In Bugs We Trust? On Measuring the Randomness of a Fuzzer
Benchmarking Outcome

ARDI MADADI", MPI-SP, Germany

SEONGMIN LEE”, University of California at Los Angeles, USA
CORNELIUS ASCHERMANN, Ruhr-University Bochum, Germany
MARCEL BOHME, MPI-SP, Germany

In Google’s FuzzBench platform, we find that the outcome of coverage-based evaluation more strongly agrees
with the outcome of a bug-based evaluation than an independent bug-based evaluation itself. Recently, Bchme
et al. found that despite a very strong correlation between coverage achieved and bugs found, there is no strong
agreement between the outcome of a coverage- and a bug-based evaluation: The fuzzer best at achieving
coverage may be the worst at finding bugs. However, in trying to explain this moderate agreement, we
wondered whether the outcome of bug-based benchmarking itself is perhaps much more “noisy” and turned
to applied statistics to develop the tools necessary to investigate our hypothesis.

In this paper, we call this degree of “noisiness” of a benchmarking outcome the concordance of the bench-
marking procedure and quantify it using a measure of statistical reliability widely used in psychology, called
mean split-half reliability, i.e., the expected agreement on the benchmark outcome between two random halves
of the benchmarking suite. In our experiments with FuzzBench and Magma, we find that the concordance
of coverage-based benchmarking is consistently strong while that of bug-based benchmarking is weak on
FuzzBench and moderate on Magma. In contrast to FuzzBench, for the Magma benchmark suite (which was
designed for bug-based evaluation) a coverage-based evaluation does not predict the outcome of a bug-based
evaluation better than an independent bug-based evaluation.

Moreover, to demonstrate the utility of concordance also for developers of benchmarking suites, we investi-
gate concordance as a measure of benchmarking efficiency, as in green fuzzer benchmarking. We empirically
confirm that the resources of a procedure with higher concordance can be reduced more substantially (in
terms of campaign length or benchmark sampling size) while maintaining a similar benchmark outcome as a
procedure with lower concordance. We report the corresponding savings in terms of carbon emissions.

CCS Concepts: « Software and its engineering — Software testing and debugging.

Additional Key Words and Phrases: Fuzzing, Mean Split-half reliability, Green Fuzzing, Internal Consistency,
Fuzzer Rankings, Fuzzing Efficiency, Statistical Agreement, Statistical Correlation, FuzzBench, Magma

ACM Reference Format:

Ardi Madadi, Seongmin Lee, Cornelius Aschermann, and Marcel B6hme. 2026. In Bugs We Trust? On Measuring
the Randomness of a Fuzzer Benchmarking Outcome. Proc. ACM Softw. Eng. 3, FSE, Article FSE084 (July 2026),
22 pages. https://doi.org/10.1145/3797112

“These authors contributed equally to this work.

Authors’ Contact Information: Ardi Madadi, MPI-SP, Bochum, Germany, ardi.madadi@mpi-sp.org; Seongmin Lee, University
of California at Los Angeles, Los Angeles, USA, seongminlee@sigsoft.org; Cornelius Aschermann, Ruhr-University Bochum,
Bochum, Germany, cornelius.aschermann@ruhr-uni-bochum.de; Marcel Bohme, MPI-SP, Bochum, Germany, marcel.
boehme@acm.org.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2026 Copyright held by the owner/author(s).

ACM 2994-970X/2026/7-ARTFSE084

https://doi.org/10.1145/3797112

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

https://orcid.org/0000-0001-9258-4872
https://orcid.org/0000-0003-0805-8947
https://orcid.org/0009-0000-1650-6872
https://orcid.org/0000-0002-4470-1824
https://doi.org/10.1145/3797112
https://orcid.org/0000-0001-9258-4872
https://orcid.org/0000-0003-0805-8947
https://orcid.org/0009-0000-1650-6872
https://orcid.org/0000-0002-4470-1824
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3797112

FSE084:2 Madadi et al.

1 Introduction

Fuzzing continues to gain popularity in the industry due to its effectiveness and ease of adoption.
As the field evolves, an increasing number of fuzzers continue to emerge—each claiming to best
others in some performance metric. The most direct way to compare fuzzers is by measuring
their effectiveness in finding bugs, i.e., bug-based benchmarking. However, a post-hoc analysis as
in FuzzBench [33] requires substantial computational resources (after all, bugs are rare), while a
ground-truth based analysis as in Magma [25] might feature various sources of bias [15]. Hence, a
common approach remains coverage-based benchmarking where the coverage a fuzzer achieves
serves as a proxy for the bugs it can find. After all, it can only find bugs in code that it executes.

Recently, with the release of new benchmarking suites like Magma [25] and the integration
of bug-based benchmarks into FuzzBench [34], bug-based benchmarking has become a viable
option. The latest version of Magma forward-ports 138 bugs across nine programs. Forward porting
reintegrates and verifies the reproducibility of previously discovered bugs in stable-or even the
latest—versions of these programs, ensuring they are compatible with various fuzzers. Meanwhile,
FuzzBench counts bugs in a post-hoc analysis where the number of bugs found by a fuzzer is
determined after the campaigns were run without any expectation of which bugs to find.

While both bug-based and coverage-based benchmarking evaluate fuzzer effectiveness, previous
work [7] highlights an intriguing discrepancy between them: Although a very strong correlation
exists between a fuzzer’s ability to discover bugs and to achieve code coverage, the outcome of a
coverage-based evaluation does not strongly agree with that of a bug-based evaluation. One possible
explanation is that bugs are just much more sparsely distributed than coverage elements, which
might lead to greater variability in the benchmarking outcome. This raises a key question: “Does
bug-based benchmarking exhibit a greater randomness than coverage-based benchmarking?"

We refer to this randomness as the procedure’s concordance. The concordance reflects how
consistently a benchmarking procedure rates tool performance, or equivalently, the degree to
which randomness influences the procedure’s outcome. We quantify concordance using split-half
reliability [11], which is commonly used in psychology to evaluate the statistical reliability of
a test. The mean split-half reliability is the expected agreement on the procedure’s benchmark
outcome between two random halves of the benchmarking suite.! If the outcomes (dis)agree to a
large degree, then the procedure is said to have a (low) high concordance.

Based on over 100,000 CPU hours (~ 11 CPU years) of fuzzing campaigns conducted using
FuzzBench [34] and Magma [25], we analyze the concordance of bug- and coverage-based evaluation.
For FuzzBench, we leverage the publicly available dataset created by Béhme et al. [7], which covers
20 fuzzing campaigns of 23 hours each for nine fuzzers applied to 24 C benchmarks, resulting in bug
findings in 16 benchmarks. For Magma, we conduct our own experiment of a similar scale and closely
aligned with the FuzzBench setup, comprising 20 fuzzing campaigns of 23 hours for each of eight
fuzzers on 18 C benchmarks. We find a strong concordance for coverage-based benchmarking: The
ranking of fuzzers in terms of branch coverage achieved is similar across independent benchmark
subsets.

We only find a weak to moderate concordance for bug-based benchmarking. In FuzzBench, the
split-half reliability of the ranking of fuzzers based on the number of bugs found in 23 hours is
weak. Consider two disjoint, equi-sized benchmark subsets b; and b; randomly sampled from the
FuzzBench benchmarking suite. The ranking of fuzzers in terms of bugs found on b; only weakly
agrees with the ranking of fuzzers in terms of bugs found on b,. Counterintuitively, the agreement is
stronger when T are ranked on b; using coverage and T are ranked on b, using bug counts, compared
to evaluating both subsets using bug counts alone. In other words, for FuzzBench, a coverage-based

1A benchmark is an element (e.g., a fuzz driver or a program) in a benchmarking suite (e.g., FuzzBench or Magma).

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

In Bugs We Trust? On Measuring the Randomness of a Fuzzer Benchmarking Outcome FSE084:3

evaluation is more predictive of the outcome of a bug-based evaluation than an independent bug-based
evaluation itself, due to that high degree of outcome randomness. This might explain the previous
results by Bohme et al. [7] who observe that there is no strong agreement between the outcomes of
coverage- and bug-based benchmarking in FuzzBench. For Magma, which is designed for bug-based
evaluation, the concordance is moderate. Still, a coverage-based evaluation is equally predictive
of the outcome of an independent bug-based evaluation. These findings establish coverage-based
evaluation as a reliable benchmarking procedure.

