, i.e., the (n + 2)

Bernstein basis polynomial of degree n + 1, for the vector space of polynomials of degree at most
n + 1 with real coefficients, the only possible coefficients of the E [Mk] representations where all
the coefficients of gi(j) where j ≤ n become zero is the same as the coefficients of the r0 for any
set of probabilities ⟨p1, . . . , pS⟩ and n due to the linear independence of the basis. Therefore, the
constraints in Equ. (43) are necessary for the coefficients of the E [Mk] representations in the search
space.

Next, we show that any representation r that satisfies the constraints in Equ. (43) is a valid repre-
sentation of the E [Mk]. The proof is straightforward by reversing the above process. The sequence
of identities from the above process to reach r0 is reversible to reach r from r0. Therefore, the
constraints in Equ. (43) are both necessary and sufficient for the coefficients of the E [Mk] represen-
tations in the search space.

Following the above proof, any representation of the E [Mk] that is driven by the four identities,
αi,j · gi(j) = αi,j · ((1− δ)gi(j) + δgi(j))

= αi,j · (gi(j + 1) + gi+1(j + 1))

= αi,j · (gi(j − 1)− gi+1(j))

= αi,j · (gi−1(j − 1) + gi−1(j)),

from the initial representation r0 satisfies the constraints in Equ. (43) and is a valid representation of
the E [Mk], i.e.,

∑n+1
i=1

∑n+1
j=i αi,jgi(j) = E [Mk], and vice versa.

D COMPUTING THE VARIANCE AND THE MSE OF THE EVOLVED
ESTIMATORS

The remaining part to compute the MSE of the evolved estimator M̂Evo
k is 1) the variance of the

missing mass Mk, 2) the variance of the evolved estimator M̂Evo
k , and 3) the covariance between the

evolved estimator M̂Evo
k and the missing mass Mk.

D.1 VARIANCE OF Mk

Var (Mk) = Var

(∑
x

px1(Nx = k)

)
(45)

=
∑
x

p2xVar (1(Nx = k)) +
∑
x ̸=y

pxpyCov (1(Nx = k),1(Ny = k)) (46)

Var (1(Nx = k)) = E
[
1(Nx = k)2

]
− E [1(Nx = k)]2 = E [1(Nx = k)]− E [1(Nx = k)]2 (47)

=

(
n

k

)
pkx(1− px)

n−k −

((
n

k

)
pkx(1− px)

n−k

)2

(48)
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Cov (1(Nx = k),1(Ny = k))

= E [1(Nx = k)1(Ny = k)]− E [1(Nx = k)]E [1(Ny = k)]

=

{
n!

k!2(n−2k)!
pkxp

k
y(1− px − py)

n−2k −
(n
k

)2
pkx(1− px)

n−kpky(1− py)
n−k if n ≥ 2k,

−
(n
k

)2
pkx(1− px)

n−kpky(1− py)
n−k otherwise.

D.2 VARIANCE OF THE EVOLVED ESTIMATOR

Same as M̂B
k , the evolved estimators from the genetic algorithm are also linear combinations of

Φk(n)s (while varying both k and n unlike M̂B
k ). Given the evolved estimator M̂Evo

k =
∑

i ciΦki
(ni),

the expected value of M̂Evo
k is given by substituting Φk(n) with fk(n):

E(M̂Evo
k ) =

∑
i

cifki
(ni). (49)

Given the multinomial distribution p, the covariance between Φk(n) and Φk′(n′), which is needed to
compute the variance of M̂Evo

k as Equ. (25), can be computed as follows:
Theorem D.1. Given the multinomial distribution p = (p1, . . . , pS) with support size S, let Xntotal

be the set of ntotal samples from p. Let Xn and Xn′
be the first n and n′ samples from Xntotal ,

respectively; WLOG, we assume 1 ≤ n′ ≤ n ≤ ntotal. Then, the covariance of Φk(n) = Φk(X
n)

and Φk′(n′) = Φk′(Xn′
) (1 ≤ k ≤ n, 1 ≤ k′ ≤ n′) is given by following:

Cov
(
Φk(n),Φk′(n′)

)
= E

[
Φk(n) · Φk′(n′)

]
− fk(n) · fk′(n′) (50)

= E

[(∑
x

1(Nx = k)

)
·

(∑
x′

1(N ′
x′ = k′)

)]
− fk(n) · fk′(n′) (51)

=
∑
x

∑
x′

E
[
1(Nx = k ∧N ′

x′ = k′)
]
− fk(n) · fk′(n′), (52)

where N ′
x′ is the number of occurrences of x′ in Xn′

. Depending on the values of n, n′, k, k′, x, and
x′, the E

[
1(Nx = k ∧N ′

x′ = k′)
]

can be computed as Table 5.