Finally, to demonstrate the utility of concordance also for developers of benchmarking suites,
we investigate concordance as a measure of benchmarking efficiency. As evident in our experiments,
fuzzer benchmarking can have an extremely high carbon footprint. Green fuzzer benchmarking
[35] is an effort to reduce the carbon footprint of fuzzer benchmarking substantially. We empirically
confirm that the amount of resources necessary for a procedure with higher concordance can
be reduced more substantially (in terms of campaign length or benchmarking suite size) while
maintaining a similar outcome compared to a procedure with lower concordance. We provide the
first model of the ecological footprint of fuzzer benchmarking and report the corresponding savings
in terms of carbon emissions.

In summary, this paper makes the following contributions:

o We define the concept and measure of concordance for a benchmarking procedure and argue
that a high-quality benchmarking procedure offers a high degree of concordance.

e We evaluate the concordance of bug-based and coverage-based benchmarking on FuzzBench
and Magma, and find that the outcome of coverage-based benchmarking exhibits a substantially
greater concordance. Notably, the outcome of a coverage-based evaluation is as effective as, or
better than, a bug-based one in predicting the outcome of an independent bug-based evaluation.

e We establish concordance as a measure of benchmarking efficiency and show that the bench-
mark subset and campaign length for coverage-based can be reduced more substantially while
maintaining a similar benchmark outcome as bug-based benchmarking.

e We make our code, data, and analysis publicly available. Full details for reproducing our experi-
ments can be found at: https://github.com/ardier/in_bugs_we_trust/.

2 Concordance of a Benchmarking Procedure

Benchmarking procedure. The purpose of benchmarking is to compare two or more tools on
a set of benchmarks in terms of their performance. A tool solves a particular problem where the
benchmark suite is expected to represent instances of that problem. For instance, since fuzzers are
designed to discover bugs in programs, one might define the benchmark suite as a collection of
programs containing bugs. A measure of performance quantifies how well a tool solves a problem
instance. For instance, one might measure the performance of a fuzzer in terms of the number
of bugs it can find in a benchmark or, in their absence, the code coverage it can achieve. More
formally, a benchmarking procedure P = (B, m) specifies the benchmark suite B and the measure of
performance m.

Benchmarking outcome. Given a set of tools T, we define the outcome of a benchmarking
procedure P = (B, m) as the ranking of T with respect to the performance measure m on the
benchmark suite B, denoted by outcome(P, T) or R:

outcome(P,T) =R = {r'};er. (1)

If there are only two tools T = {t1, t,}, we call this an analysis of superiority, and can also measure
the effect size and statistical significance of the difference in performance of #; and ¢, to assess

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

https://github.com/ardier/in_bugs_we_trust/

FSE084:4 Madadi et al.

Table 1. Interpretation of measures of agreement (and concordance), following Schober et al. [41].

Range Interpretation ID ‘ Range Interpretation ID
-0.00 to -0.09 Negligible disagreement =~ NNG 0.00 to 0.09 Negligible agreement NG
-0.10 to -0.39 Weak disagreement NWK 0.10 to 0.39 Weak agreement WK
-0.40 to -0.69 Moderate disagreement NMD 0.40 to 0.69 Moderate agreement MD
-0.70 to -0.89 Strong disagreement NST 0.70 to 0.89 Strong agreement ST
-0.90 to -1.00 Very strong disagreement NVS 0.90 to 1.00 Very strong agreement VS

the impact of randomness across repetitions on the outcome. Throughout this paper, we report
rankings over three or more tools, and suggest to break ties at random for an unbiased evaluation.

2.1 Agreement on Outcome

Given two benchmarking procedures P; and P,, we can define their agreement on the outcome for a
set of tools T as the degree of similarity between the corresponding rankings of T using P; and P,
respectively. If we consider a benchmarking procedure as a rater of the tools’ performance, then
Py’s and P,’s agreement on outcome is also called inter-rater agreement [46].

Agreement vs correlation. Given two performance measures m; and m; and a benchmark set
B, and a set of tools T, it is possible that the performance of ¢t € T on B in terms of m; and m, is
strongly correlated. Yet, procedures P; = (B, m;y) and P, = (B, mz) may only moderately agree on
the outcome for a set of tools T. As Schober et al. [41] highlight, "two variables can exhibit a high
degree of correlation but at the same time disagree substantially" Similarly, Bland and Altman [4]
note that two measures of the same construct may not always strongly agree, even if they correlate
highly.

Example. Consider students’ study time and exam scores. Although studying more generally leads
to higher exam scores on average (high correlation), rankings based on study time and exam
performance may not strongly agree. This could be especially the case when exam outcomes are
influenced by stochastic factors, such as exam randomness or differences in study effectiveness
(e.g., which topics the questions are drawn from), as well as students’ conditions on the exam day.

Computing agreement. We compute the agreement between two rankings Ry = {r} };er and
Ry = {r}}ier of a set of tools T using Spearman’s rank correlation or equivalently Pearson’s correla-
tion as the data are already ordinal [41]. The correlation coefficient ranges from -1 to 1. We interpret
negative values as disagreement and positive values as agreement; the magnitude | - | indicates
the strength of that (dis-)agreement. Table 1 summarizes this interpretation. Specifically, assuming
a unique ranking for each tool in R; and R;, we can compute the agreement agreement(Ry, R;)
between two rankings R; and R, using Spearman’s rank correlation coefficient, i.e.,

6Zt€T (r1t - ré)z

h =|T]|. 2
P where nr = |T| (2

agreement(Ry,Ry) =1 —
Fuzzer benchmarking. In earlier work [7], we studied the agreement on outcome between
coverage- and bug-based evaluation procedures for fuzzers T and benchmarks B in the FuzzBench
benchmarking platform [33], e.g., agreement (outcome({B, #edges), T), outcome((B, #bugs), T)). In-
deed, while the coverage achieved (#edges) and the number of bugs found (#bugs) are strongly
correlated (i.e., a fuzzer that achieves more coverage also finds more bugs), the ranking of fuzzers in
terms of coverage achieved and bugs found agrees only moderately (i.e., the fuzzer best at achieving
coverage may be the worst at finding bugs). We used this result to propose reporting empirical

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

In Bugs We Trust? On Measuring the Randomness of a Fuzzer Benchmarking Outcome FSE084:5

results for both coverage- and bug-based benchmarking when evaluating fuzzer performance.
However, what we seemed to miss is that the outcome of a bug-based evaluation itself may be
substantially noisy: even two bug-based evaluations on disjoint, random, equally sized benchmark
subsets may not strongly agree. This is precisely the subject of our study.

2.2 Concordance of a Procedure

We let the concordance of a benchmarking procedure P = (B, m) measure how “noisy” the outcome
of P is when evaluating a set of tools using m over the set of all unique partitions of B into two
disjoint, equi-sized subsets B; and B;. Informally, concordance measures how reliably the outcome
of P predicts the tools’ performance on an unknown benchmark set of the same size. Treating a
benchmarking procedure P as a rater of tool performance, we interpret the concordance of P as the
statistical reliability of P, specifically its internal consistency.

Split-half reliability (y). We measure the concordance y(P, T) of a benchmarking procedure P
on tools T using the mean split-half reliability [13, 32, 48, 54]. Split-half reliability is widely used in
psychology as a measure of the statistical reliability of a survey and indicates the extent to which
survey questions on a scale consistently measure the same underlying concept.

The mean split-half reliability of the procedure P = (B, m) given tools T is the expected agreement
in outcome between two procedures P; = (B;, m) and P, = (By, m), where B; and B; range over all
unique disjoint halves of the benchmark suite B, i.e.,

1
y(P,T) = — Z agreement(outcome({(By, m), T), outcome({Bz, m), T)) (3)
5] (B1,B3)€S
1,02 B
where
B
Sp = {<B1,Bz> (B1,B2 € B) A (BiN By =) A (|B1| = [By| = {%J)} (4)

Technically, for a benchmark suite B of size |B|, y(P, T) only computes the expected reliability of
subsets of size | |B|/2] rather than the entirety of the benchmark suite. While we do not use it in
this paper (as it is a simple monotonic transformation and hampers an intuitive interpretation),
the Spearman—Brown formula 2y(P,T)/(1 + y(P,T)) can adjust the value to the full benchmark set
of size |B|. The mean split-half reliability is also related to Cronbach’s alpha [13], another widely
used measure of reliability. Under the equal-variance assumption, alpha provides a conservative
lower-bound estimate of the mean split-half reliability when scaled to the full benchmark suite [48].

As an aside, the split-half reliability defined over a particular split (B, Bz) € Sp (as originally
conceived by Charles Spearman and William Brown [44]) is sensitive to how the benchmarks b € B
are divided between B; and B,. In our case, one half B; may contain benchmarks with a lot of bugs
while the the other half B, may not contain any bugs at all. The mean split-half reliability reduces
the influence of any particular split [13].

Proxy split-half reliability (). Intuitively, the mean split half reliability also measures how
"predictive" the outcome on one half of the benchmark suite is of the outcome on the other half
using the same performance measure mqig. To evaluate how predictive the outcome using a proxy
measure Mpoxy is of the outcome using the original measure myiy, in comparison, we define the
proxy split-half reliability. We assume that moxy and meig both measure the same latent construct
(i.e., fuzzer effectiveness) [16], which is also precisely what permits a comparison with split-half
reliability [47]. Specifically, given two measures mpoxy and merg—if the split-half reliability for
a Mqrig-based evaluation is lower than the proxy split-half reliability of a mpoxy W.r.t. Mg, then
a Mproxy-based evaluation is more predictive of the outcome of a myj-based evaluation than an
independent m,j,-based evaluation itself.

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

FSE084:6 Madadi et al.

Example. Imagine the above situation arises when mp,oxy is #edges (coverage achieved) and mq;g
is #bugs (the number of bugs found). Then, it means that a coverage-based evaluation is more
predictive of bug-based outcomes than an independent bug-based evaluation.

Given a set of tools T, a set of benchmarks B, and two measures mp;oxy and mqrig of the tools’
performance, we compute the proxy split-half reliability w(mproxy, Morig, B, T) of a benchmarking
procedure using Mproxy W.I.L. @ procedure using Morig aS the expected agreement on outcome
between two procedures Py = (By, Mproxy) and Py = (By, Morig) using all unique, disjoint halves B;
and B, of B, i.e,,

(‘)(mproxy, Morig, B,T)

1
— Z agreement(outcome({B1, Mproxy), T), outcome({By, Morig), T)). ®)

“Is
1S5 (B1,B2)€SE

where Sp is defined as in Equation (4). For efficiency, instead of evaluating over all possible splits in
Sp, we approximate these reliabilities using maximum likelihood estimates on a random subset of
Sp. Specifically, both y(P, T) and @ (Mproxy, Morig, B, T) are estimated by y and &, which compute
the average agreement over a random subset S C Sp of a given size.

3 Experimental Setup

In this paper, we primarily investigate the concordance of bug-based and coverage-based bench-
marking, and examine whether the outcome of a coverage-based evaluation can be a better predictor
of the outcome of a bug-based evaluation than an independent bug-based evaluation itself.

Second, we explore the potential of our proposed concordance measure as a predictor of bench-
marking efficiency. Specifically, we conjecture that, given sufficient effort, it is possible to substan-
tially reduce the size of benchmark subsets for highly concordant procedures while incurring only
a negligible impact on the benchmarking outcome.

The research questions and experimental setup for the first part are presented in this section,
with corresponding results reported in Section 4. Under the same experimental setup, the second
part is discussed in Section 5.

3.1 Research Questions

e RQ.1 (Concordance). What is the concordance of a bug- versus a coverage-based fuzzer bench-
marking procedure? In other words, how reliable is the outcome of a bug-based evaluation of
fuzzer performance in comparison to that of a coverage-based evaluation?

e RQ.2 (Concordance as a Function of Benchmarking Suite Size). How does the concordance of a
benchmarking procedure behave as the size of the benchmarking suite increases?

o RQ.3 (Split-half Reliability versus Proxy Split-half Reliability). How does the concordance of bug-
based benchmarking compare to the agreement on outcome between coverage- and bug-based
benchmarking? If proxy split-half reliability is higher, then the outcome of a coverage-based
evaluation better predicts the outcome of a bug-based evaluation than an independent bug-based
evaluation itself.

Open Science. We make both our datasets and analysis script available in section 9.

3.2 FuzzBench: Fuzzers and Benchmarks

FuzzBench [34] is a fuzzer benchmarking platform developed and computationally supported by
Google to help the fuzzing community (incl. fuzzer developers, maintainers, and users) evaluate

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

In Bugs We Trust? On Measuring the Randomness of a Fuzzer Benchmarking Outcome FSE084:7

Table 2. Programs used from FuzzBench and Magma datasets. #B is the number of benchmarks (fuzz drivers);
Size is the number of lines of code (LoC); KB is the number of known bugs.

FuzzBench ‘ ‘ Magma

Name #B Size #KB | Name #B Size #KB | Name #B Size #KB |Name #B Size #KB
aspell 1 300k 1 grok 1 236k 4 libpng 1 467.6k 7 libsndfile 1 67.4k 18
libgit2 1 6110k 3 libheve 1 54.7k 11 libtiff 2 992k 14 libxml2 2 401.0k 17
libhtp 1 193k 1 libxml2 1 401.0k 3 lua 1 357k 4 openssl 6 913.0k 20
matio 1 350k 49 ndpi 1 429k 15 php 1 135M 16 poppler 3 241.0k 22
njs 1 1320k 10 openh264 1 146.0k 22 sqlite3 1 1.1k 20
php 2 1.35M 17 poppler 1 2410k 17
stb 1 936k 11 wireshark 1 527M 10
zstd 1 1100k 1

Total: 16 B, 8.56M LoC, 175 Bugs I Total: 18 B, 3.58M LoC, 138 Bugs

Overall Total: 34 B, 12.14M, 313 Bugs

fuzzers according to the current evaluation standards. FuzzBench primarily supports coverage-
based benchmarking procedures, but also facilitates post-hoc bug-based evaluations. To facilitate a
comparison with the results of Bohme et al. [7], who studied the agreement on outcome between a
coverage-based and a bug-based evaluation of fuzzers in FuzzBench, we reuse their experimental
setup and data.

Tools T (fuzzers). FuzzBench already integrates a diverse set of widely used fuzzers. The dataset
produced by Bohme et al. [7] includes many AFL-based fuzzers (incl. AFL [51], and AFL++ [17],
AFLFast [6], AFLSmart [37], FairFuzz [29], and MOPT [31]), two LibFuzzer-based fuzzers (Lib-
Fuzzer [42] and Entropic [5]), as well as Honggfuzz [45]. These fuzzers were used in the original
study by Béhme et al. [7], represent the current state-of-the-art, and were also integrated into
OSS-Fuzz [8]. From this dataset, we only exclude Eclipser [10] (which we also drop from our Magma
experiments) as it does not contain trial data on three benchmarks.

Benchmarks B. FuzzBench [34] facilitates the swift integration of any of the hundreds of open
source C/C++ programs that were previously added to the OSS-Fuzz [8] continuous fuzzing platform.
All of these programs are deemed crucial to the security of the internet. To minimize experimenter
bias, benchmarks and seed corpora are provided by the corresponding program maintainers.

For economic reasons, Bohme et al. [7] selected the benchmark set based on historical bug
density, prioritizing programs that were known to contain a high number of previously identified
bugs. To increase the statistical power of their analysis, they further selected only benchmarks
where at least 30% of fuzzers discovered any bugs. Notably, in their experiments, they include a
single benchmark for each of the programs, except for PHP, where they include two benchmarks.
However, for simplicity, they elevate each of them to be an independent benchmark. As shown in
Table 2, we include 16 benchmarks from the widely used open-source C/C++ programs found in
the FuzzBench benchmarking suite, spanning multiple computing domains.

Bug identification (post-hoc). To mitigate survivorship and confirmation bias, Bohme et al. [7]
use a post-hoc analysis. The bugs discovered by a fuzzer are identified in a semi-automated manner
using AddressSanitizer [43] as a bug detector, the standard OSS-Fuzz deduplication strategy to
cluster similar bug reports, and a manual deduplication to identify the unique set of bugs discovered
by a fuzzer. Concretely, after running the fuzzing campaigns, they automatically reduced thousands
of bug reports to 409 clusters and finally manually reduced this set to 235 unique bugs.

Computational infrastructure. The experiments are run within Ubuntu 16.04 Docker contain-
ers deployed on Google n1-standard-1 instances. Each instance has one virtual CPU core, 3.75 GB

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

FSE084:8 Madadi et al.

of RAM, and 30 GB of disk space. Bohme et al. [7] ran fuzzing campaigns for each fuzzer-benchmark
combination for 23 hours, repeating each between 20 and 30 times, for a total of more than 11
CPU years. In our experiments, for each fuzzer X benchmark combination, we select the first 20
instances of the trials for analysis.

3.3 Magma: Fuzzers and Benchmarks

Magma [25] is primarily a bug-based benchmarking platform with a large number of known bugs
in widely-used open source C/C++ programs. To maximize statistical power, Hazimeh et al. [25]
forward-ported a large number of previously discovered bugs to a single, most recent version of
the corresponding program.