Table 5: E
[
1(Nx = k ∧N ′

x′ = k′)
]

for Cov
(
Φk(n),Φk′(n′)

)
∀n, n′ s.t. ∀x, x′ s.t. ∀k, k′ s.t. E

[
1(Nx = k ∧N ′

x′ = k′)
]

n = n′
x = x′

k = k′
(n
k

)
pkx(1− px)

n−k

k ̸= k′ 0 (infeasible)

x ̸= x′
k + k′ ≤ n n!

k!k′!(n−k−k′)!
pkxp

k′

x′(1− px − px′)n−k−k′

k + k′ > n 0 (infeasible)

n ̸= n′
x = x′

k′ ≤ k
(n′

k′
)
pk

′
x (1− px)

n′−k′
·
(n−n′

k−k′
)
pk−k′
x (1− px)

(n−n′)−(k−k′)

k′ > k 0 (infeasible)

x ̸= x′
k + k′ ≤ n

∑min(k,n−k′)
i=max(0,k−(n−n′))

n′!
k′!i!(n′−k′−i)!

(n−n′)!
(k−i)!((n−n′)−(k−i))!

pk
′

x′pk
′

x′(1− px − px′)n
′−k′−ipkx(1− px)

(n−n′)−(k−i)

k + k′ > n 0 (infeasible)

Proof. The proof is straightforward from the definition of Nx and N ′
x′ .

D.3 COVARIANCE BETWEEN THE EVOLVED ESTIMATOR AND THE MISSING MASS

Note that Cov
(∑

i ciXi, Y
)
=
∑

i ciCov (Xi, Y ) for any random variables Xi and Y . Therefore,
the covariance between the evolved estimator M̂Evo

k =
∑

i ciΦki
(ni) and the missing mass Mk is

given by Cov
(
M̂Evo

k ,Mk

)
=
∑

i ciCov
(
Φki

(ni),Mk

)
. Then, again, Φki

(ni) =
∑

x 1(N ′
x = ki),

where N ′
x is the number of occurrences of x in Xni , and Mk =

∑
y py1(Ny = k). Therefore, the

covariance can be computed given Cov
(
1(N ′

x = ki),1(Ny = k)
)
. Cov

(
1(N ′

x = ki),1(Ny = k)
)
=
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E
[
1(N ′

x = ki ∧Ny = k)
]
− E

[
1(N ′

x = ki)
]
E [1(Ny = k)], where the first term is already computed

in Table 5, and the second term is
(ni
ki

)
pki
x (1− px)

ni−ki ·
(n
k

)
pky(1− py)

n−k.

Having all the necessary components, the MSE of the evolved estimator M̂Evo
k naturally follows.

E DETAILS OF THE GENETIC ALGORITHM

Algorithm 1 Genetic Algorithm
Input: Target frequency k, Sample Xn, Iteration limit G, mutant size m
1: Population P0 = {r0}
2: Fitness f best = f0 = fitness(r0)
3: Limit GL = G
4: for g from 1 to GL do
5: P = selectTopM(Pg−1,m)
6: P ′ = lapply(P,mutate)
7: Pg = P ′ ∪ {r0} ∪ selectTopM(Pg−1, 3)
8: fg = min(lapply(Pg, fitness))
9: if (g = GL) ∧ ((fg = f0) ∨ (f best > 0.95 · fg)) then

10: GL = GL +G
11: f best = fg
12: Estimator M̂Evo

k = instantiate(selectTopM(PGL , 1))