Tools T (fuzzers). Magma supports a diverse set of widely-used fuzzers, including six of the nine
fuzzers supported by FuzzBench (i.e., AFL [51], AFL++ [17], AFLFast [6], FairFuzz [29], MOPT [31],
and Honggfuzz [45]). In addition to those six, Magma also supports an LLVM-based fuzzer that uses
lightweight instrumentation called Instrim [26] and an LLVM-based symbolic-execution-driven
whitebox fuzzer called SymCC[38]. Many Magma benchmarks are incompatible with in-process
fuzzers (i.e., they cannot be linked against the benchmark). Consequently, we exclude LibFuzzer
and Entropic from our Magma experiments.

Benchmarks B. We use Magma v1.2.0 [25], which integrates 21 benchmarks across nine open-
source C/C++ programs widely used in security-critical settings. Magma provides a ground truth
of 138 bugs that fuzzers are expected to find. The benchmark authors originally found these bugs
in older versions of the programs and forward-ported them into the current versions. As shown
in Table 2, we selected all 18/21 benchmarks that we were able to compile. Three benchmarks,
namely, (json, unserialize, and parser) from the PHP library did not compile for most fuzzers.
Moreover, consistent with the original Magma paper [25], SymCC fails to compile on exif, and we
therefore omit results for this combination.

Bug identification (forward-porting). Unlike the post-hoc bug identification in FuzzBench,
Magma uses manually inserted "canaries” that automatically report when a fuzzer has reached or
triggered the corresponding bug. A canary is implemented as an assertion that is violated when
the bug-triggering condition is satisfied.

Computational infrastructure. The experiments are conducted on the Ubuntu 24.04.3 LTS
64-bit (Linux 6.14.0-24-generic) operating system running on a single HP ProLiant DL580 Gen9
machine equipped with a 4x Intel Xeon E7-8867 v4 processor running at 2.40 GHz (72 cores/144
threads) and 3.0 TiB RAM. The fuzzing campaigns for each fuzzer X benchmark combination were
run for 23 hours and repeated 20 times, totaling more than five (5) CPU years.

Adding Support for Coverage Collection. The Magma experimental infrastructure does not
support the collection of code coverage information out-of-the-box. We implemented a new feature
to automatically record the current branch coverage achieved at regular intervals during a fuzzing
campaign, and to generate an integrated report that combines Magma’s bug-finding results with
our coverage results. In fact, the 11vm-cov tool, part of the LLVM compiler infrastructure, did not
support branch coverage until three versions after that, which is available in the default Magma
Docker images (LLVM 9 vs LLVM 12). To enable branch coverage, we forked Magma to build the
coverage harness with LLVM 15 to match the 11vm-cov version used by FuzzBench. We use this fork
only for instrumentation and post-processing, so the fuzzing campaigns are unaffected. We provide
this forked version of Magma and pipeline to the community for reproducibility (see section 9).

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

In Bugs We Trust? On Measuring the Randomness of a Fuzzer Benchmarking Outcome FSE084:9

3.4 Measures of Fuzzer Performance

In a coverage-based benchmarking procedure, we measure the branch coverage achieved, whereas
in a bug-based procedure, we measure the number of bugs found.

Code Coverage (#edges). Our measure of coverage is branch coverage, i.e., the number of
control-flow edges (#edges) exercised over time during a fuzzing campaign (higher is better).
Branch coverage subsumes statement coverage and is widely used as a proxy for code coverage
due to its effectiveness [19, 20, 27]. We measure branch coverage directly on the buggy program to
avoid the clean program assumption [9]. FuzzBench and Magma collect branch coverage using the
LLVM compiler instrumentation and tooling (11vm-cov). Compiled with the appropriate compiler
flags, the input queue of a fuzzing campaign is replayed, and per-input coverage is recorded with
the corresponding time stamps. For Magma, we implemented the recording of branch coverage
over time as a new feature.

Bug Finding (#bugs). Our measure of bug finding is the number of bugs found over time during
a fuzzing campaign (higher is better). The total number of known bugs differs between benchmark
programs: in Magma, this number is pre-determined, whereas in FuzzBench, it is unknown and
determined post hoc through semi-automated analysis with a sophisticated de-duplication process.
In Magma, we count the number of bugs “triggered”.

Ranking fuzzers in terms of performance. We model the computation of the benchmarking
outcome R = outcome(P, T) exactly as in FuzzBench [7] and Magma [25]. Given a fuzz benchmark b,
a set of fuzzers T, a performance measure m, a number of trials #trials (default 20), and a campaign
length I, we compute a benchmark-specific ranking R;, by ranking each fuzzer ¢t € T according to
its mean performance on b under m, measured at the end of the length-I campaign and averaged
over #trials trials, as follows.

#trials
Ry = {rl}ser = Rank (< Z M>) (6)
teT

#trials

Here, m(t, b, [) denotes a random measurement of fuzzer t on benchmark b with respect to measure
m at time . The function Rank maps a sequence of values to an ordering s.t. larger values correspond
to better performance (e.g., Rank({300, 700,400)) = (3, 1, 2)), breaking ties by random assignment
within equivalence classes to ensure unique rankings. Given a benchmarking procedure P = (B, m),
we define the overall benchmarking outcome as the ranking induced by the average rank across
benchmarks. Since smaller ranks indicate better performance, we negate the average rank before
applying Rank to ensure consistency:

outcome(P,T) = Rank(<—l%| Z rf>t€T) . (7)

beB

Split-half and proxy split-half reliability. For each benchmark subsetsizen € {1, ..., ||B|/2]}
and each evaluation metric m € {#edges, #bugs}, we estimate both split-half reliability (Equation 3)
and proxy split-half reliability (Equation 5) by sampling up to 10,000 unique disjoint benchmark
subset pairs (Bj, B;) without replacement where |B;| = |B;| = n and B; N B; = 0 and reporting the
mean correlation across samples. For efficiency, we avoid duplicated pairs (i.e., if (By, B;) is sampled,
then (By, By) is not). Our Magma experiment contains 18 benchmarks (n < 9), while FuzzBench
contains 16 benchmarks (n < 8).

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

FSE084:10 Madadi et al.

W Edges W= Bugs

FuzzBench (|B| = 16) 1.0
m 4 Interpretation ——— —
#edges | 0.843 ST T—— —
#bugs | 0373 WK s 05] ——
©
L
Magma (|B| = 13) g
m 7 Interpretation 5 00
#edges | 0.782 ST
#bugs | 0.603 MD
-0.5
(a) Mean split-half reliability. FuzzBench Magma

(b) Split-half reliability distributed over 10,000 randomly sampled bench-
mark subset pairs of size %, where |B|gs = 16 and |B|yc = 18.

Fig. 1. Concordance of bug- and coverage-based benchmarking for Magma and FuzzBench.

9 . e 'Y 9| e . e o o o © © 9l o . . e o o o 0 O
8 o g8jle e o o O O © O O 8| e . . e« o o © 0 O
%
o o H
d7|e o o © O @ @ + o| 7@ e o o © O O | 7/ o o o © O O O o
°
E6j[e o © @ © @ @ - | f6/@®@ @ o <+ o o O O o sle @ © o o O O O o
55|+ o © @ @ o @ 55|@ @ @ e o o @ e| 55/ @ ®© © © o o o o
2 2 5
£ £
Sale o © © @ © o - 54/ @ @ @ o + o o ol 10 © @ O O © o o o
g3 © @ O O o o iije © @ @ @ o o o .| File © @ @ O © o . -
5
z
20 @ © o o o o . 2l o © @ @ © ¢ o | 2006 ©6 ©6 ©6 O O o .
1 @ o 1le o © @ @ O © o . 1@ © © © o e o 3 .
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 5 6 7 8
Fuzzer ranking on benchmarks B, Fuzzer ranking on benchmarks B, Fuzzer ranking on benchmarks by #Edges
a) Concordance: m is #edges (FuzzBench) b) Concordance: m is #bugs (FuzzBench c) Proxy reliability (#edges vs #bugs; FuzzBench
8 g y y (Fedg g
s © ®@ 0 @ o - - o @ O O o ¢ s5c o o 0 0 0 O o
7\ - @ o 0 0 - c e @ 0 @ 0 o - - o 0 0 O O O
o . g’
& &
Sl - - - @ @ o O i .+ @0 0 0 @ O o c e © @ 0 O O
£ g 2
5 £ 5
g5l . . . o . ® o g5/ . . e ®© o o O %5 . . . e ©® o o o
c < 5
§ 5 3
> =
il @ @ @ - + + | fif. o o ¢ © O O @ e o 06 0 0 0 0 O
& s g
8 8 $
C c £
g 5]
53 o ® 06 0 - gs o o e o o o o ga ® © O o - ¢ o o
]
5
2
@ © @ O - . 2 @ o 2 . ® o -
® © ¢ @ - - 1@ o - . { @ @ @ o + o+ o e
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Fuzzer ranking on benchmarks By Fuzzer ranking on benchmarks B Fuzzer ranking on benchmarks by #Edges
(d) Concordance: m is #edges (Magma) (e) Concordance: m is #bugs (Magma) (f) Proxy reliability (#edges vs #bugs; Magma)

Fig. 2. Scatter plots of fuzzer rankings on metrics X vs. Y over 20 trials of 23 hours (X, Y € {#edges, #bugs}).
Circle size and color indicate frequency; colors span deep blue (1) to bright green (10000). For concordance
plots (a, b, d, e), rank pairs are treated as unordered (e.g., (1,3) and (3,1)), and their frequencies are averaged.

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

In Bugs We Trust? On Measuring the Randomness of a Fuzzer Benchmarking Outcome FSE084:11

4 Experimental Results
RQ.1 Concordance of Bug-based versus Coverage-based Benchmarking

We study the concordance of a bug-based versus a coverage-based fuzzer benchmarking procedure.
In other words, we empirically measure how reliable the outcome of a bug-based evaluation of
fuzzer performance is in comparison to that of a coverage-based evaluation.

Presentation. Figure 1.a shows the concordance between fuzzer rankings induced by branch
coverage (#edges) and bug discovery (#bugs). Figure 1.b shows the distribution of split-half reliability
over 10,000 random, disjoint pairs of benchmark subsets of size ligl, computed separately for each
performance measure on FuzzBench and Magma. Finally, Figure 2 depicts scatterplots of fuzzer
rankings across two disjoint benchmark subsets, using #edges (Fig. 2.a+d) and #bugs (Fig. 2.b+e),

for 10,000 random pairs (subset size 8 for FuzzBench and 9 for Magma).

Results. Asshown in Figure 1a, coverage-based benchmarking achieves higher concordance (0.78
on Magma, 0.84 on FuzzBench) than bug-based benchmarking (0.60 on Magma, 0.37 on FuzzBench).
While coverage-based concordance is consistently strong, bug-based concordance is at best moderate.
This suggests that coverage-based benchmarking provides more reliable and consistent fuzzer
rankings across benchmark subsets.

Notably, bug-based concordance differs sharply between Magma (0.60) and FuzzBench (0.37).
We hypothesize that this gap arises because Magma was explicitly designed as a ground-truth bug
benchmarking suite with over a hundred forward-ported bugs, whereas FuzzBench uses bugs that
organically exist and are thus much more sparsely distributed. We elaborate on these results below.

Coverage-based benchmarking (#edges). As shown in Figure 1, coverage-based benchmarking
exhibits strong (ST) concordance on both Magma and FuzzBench. In other words, if we ranked
fuzzers by branch coverage on two random benchmark subsets of equal size, the rankings would
strongly agree. The green box plots in Figure 1b further show that the variance of split-half reliability
across 10,000 randomly sampled disjoint pairs is low compared to bug-based benchmarking.

This concordance is most clearly illustrated in Figure 2. For FuzzBench (Fig. 2.a), points closely
aligned with the diagonal indicate strong agreement between ranks. For Magma (Fig. 2.a), two
distinct clusters emerge: fuzzers consistently ranked in the Top-4 (AFL++ [17], MOPT [31], Hongg-
fuzz [45], and SymCC [38]) and those consistently in the Bottom-4. A Top-4 fuzzer on one benchmark
subset rarely falls below fifth on another set. For more technical details on the performance of
these fuzzers, we refer to Hazimeh et al. [25].

Bug-based benchmarking (#bugs). As shown in Figure 1, bug-based benchmarking yields
markedly different concordance distributions on Magma and FuzzBench. On Magma, concordance
is moderate (MD, 0.60). The red box plots in Figure 1b show relatively low variance, with the median
half above the moderate (MD) threshold. Only the lower quartile reaches into disagreement (y < 0;
as low as NWK). Figure 2.e exhibits clustering similar to Magma’s coverage-based evaluation.

On FuzzBench, by contrast, concordance is only weak (WK, 0.37) as shown in Figure 1.a. The
ranking of fuzzers on FuzzBench in terms of the number of bugs found may not always agree very
well across two equi-sized random benchmark subsets. Figure 1.a shows a wide spread of split-half
reliability values. The lowest quartile even reaches into moderate disagreement (y < —0.4, NMD).
This spread is confirmed in Figure 2.b, which reveals a subtle diagonal valley starts from (1,6) to
(6,1), indicating that a fuzzer ranked first on one subset often falls to fourth through sixth on the
other. A manual inspection of the FuzzBench data suggests that this pattern arises from the wide
variation in an individual fuzzer’s performance across different benchmarks. A fuzzer may excel
on one benchmark but perform poorly on others. As a result, whether a benchmark that favors a

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

FSE084:12 Madadi et al.

Table 3. Concordance of coverage- and bug-based benchmarking procedures, measured via split-half reliabil-
ity, and inter-measure agreement on ranking between coverage- and bug-based fuzzer performance, both
evaluated on benchmark subsets of size n = | |B|/2].

Test FuzzBench Magma
nf 1] 2|3 |4|5]|6] 7|38 1|2 |3 4|56]|7]8]09

#edges [0.309]0.438]0.572[0.640|0.718]0.769| 0.809 | 0.843 || 0.346 | 0.474 | 0.601 | 0.659| 0.709 | 0.734 | 0.754 | 0.767 | 0.781

Split-half
#bugs [0.067]0.103]0.154]0.220 | 0.2580.3020.339| 0.373 | [0.181|0.274 0.368 | 0.442 | 0.500 | 0.545| 0.578 | 0.599 | 0.603

Proxy (#e vs #b) [0.162]0.245]0.347]0.421|0.483 | 0.541]0.590| 0.634] 0.187 | 0.328 | 0.414| 0.475 | 0.518 | 0.552 | 0.578| 0.599 | 0.613

given fuzzer falls into the first half or the second half can substantially change that fuzzer’s rank,
leading to large differences between the two half-set rankings.

-

RQ.1: While the concordance of coverage-based benchmarking is strong in both Magma and
FuzzBench, the concordance of bug-based benchmarking is only weak to moderate. In other words,
if we took two random benchmark subsets of equal size and ranked fuzzers by bug finding, the
resulting rankings would often differ. By contrast, if we ranked the same fuzzers by coverage,
we would expect the rankings to be almost identical. Across benchmarks, bug-based concordance
is notably higher on Magma (0.60), which includes a wide set of forward-ported bugs, than on
FuzzBench (0.37).

RQ.2 Concordance as a Function of Benchmarking Suite Size

We study how the concordance of coverage- and bug-based benchmarking procedures changes as
the size of the benchmarking suite increases.

Presentation. Table 3 reports concordance (split-half reliability) for benchmarking suite of size
2n, i.e., the agreement between rankings obtained from two disjoint subsets of size n. ‘Split-half’
rows correspond to rankings based on branch coverage (#edges) and bug discovery (#bugs) Figure 3
complements this by visualizing how concordance changes with benchmark subset size: the dotted
green line for #edges and the solid red line for #bugs.

Results. Concordance generally increases with the number of benchmarks for both performance
measures and both benchmarking suites. In comparison, coverage-based benchmarking shows a no-
ticeably faster rise in concordance than bug-based benchmarking. For both Magma and FuzzBench,
split-half reliability of coverage-based benchmarking exceeds the strong threshold (y > 0.7) once
the benchmarking suite size reaches 2n > 10 (i.e., n > 5). In contrast, bug-based benchmarking on
FuzzBench only attains the weak threshold (y > 0.1) at 2n = 2 (n = 1) and remains at that level up
to the maximum size of 2n = 16 (n = 8). On Magma, bug-based concordance reaches the moderate
threshold (y > 0.4) relatively early at 2n = 8 (n = 4). Still, the rate of increase diminishes as the set
grows, and it stays below the strong threshold (y > 0.7) until 2n = 18 (n = 9).

Single benchmark (n = 1). As a special case, we examine the agreement in benchmarking
outcomes when the same set of fuzzers is evaluated on one benchmark and then on another. On
FuzzBench, bug-based benchmarking shows only a negligible agreement (NG, 0.07): On FuzzBench,
the ranking of fuzzers in terms of the number of bugs found in one benchmark is effectively random
with respect to the ranking on another benchmark. On Magma, this agreement is weak (WK,
0.18), though barely above negligible. This suggests that using a single benchmark (n = 1) renders
bug-based benchmarking largely unreliable.