Output: Minimal-MSE Estimator M̂Evo
k

Algorithm 1 shows the general procedure of the genetic algorithm (GA) for discovering the estimator
M̂Evo

k with minimal MSE for the probability mass Mk. Given a target frequency k (incl. k = 0),
the sample Xn, an iteration limit G, and the number m of candidate representations to be mutated
in every iteration, the algorithm produces an estimator M̂Evo

k with minimal MSE. Starting from the
initial representation r0 (Eqn. (1); Line 1), our GA iteratively improves a population of candidate
representations Pg , called individuals. For every generation g (Line 4), our GA selects the m fittest
individuals from the previous generation Pg−1 (Line 5), mutates them (Line 6), and creates the
current generation Pg by adding the initial representation r0 and the Top-3 individuals from the
previous generation (Line 7). The initial and previous Top-3 individuals are added to mitigate the
risk of convergence to a local optimum. To mutate a representation r, our GA (i) chooses a random
term r, (ii) applies the first identity in Sec. C where δ is chosen uniformly at random, (iii) applies
one of the rest of the identities, and (iv) adjusts the coefficients for the resulting representation r′

accordingly. The iteration limit GL is increased if the current individuals do not improve on the
initial individual r0 or substantially improve on those discovered recently (Line 9–12).

E.1 HYPERPARAMETERS

For evaluating Algorithm 1, we use the following hyperparameters:

• Same as the Orlitsky’s study (Orlitsky & Suresh, 2015), which assess the performance of the
Good-Turing estimator, we use the hybrid estimator p̂ of the empirical estimate and the Good-
Turing estimate to approximate the underlying distribution {px}x∈X for estimating the MSE of
the evolved estimator. The hybrid estimator p̂ is defined as follows: If Nx = k,

p̂x =

{
c · k

N if k < Φk+1,

c · M̂G
k

Φk
otherwise,

(53)

where c is a normalization constant such that
∑

x∈X p̂x = 1.
• The number of generations G = 100. To avoid the algorithm from converging to a local minimum,

we limit the maximum number of generations to be 2000.
• The mutant size m = 40.
• When selecting the individuals for the mutation, we use tournament selection with tournament

size t = 3, i.e., we randomly choose three individuals with replacement and select the best one,
and repeat this process m times.

19



• When choosing the top three individuals when constructing the next generation, we use elitist
selection, i.e., choosing the top three individuals with the smallest fitness values.

• To avoid the estimator from being too complex, we limit the maximum number of terms in the
estimator to be 20.

The actual script implementing Algorithm 1 can be found at the publically available repository
https://anonymous.4open.science/r/Better-Turing-157F.

F ADDITIONAL EXPERIMENTAL RESULTS
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Figure 4: Absolute bias of M̂B
0 and M̂G

0 (a,b) as a function of n for k = 0 and (c) as a function of k
for n = 2000 (S = 1000, log-scale).

Figure 4(a) also illustrates the exponential decay of our estimator in terms of n and how our estimator
is less biased than GT by an exponential factor. In Figure 4(b), we can observe that GT’s bias also
decays exponentially, although not nearly at the rate of our estimator.

In terms of distributions, a closer look at the performance differences confirms our suspicion that the
bias of our estimator is strongly influenced by the probability pmax of the most abundant element,
while the bias of GT is strongly influenced by the probability pmin of the rarest element. In fact, by
Eqn. (12) the absolute bias of our estimator is minimized when pmax is minimized. By Eqn. (11),
GT’s bias is minimized if pmin is maximized. Since both is true for the uniform, both estimators
exhibit the lowest bias for the uniform across all six distributions. GT performs similar on all dis-
tributions apart from the uniform (where bias seems minimal) and zipf-1 (where bias is maximized).
For our estimator, if we ranked the distributions by values of pmax with the smallest value first
⟨uniform, half&half, zipf-0.5, zipf-1⟩, we would arrive at the same ordering in terms of performance
of our estimator as shown in Figure 4(a).
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Table 6: The MSE of the Good-Turing estimator M̂G
0 and the best evolved estimator M̂Evo

0 and for
the missing mass M0, the success rate Â12 of the evolved estimator (X2) against the Good-Turing
estimator (X1), and the ratio (Ratio, MSE(MEvo

0 )/MSE(M̂G
0 )) for two support sizes S = 100 and

200, three sample sizes n and six distributions.