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

In Bugs We Trust? On Measuring the Randomness of a Fuzzer Benchmarking Outcome FSE084:13

o
®
o
®

\
\
!

o
S
\
\
o
=
\

o
N
kY
\
o
N
\

7 == #bugs vs #bugs
4 == #edges vs #bugs
= #edges vs #edges

Average agreement on ranking
\
\
\
\
1
Average agreement on ranking
\
AY
kY
\

o
IS}
o
o

7 8 1 2 8 9

3 4 5 .6 3 4 5 6 . 7
Benchmark subset size n Benchmark subset size n

(a) FuzzBench (b) Magma

Fig. 3. Concordance of coverage-based (green) and bug-based (red) benchmarking procedures, measured by
split-half reliability, and inter-measure agreement between coverage-based and bug-based fuzzer performance
rankings (blue). All quantities are average agreement on ranking (y-axis), evaluated on benchmark subsets of
size n = [|B|/2] (x-axis). Increasing n increases ranking stability by averaging over more benchmarks.

On Magma, bug-based benchmarking only reaches a moderate agreement (MD) after it reaches
benchmark subset size n = 4, whereas on FuzzBench it never rises above weak levels. In contrast,
even at n = 1, coverage-based benchmarking already achieves a weak agreement (WK, 0.35 on
Magma and 0.31 on FuzzBench), which quickly rises to moderate (MD) at n = 2 and strong (ST) atn =
5. Taken together, these results highlight the superior reliability of coverage-based benchmarking,
even with minimal benchmark sets.

(A
RQ.2: Concordance increases with benchmarking suite size for both coverage- and bug-based

benchmarking. However, coverage-based benchmarking achieves strong concordance with as few
as five benchmarks, while bug-based benchmarking remains weakly concordant on FuzzBench
and only moderately concordant on Magma, even with largest possible benchmark subset pairs.
Notably, with a single Benchmark (n = 1), coverage-based benchmarking already attains weak
concordance, i.e., there is some agreement between the rankings of fuzzers on two benchmarks in

terms of coverage, whereas bug-based benchmarking is largely unreliable.

RQ.3 Split-half Reliability versus Proxy Split-half Reliability

We investigate the comparison between the split-half reliability (as a measure of concordance) of
bug-based benchmarking and the proxy split-half reliability of coverage with respect to bugs. If the
proxy reliability of #edges with respect #bugs exceeds the mean split-half reliability of #bugs-based
benchmarking, then coverage-based benchmarking predicts the outcome of a bug-based evaluation
more reliably than bug-based benchmarking on itself.

Presentation. Figure 2.c+f shows scatter plots of proxy reliability, comparing fuzzer rankings by
#edges on one half of the benchmarks with their rankings by #bugs on the other half. The last row

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

FSE084:14 Madadi et al.

o
=)
o
=)

o
~
o
»

Average agreement on ranking
Average agreement on ranking

0.2 0.2
== #bugs vs #bugs
= #edges vs #edges
0.0 0.0
1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 172 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Benchmark subset size n Benchmark subset size n

(a) FuzzBench (b) Magma

Fig. 4. Agreement on ranking between a benchmarking procedure that uses the entire benchmarking suite
and one that uses a benchmark subset of size n for coverage- and bug-based benchmarking.

of Table 3 (‘Proxy (#b vs #e)’) reports how proxy reliability changes with benchmark subset size.
Finally, the dashed blue line in Figure 3 visualizes how proxy reliability evolves as the benchmark
subset size increases.

Results. For FuzzBench, the concordance of bug-based benchmarking is consistently worse than
the proxy split-half reliability of coverage- with respect to bug-based benchmarking. In other words,
evaluating the fuzzers in terms of #edges offers a more reliable prediction of the outcome of an
evaluation in terms of #bugs than an independent evaluation in terms of the #bugs itself. Proxy
split-half reliability relations increase monotonically with benchmark subset size, in line with the
increase in concordance. On FuzzBench, when the set size reaches n = 8, the proxy reliability
achieves moderate agreement (MD, 0.63), which is substantially higher than the bug-based split-half
reliability (0.37). This trend is persistent across all set sizes: in most cases, the proxy reliability is
nearly double that of the bug-based reliability.

This observation can be interpreted in light of the example discussed earlier comparing study
time and exam scores (Section 2.1). Bug-based benchmarking resembles exam scores with limited
discriminative power: bugs are sparse, their locations are unknown a priori, and triggering them
often depends on highly specific inputs, making outcomes sensitive to randomness. As a result,
performance on one benchmark subset does not necessarily translate into consistent performance on
another, leading to low split-half reliability. In contrast, coverage-based measures are analogous to
study time, reflecting a fuzzer’s sustained exploration effort rather than rare events. Consequently,
coverage-based rankings tend to be more stable across benchmark subsets and better predict
bug-based outcomes on unseen benchmarks than an independent bug-based evaluation itself.

For Magma, the concordance of bug-based benchmarking is at least comparable to the proxy
split-half reliability of coverage- with respect to bug-based benchmarking. Bug-based benchmarking
already achieves a moderate level of split-half and proxy reliability (MD, 0.60) at half size (n =9 =
|B|/2). The interpretation levels are generally identical across set sizes, except for n = 3, where
bug-based reliability is classified as weak (WK, 0.37) while the proxy reliability already reaches a

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

In Bugs We Trust? On Measuring the Randomness of a Fuzzer Benchmarking Outcome FSE084:15

Table 4. For each similarity threshold 6, we report the smallest |B’| that attains that agreement (top) and
the corresponding tree-years (bottom), computed as (|B’|/|B|) X TY, where |B|p = 16, |Blyc = 18, and
TYrp = TYymG = 6 tree-years.

Benchmarking FuzzBench Magma

Procedure 6=0.5 0.7 0.8 0.9 095 |0=05 0.7 0.8 0.9 0.95
1 3 4 6 9 1 2 4 8 13

#edges . . o Py sse | p . ss9 ses
3 6 9 13 15 1 5 8 14 17

#bugs ° PPy 200 oee osse | « o e920 oes ssae

moderate level (MD, 0.41). This outcome aligns with expectations: since bug-based benchmarking
on Magma already exhibits moderate concordance, using edge coverage as a proxy does not yield
substantial additional gains in predicting the outcome of bug-based evaluation. In other words, the
Magma bug exam provides a more reliable and discriminative signal than the FuzzBench bug exam.
However, it does offer marginal improvements in the smaller subsets.

RQ.3: Surprisingly, the outcome of a coverage-based evaluation is at least as reliable (and for
FuzzBench much more reliable) as a predictor of the outcome of a bug-based evaluation than an
independent bug-based evaluation with a different, equi-sized benchmark subset. On FuzzBench,
where bug-based concordance is weak, the proxy reliability is nearly twice as reliable as the baseline,
revealing that coverage-based benchmarking can be a more consistent predictor of bug-based
outcomes than bug-based benchmarking itself. On Magma, however, where bug-based concordance
is already moderate, a coverage-based evaluation brings only marginal gains, underscoring that the
striking advantage of coverage-based proxies emerges most clearly when bug-based benchmarking
performs poorly.

5 Concordance as Measure of Benchmarking Efficiency

To explore an application of concordance, we experimentally investigate whether a benchmarking
procedure with greater concordance is also more resource efficient. This is an important consideration
for green fuzzer benchmarking [35].

Carbon emissions of fuzzer benchmarking. We estimate that the experiments for Magma and
FuzzBench each emitted as much carbon dioxide as six trees can absorb in one year, i.e., six tree-years.
To maintain focus on the main hypothesis, we postpone the concrete modelling of these carbon
emissions to Appendix A. FuzzBench ran nine fuzzers on 16 benchmarks for 23 hours, repeating
these experiments 20 times on n1-standard-1 Google Cloud VM instances in the us-west1 region.
For Magma, we assume the same configuration but running 8 fuzzers on 18 benchmarks for 23
hours. This means that one CPU year of fuzzer benchmarking corresponds roughly to % tree years.
We are the first to model and study the carbon emissions of fuzzer benchmarking. This allows
us to quantify the savings of green fuzzer benchmarking [2, 35] and to study the reduction of
carbon emissions as a trade-off w.r.t. the reliability of the benchmarking outcome. Indeed, the
environmental cost of cloud computing can be substantial and is of general interest [3, 36, 40].

5.1 Green Fuzzer Benchmarking: Reducing Benchmarking Suite Size

The benchmark set (i.e., the benchmarking suite) of a procedure with greater concordance can be
more substantially reduced while maintaining a similar outcome. Specifically, given the similarity
threshold 6, benchmarking procedures P; = (B, m;) and P, = (B, my), as well as fuzzers T, let B; C B

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

FSE084:16 Madadi et al.