S n/S Distribution MSE(M̂G
0 ) MSE(M̂ evo

0 ) Â12 Ratio

100

0.5

uniform 1.09e-02 7.94e-03 0.88 72%
half&half 1.14e-02 7.16e-03 0.90 63%
zipf-0.5 8.09e-03 7.37e-03 0.87 91%
zipf-1 1.08e-02 8.13e-03 0.91 75%
diri-1 1.10e-02 7.97e-03 0.92 72%

diri-0.5 9.90e-03 8.02e-03 0.87 81%

1.0

uniform 6.05e-03 4.29e-03 0.97 70%
half&half 5.46e-03 4.07e-03 0.98 74%
zipf-0.5 3.42e-03 3.04e-03 0.89 88%
zipf-1 5.23e-03 4.16e-03 0.96 79%
diri-1 4.36e-03 3.47e-03 0.92 79%

diri-0.5 3.47e-03 2.86e-03 0.88 82%

2.0

uniform 1.93e-03 1.73e-03 0.96 89%
half&half 1.57e-03 1.42e-03 0.93 90%
zipf-0.5 1.26e-03 1.08e-03 0.94 85%
zipf-1 1.73e-03 1.54e-03 0.97 88%
diri-1 1.23e-03 1.05e-03 0.91 85%

diri-0.5 9.41e-04 8.08e-04 0.86 85%

200

0.5

uniform 5.44e-03 4.23e-03 0.90 77%
half&half 5.65e-03 4.28e-03 0.92 75%
zipf-0.5 3.79e-03 3.64e-03 0.77 96%
zipf-1 5.29e-03 3.98e-03 0.95 75%
diri-1 5.45e-03 4.01e-03 0.92 73%

diri-0.5 4.95e-03 4.05e-03 0.86 82%

1.0

uniform 3.01e-03 2.46e-03 0.98 81%
half&half 2.73e-03 2.26e-03 0.96 82%
zipf-0.5 1.61e-03 1.47e-03 0.88 91%
zipf-1 2.58e-03 2.21e-03 0.96 85%
diri-1 2.18e-03 1.92e-03 0.84 87%

diri-0.5 1.74e-03 1.56e-03 0.79 89%

2.0

uniform 9.67e-04 9.21e-04 0.99 95%
half&half 7.88e-04 7.37e-04 0.98 93%
zipf-0.5 6.01e-04 5.66e-04 0.91 94%
zipf-1 8.66e-04 7.99e-04 1.00 92%
diri-1 6.15e-04 5.56e-04 0.86 90%

diri-0.5 4.71e-04 4.25e-04 0.80 90%

Table 6 shows the MSE of the Good-Turing estimator M̂G
0 and the best evolved estimator M̂Evo

0 for
the missing mass M0, the success rate Â12 of the evolved estimator (X2) against the Good-Turing
estimator (X1), and the ratio (Ratio, MSE(MEvo

0 )/MSE(M̂G
0 )) for two support sizes S = 100 and

200, three sample sizes n and six distributions.

We evaluated the variance of the MSE of the evolved estimator M̂Evo
0 from GA due to its randomness.

Using (S, n) = (100, 100), we tested two distributions (uniform and zipf-1) on five sample datasets,
running the GA 20 times per dataset. Table 7 shows the mean, median, and variance of the MSE
for the evolved estimator as well as the MSE for the Good-Turing estimator for comparison (in
parentheses). It shows that the variance of the evolved estimators’ MSE is small, indicating the
GA’s stability and the robustness of the evolved estimator, which consistently outperforms the Good-
Turing estimator.
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Table 7: Variance of the evolved estimator M̂Evo
0 .

Dataset
Index

Uniform (MSE of Good-Turing = 6.0e-3) Zipf (MSE of Good-Turing = 3.4e-3)

Mean MSE Median MSE Variance Mean MSE Median MSE Variance

1 3.8e-03 3.9e-03 2.9e-06 2.7e-03 2.4e-03 1.6e-07
2 5.1e-03 5.3e-03 5.4e-07 2.5e-03 2.4e-03 7.9e-08
3 5.6e-03 5.3e-03 1.6e-06 2.8e-03 2.9e-03 2.0e-07
4 3.8e-03 3.4e-03 2.0e-06 3.4e-03 3.2e-03 2.6e-07
5 6.5e-03 5.5e-03 4.6e-06 2.7e-03 2.6e-03 8.4e-08

Table 8: MSE comparison for the probabiltiy mass estimation, i.e., k > 0 (Distribution: uniform,
S = 100, n = 100).

k MSE(M̂G
k ) MSE(M̂Evo

k )

1 2.3e-03 1.1e-03
2 1.9e-03 5.7e-04
3 1.0e-03 2.6e-04
4 3.5e-04 1.7e-04

We evaluated the probability mass estimation for 0 < k ≤ 4 for uniform distribution with S =
200, n = 200. The result shown below indicates that our method consistently outperforms the Good-
Turing estimator across k values. We focus on small k, as practical interest often lies in unseen and
rare categories where empirical probability estimates are biased.