............... xe_cnonoo oo aliEn - i e——— o o

m\!‘f’ SOV xz'iv\/ AL A
;f»/ \.I -

o o
(<] ©
————
Ty
<

o
~

o
N

Average agreement on ranking
7 E
Average agreement on ranking

o
o
o
o

024 6 '8 10 12 14 16 18 20 22 024 6" '8 10 12 14 16 18 20 2’

Time (h) Time (h)
(a) FuzzBench (b) Magma

Fig. 5. Agreement on ranking y between a fuzzing campaign of length x and one of length 23 hours for
coverage- and bug-based benchmarking.

be the smallest subset of b s.t. 6 < agreement(outcome({(By, m1),T), outcome({(B, m;),T)) and let
By C B be the smallest subset of b s.t. 0 < agreement(outcome({By, mz2), T), outcome({B, mz),T)).
We study if the following is true: If y(Py, T) > y(P,, T), then |B;| < |Ba|.

Figure 4 shows how similar the outcome of a benchmarking procedure is if the benchmark set
was reduced to n benchmarks—for bug-based and coverage-based benchmarking, for FuzzBench
and Magma. Table 4 illustrates the savings in carbon emissions as a tradeoff against the reliability of
the benchmarking outcome. Given a similarity threshold 6, the table shows how many benchmarks
can be removed while preserving a similar outcome for coverage- and bug-based benchmarking.

Observation: For both Magma and FuzzBench, we find that the benchmark set of coverage-
based benchmarking—which exhibits higher concordance—can be reduced more substantially while
maintaining a similar benchmarking outcome as that of bug-based benchmarking.

For instance, as we can see in Table 4, using half of the benchmarks (i.e., fuzz drivers) would
be sufficient for coverage-based benchmarking to achieve at least a very strong agreement on
outcome (0 = 0.9) compared to running the procedure with the whole benchmarking suite. Yet,
three-quarters of the benchmark set is barely enough for FuzzBench to achieve the same similarity
threshold for bug-based benchmarking. The reduction in carbon emissions is more than twice for
coverage-based compared to bug-based benchmarking. For coverage-based benchmarking, even if
we used only three benchmarks (n = 3), we would achieve a strong agreement on outcome if we
used the entire benchmark set, which is five to six times larger, while for bug-based benchmarking,
such a small benchmark set would only achieve a moderate agreement.

5.2 Green Fuzzer Benchmarking: Reducing Campaign Length

We study whether the campaign length of a procedure with greater concordance can be more
substantially reduced while maintaining a similar benchmarking outcome. Specifically, given a simi-
larity threshold 6, two procedures P; and P,, fuzzers T and campaign length [, let outcome(P, T,) be

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

In Bugs We Trust? On Measuring the Randomness of a Fuzzer Benchmarking Outcome FSE084:17

Table 5. For each similarity threshold 6, we show the earliest time to reach it in minutes (top), and the
corresponding tree-years (bottom), computed as (|B’|/|B|) X TY, where |B|s = 16, |Blmc = 18, and TYpp =~
TYyc = 6 tree-years.

Benchmarking FuzzBench Magma

Procedure 6=05 0.7 0.8 0.9 095 | 0=0.5 0.7 0.8 0.9 0.95
15 15 45 60 300 15 30 30 90 345

#edges : : o ’ Y

105 180 180 1260 1275 15 240 240 1185 1230
#bugs ! e e eee oee o . see see
000 seq b se

the outcome of P on T at time [and let ¢g s.t. 6 = agreement(outcome(P;, T, ¢pgl), outcome(Py,T,1)).
In other words, the campaign length of P; can be reduced by a factor of ¢y while maintaining a
similar benchmark outcome (as determined by the similarity threshold 6). We study if the following
is true: If y(Py, T) > y(P,, T) at time I, then agreement(outcome(P,, T, ®yl), outcome(P,, T, 1)) < 0.

Observation: For both Magma and FuzzBench, we find that the campaign length of coverage-
based benchmarking—which exhibits higher concordance—can be reduced more substantially while
maintaining a similar benchmarking outcome as that of bug-based benchmarking.

As we can see in Figure 5, the agreement on the final ranking does vary quite substantially over
campaign length. Yet, the agreement with the final ranking of coverage-based benchmarking is
consistently higher than that of bug-based benchmarking. Clearly, there are more savings to be
expected for coverage-based benchmarking. Table 5 shows that running a coverage-based campaign
for 1 hour (or 1.5 hours) instead of 23 hours achieves benchmark outcomes that strongly agree, but
with carbon emissions of less than 3 tree months on FuzzBench (or 4.5 tree months on Magma).
Independently, Ounjai et al. [35] observe an agreement of 0.83 between a fuzzing campaign of
length 15 minutes (and substantially more benchmarks) and one of 23 hours in FuzzBench for
coverage-based benchmarking, which approximately aligns with our experiments.

6 Threats to Validity

We recognize several potential validity threats, which we categorize as internal, external, construct,
and conclusion validity. Each category outlines possible limitations and our mitigation strategies.

Internal Validity. The internal validity of our study could be subject to selection biases intro-
duced by Hazimeh et al. [25] and B6hme et al. [7] choice of programs, benchmarks, and fuzzers in
their respective studies. We mitigate these threats by analyzing random trials and benchmark subset
pairs, reducing the influence of randomness in fuzzing campaigns. We further analyze filtered
data from both FuzzBench and Magma, limiting bias from the idiosyncrasies of any single dataset.
Because FuzzBench draws its programs from OSS-Fuzz, it emphasizes bug-prone software and may
suffer from survivorship and selection biases [7]. However, since our study evaluates concordance
among benchmarking metrics rather than ranking fuzzers, these biases have limited impact on
our conclusions. Moreover, FuzzBench and Magma are popular and widely used, independently
developed fuzzer benchmarking platforms.

External Validity. The external validity, which pertains to the generalizability of our study to
other contexts, is affected by both the bug-detection approaches in Magma [25] and FuzzBench [7,
33] and the diversity of benchmarks and fuzzers. Magma forward-ports bugs to the latest program
versions, while FuzzBench relies on symbolized stack frames from crash reports [25, 33]. While this
already covers many bugs that fuzzer practitioners care about, it does not encompass all classes of

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

FSE084:18 Madadi et al.

bugs that do not result in crashes. Additionally, both datasets are constructed using C/C++ programs
and (mostly) gray-box fuzzers, which limits their applicability to other programming languages
and bug-detection methods. Moreover, our filtering for experimental consistency may bias results
toward a few particularly bug-prone benchmarks. To partially mitigate this threat, we evaluate
concordance in benchmarking results as the benchmark subset size increases (see section 4). A
broader evaluation will require more diverse programs, bugs, and fuzzing metrics.

Conclusion Validity. In this work, we treat fuzz harnesses as the unit of benchmarking. A
natural concern is that programs with more harnesses could exert disproportionate influence on the
benchmarking outcome. Mean split-half reliability mitigates this effect by construction. However,
it is not robust to artificial ties, for example, when multiple harnesses within a program tend to
detect the same bugs, thereby increasing the frequency of equal ranks. To address this concern,
we recomputed all analyses at the program level by aggregating each fuzzer’s performance across
the harnesses of each program. The interpretation of the results remained essentially unchanged,
except for one benchmarking suite procedure combination.

7 Related Work

Bohme et al. [7] found that while a strong correlation exists between a fuzzer’s ability to discover
bugs and its code coverage, rankings based on coverage do not strongly agree with those based on
bug-finding effectiveness. This discrepancy motivates our study, which analyzes the concordance
of fuzzer benchmarking procedures. Unlike their work, which examines the agreement between
different benchmarking metrics, we focus on the concordance of benchmarking procedures, and
specifically, the self-agreement between bug-based and coverage-based metrics. Our work re-
flects the reliability of benchmarking procedures, offering a more nuanced understanding of the
trustworthiness of bug-based and coverage-based metrics.

Zeller and Just [52] caution that incentivizing researchers to focus on success on a given bench-
mark ranking risks missing valuable insight and can lead to fragile conclusions stemming from
results that overfit to the benchmark and may not generalize. They also highlight that tools con-
tributing to new code coverage gains remain very much relevant even if these gains do not lead to
finding new bugs. Our work introduces a framework for measuring the stability of benchmarking
procedures. Across suites, bug-based rankings are noisy and sensitive to the choice of benchmark
set and the bug selection approach (e.g., ad-hoc vs. forward porting). However, coverage-based
rankings are substantially more stable, enabling repeatable comparative insight.