G RECENT RELATED WORK ON ESTIMATING MISSING MASS

In this section, we provide a brief overview of the recent related work on estimating the properties
of the underlying distribution from a sample (Painsky, 2023; Valiant & Valiant, 2017; Wu & Yang,
2019); those works can either directly or indirectly be used to estimate the missing mass M0. We
first describe each method and how it can be used to estimate the missing mass M0. Then, we
conduct experiments comparing the performance of the methods against our estimator M̂B

0 in terms
of the mean squared error (MSE).

While our objective is to estimate the missing mass M0, Wu & Yang (2019) focus on estimating the
support size S of a multinomial distribution p given a sample Xn of size n. However, since there can
be arbitrarily many unseen classes in the missing mass, they restrict their analysis to distributions
whose min(p) ≥ 1/k for a given constant k. This implies, the estimand S is assumed to be upper-
bounded by k. In their experiments, they compare their estimator ŜW against the estimator ŜG =
S(n)/(1−M̂G

0 ) where S(n) is the number of observed classes and M̂G
0 is the Good-Turing estimator

of the missing mass. Integrating both equations, we can construct an estimator of the missing mass
M̂W from their estimate ŜW of the support size as M̂W = 1 − S(n)/ŜW for comparison with our
estimator of the missing mass.4

Valiant & Valiant (2017) propose to estimate a “plausible” histogram from the frequencies of fre-
quencies (FoF) and, from that, to compute functionals such as entropy or the support size. These
metrics are more complex, higher-level metrics than the raw probability mass/missing mass, and the
plausible histogram computed from Algorithm 1 in this paper cannot be used directly to estimate
the missing mass. Nevertheless, for the purpose of comparison, we can consider the 1 -

∑
i xi used

in their algorithm (Algorithm 1 in Valiant & Valiant (2017)) as the missing mass; xi is the fine mesh
of values that discretely approximate the potential support of the histogram. However, since they
are not originally intended to represent the probability mass of the unseen samples, we expect the
missing mass estimation to be not as accurate as our method.

4However, we note that S(n)/S ̸= M0 for all distributions, except the uniform. Consider a distribution
p =< 0.9, 0.1 > and assume the first sample returns the first class. Then, S(n)/S = 0.5 while M0 = 0.1.
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Painsky (2023) considers the problem of finding coefficients β1, · · · , βn in the missing mass estima-
tor M̂β

0 =
∑n

i=1 βiΦi such that the worst-case l22 risk over all possible distributions P is minimized.
Using an upper bound on the estimation risk for a given distribution, they define an algorithm that
solves a constrained programming problem to find the first two coefficients β1 and β2 and thus
generate an estimator M̂β1,β2

0 of the missing mass with minimized risk across all distributions.

Our work makes several contributions over Painsky (2023).

• We generalize the estimation problem beyond the missing mass M0 to the estimation for
the total probability mass Mk across all elements that appear k times in the sample for any
value of k : 0 ≤ k ≤ n.

• Our (distribution-free) method searches for the (distribution-specific) estimator, which min-
imizes the risk for that particular (unknown) distribution given only the sample. We pro-
pose a genetic algorithm, define a search space of valid representations of E[Mk] which is
searched, and define a method to instantiate a representation into an estimator that is being
evaluated for fitness.

• Our set of estimators is parametric not only in Φi = Φi(n) but also the FoF of subsequences
Xj = ⟨X1, ..., Xj⟩ of Xn, i.e., we consider

∑n
i=1

∑n
j=1 βi,jΦi(j) (c.f the dependency be-

tween FoF in Figure 1).

We conducted 100 repetitions of the experiment with the same setting as in the main paper can
calculated the MSE of each method. In particular for Wu & Yang (2019)’ method, although min(p)
is not normally known, we set 1/k = min(p) for our experiment. Table 9 shows the MSE of each
method for two support sizes S = 100 and 200, three sample sizes n and six distributions. The bold
values indicate the best performing estimator. Overall, our search-based method outperforms the
other three methods in terms of mean squared error (MSE). This is because in contrast to ours, Wu
& Yang (2019) and Valiant & Valiant (2017) are not directly designed to estimate the missing mass,
and while all are distribution-free estimation methodologies, only ours generates an estimator with
a reduced MSE on that specific distribution.

• We found that the MSE of Wu & Yang (2019) is roughly 6x higher than that of our method
median-wise. Yet, their method produces significantly inaccurate estimations for some
cases; the MSE of their method in those cases could be up to six orders of magnitude
higher than that of our method. We use the implementation provided by the authors.

• Same as what we expect, we find Valiant & Valiant (2017)’s MSE is orders of magnitude
higher than that of our method (median: 128x higher). We use the code from the paper’s
appendix and convert it from MATLAB code to Python code.

• Our empirical results confirm that our method outperforms Painsky (2023)’s in terms of
MSE; it shows that Painsky’s method has a higher MSE than that of our method (median:
10%, mean: 14%); although Painsky’s method performs better than the Good-Turing esti-
mator (where our method outperforms Good-Turing by 25%) as they intended, our method
still outperforms it.
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Table 9: The MSE of the missing mass estimators for two support sizes S = 100 and 200, three
sample sizes n and six distributions. The bold values indicate the best performing estimator.

S n dist Chebyshev Valiant Painsky Ours

100

50

diri-1 3.65e+01 2.27e-01 9.82e-03 7.97e-03
diri-0.5 1.05e+03 2.34e-01 7.46e-03 8.02e-03

half&half 4.67e-03 1.43e-01 1.01e-02 7.16e-03
uniform 9.40e-03 1.01e-01 7.97e-03 7.94e-03
zipf-1 4.36e-02 1.33e-01 7.90e-03 7.37e-03

zipf-0.5 4.73e-03 1.43e-01 8.51e-03 8.13e-03

100

diri-1 7.68e-02 4.28e-01 3.45e-03 3.47e-03
diri-0.5 6.02e+00 3.84e-01 2.63e-03 2.86e-03

half&half 8.41e-03 4.05e-01 5.49e-03 4.07e-03
uniform 5.08e-03 3.49e-01 7.11e-03 4.29e-03
zipf-1 5.87e-02 1.64e-01 3.40e-03 3.04e-03

zipf-0.5 8.82e-03 3.47e-01 3.94e-03 4.16e-03

200

diri-1 8.70e-02 6.05e-01 1.34e-03 1.05e-03
diri-0.5 1.29e+01 5.22e-01 1.01e-03 8.08e-04

half&half 6.70e-03 6.63e-01 1.73e-03 1.42e-03
uniform 3.89e-03 6.78e-01 2.27e-03 1.73e-03
zipf-1 4.98e-02 1.91e-01 1.59e-03 1.08e-03

zipf-0.5 6.24e-03 5.60e-01 1.73e-03 1.53e-03

200

100

diri-1 5.12e-02 2.44e-01 4.88e-03 4.01e-03
diri-0.5 3.03e+00 3.53e-01 5.02e-03 4.05e-03

half&half 1.88e-03 1.73e-01 6.16e-03 4.28e-03
uniform 9.78e-03 1.29e-01 6.54e-03 4.23e-03
zipf-1 1.07e-01 1.43e-01 2.93e-03 3.64e-03

zipf-0.5 2.45e-03 1.75e-01 4.42e-03 3.98e-03

200

diri-1 1.15e-01 4.88e-01 2.01e-03 1.92e-03
diri-0.5 2.28e+00 5.08e-01 1.75e-03 1.56e-03

half&half 5.10e-03 4.23e-01 2.42e-03 2.26e-03
uniform 3.12e-03 3.67e-01 2.58e-03 2.46e-03
zipf-1 1.16e-01 1.76e-01 1.17e-03 1.47e-03

zipf-0.5 5.84e-03 3.73e-01 2.12e-03 2.21e-03

400

diri-1 5.44e-01 6.56e-01 5.00e-04 5.56e-04
diri-0.5 1.94e+00 6.69e-01 4.68e-04 4.25e-04

half&half 4.77e-03 7.07e-01 7.62e-04 7.38e-04
uniform 1.48e-03 7.07e-01 8.63e-04 9.21e-04
zipf-1 8.45e-02 2.08e-01 5.06e-04 5.66e-04

zipf-0.5 4.94e-03 6.00e-01 1.03e-03 7.99e-04
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