In recent work, researchers frequently use code coverage as a proxy for assessing the bug-finding
capabilities of test suites, based on the assumption that uncovered code cannot reveal bugs [7].
However, Li et al. [30] caution against relying on a single metric for fuzzer evaluation, advocating
for a multidimensional approach that captures diverse performance characteristics. They argue
that variations in instrumentation and crash analysis can introduce bias. Code coverage—typically
measured by exercised program branches often correlates with bug-finding metrics like bug count
or time to first bug, but its reliability as a predictor remains under scrutiny. Gopinath et al. [24]
find strong correlations between coverage and bug discovery for developer-provided test suites and
moderate-to-strong correlations for auto-generated suites, despite low coverage levels. Similarly,
Gligoric et al. [20] report strong coverage-bug discovery correlations. In contrast, Wei et al. [49]
highlight that over 50% of bugs emerge in the late stages of fuzzing, where coverage gains are
minimal, suggesting a weaker correlation between coverage and fault discovery.

Beyond coverage-based concerns, recent work critiques the reliability of fuzzer evaluation
metrics, highlighting biases in bug-based measures and statistical shortcomings in benchmarking
procedures. Gavrilov et al. [18] argue that bug-based metrics suffer from ambiguities in defining

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

In Bugs We Trust? On Measuring the Randomness of a Fuzzer Benchmarking Outcome FSE084:19

“bugs” and challenges in mapping inputs to bug discovery, proposing an evaluation framework
based on behavioral changes over time. Schloegel et al. [39] emphasize statistical rigor in fuzzing
evaluations, warning that insufficient trial repetitions and weak statistical analyses undermine
reproducibility. They call for stricter evaluation guidelines to improve research reliability. Unlike
prior work, our study examines both intra-metric agreement (internal consistency) and inter-metric
agreement across coverage- and bug-based metrics to assess their predictive reliability.

Limitations in current benchmarks are further underscored by Zhang et al. [53], who argue that
existing benchmarks often fail to capture the complexity of real-world bugs due to challenges in
translating intricate vulnerabilities into standardized tests. Hazimeh et al. critique fuzzer evaluation
metrics such as crash count, noting inaccuracies stemming from imperfect deduplication. They
propose comparing fuzzers based on real-world bugs found, despite the lack of a standardized
“bug” definition. Their work introduces a benchmarking suite that incorporates real bugs into
actual software, aiming to standardize fuzzer evaluation across diverse benchmarks [25]. To our
knowledge, this is the first rigorous evaluation of concordance in fuzzer benchmarking, assessing
the consistency of these metrics across different benchmark sets.

8 Conclusion

In this work, we establish concordance as an important property for assessing the reliability of a
benchmarking procedure. A procedure with low concordance yields fairly unreliable outcomes,
characterized by low internal consistency. For instance, we found that a bug-based evaluation in
FuzzBench has a weak concordance. So weak in fact that the outcome of a coverage-based evaluation
agrees more with the outcome of a bug-based evaluation than with the bug-based evaluation itself.

Our analysis of FuzzBench and Magma results suggests that if we require a bug-based bench-
marking evaluation to have a high concordance, then its outcome aligns very well with code
coverage evaluation. In some sense, coverage-based benchmarking produces outcomes that are at
least somewhat representative of a bug-based evaluation with high concordance.

9 Data Availability and Reproducibility

For transparency and reproducibility, we provide our scripts, which contain the full data analysis
script along with all generated tables and figures. This resource is available at:

https://github.com/ardier/in_bugs_we_trust/

Acknowledgments

We thank the anonymous reviewers for their constructive feedback and for helping us improve
this paper. This research is partially funded by the European Union. Views and opinions expressed
are however those of the author(s) only and do not necessarily reflect those of the European
Union or the European Research Council Executive Agency. Neither the European Union nor the
granting authority can be held responsible for them. This work is supported by ERC grant (Project
AT_SCALE, 101179366). It is also partially funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

A Modelling Energy Consumption of Fuzzing Campaigns

We use the modeling of carbon emissions from cloud resources by Lannelongue et al. [28], which
is widely used in academia. Bohme et al. [7] conduct 23-hour trials on a n1-standard-1 VM (1
vCPU = one core, 3.75 GiB RAM) [23]. Among the five Intel Xeon models supporting this instance,
we use the E5-2696v2’s specifications, as it is a representative mid-range CPU.

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

https://github.com/ardier/in_bugs_we_trust/

FSE084:20 Madadi et al.

The energy consumption E for the FuzzBench experiments is estimated as follows:
E=t-(n.-P.-uc+ny- Py, PUE (8)

where t = 23 hours, n, = 2880 = 16 benchmarks - 9 fuzzers - 20 trials, per-core draw P, = 10W [12],
u. = 1 (we assume full per-core utilization because fuzzers saturate CPUs), n,,, = 10800 = n, - 3.75
GiB of RAM, P,, = 0.375 W per GiB [14, 28], and PUE is dependent on the cloud service provider.
For us-west1, a low-carbon region [22], Google reports a trailing twelve-month average PUE of
1.1 for this region [21]. Finally, we get E = 831.11 kWh.

According to World Resources Institute [50], the location-based carbon emissions are given by:

C=ExCL 9)

where CI is the carbon intensity (in KgCOzeq/kWh) for the specific cloud region [28] and E is the
energy consumption (in kWh) of the fuzzing experiments. The us-west1 region has a grid carbon
intensity of 79 gCO,e/kWh, i.e., less than half that of the second-lowest North American region
(us-west2 at 169 gCO,e/kWh) [22]. Hence, the carbon footprint C (in KgCO;e) is computed as
C = 65.658 KgCO2eq.

A common way to communicate carbon emissions is as the number of tree-years required to
sequester the emitted CO,e. Let St = 11 kg COze tree™! yr~! denote the amount a mature tree
sequesters in one year (= ZOT)‘?), following Akbari [1]. Thus, the required tree-years to sequester the

.. . C
emissions TY is TY = Z£ = % ~ 6 tree-years.

Assuming the same configuration for MAGMA, we estimate Epg = 825.33 kWh, Cyg = Emg X CI =
825.33 X 0.079 = 65.20 kg COze, and TYmG = Cma/St = 65.20/11 = 5.93 tree-years.

References

[1] Hashem Akbari. 2002. Shade trees reduce building energy use and CO2 emissions from power plants. Environmental
pollution 116 (2002), S119-S126.

[2] Seyed Behnam Andarzian, Cristian Daniele, and Erik Poll. 2023. Green-Fuzz: Efficient fuzzing for network protocol
implementations. In International Symposium on Foundations and Practice of Security. Springer, 253-268.

[3] Hanan Awwad, Changyuan Lin, Rabab Ward, and Mohammad Shahrad. 2025. Estimating the Carbon Footprint of
Serverless Functions on a Public Cloud Platform. In Proceedings of the 3rd Workshop on SErverless Systems, Applications
and MEthodologies. 12-20.

[4] J Martin Bland and DouglasG Altman. 1986. Statistical methods for assessing agreement between two methods of
clinical measurement. The lancet 327, 8476 (1986), 307-310.

[5] Marcel Bshme, Valentin JM Manes, and Sang Kil Cha. 2020. Boosting fuzzer efficiency: An information theoretic
perspective. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 678—689.

[6] Marcel Bohme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-based greybox fuzzing as markov chain.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. 1032-1043.

[7] Marcel B6hme, Laszl Szekeres, and Jonathan Metzman. 2022. On the reliability of coverage-based fuzzer benchmarking.
In Proceedings of the 44th International Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22).
Association for Computing Machinery, New York, NY, USA, 1621-1633. doi:10.1145/3510003.3510230

[8] Oliver Chang, Jonathan Metzman, Max Moroz, Martin Barbella, and Abhishek Arya. 2016. OSS-Fuzz: Continuous
Fuzzing for Open Source Software. https://github.com/google/oss-fuzz. Accessed: 2025-03-04.

[9] Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark Harman. 2017. An empirical study on mutation,
statement and branch coverage fault revelation that avoids the unreliable clean program assumption. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE, IEEE, Buenos Aires, Argentina, 597-608.

[10] Jaeseung Choi, Joonun Jang, Choongwoo Han, and Sang Kil Cha. 2019. Grey-box concolic testing on binary code. In
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 736-747.

[11] Jose M Cortina. 1993. What is coefficient alpha? An examination of theory and applications. Journal of applied
psychology 78, 1 (1993), 98.

[12] CPU Benchmark. n.d.. Intel Xeon E5-2696V2 Processor 2.5 GHz - CPU Benchmark. https://www.cpubenchmark.net.
Accessed: 2025-09-04.

[13] Lee J Cronbach. 1951. Coefficient alpha and the internal structure of tests. psychometrika 16, 3 (1951), 297-334.

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

https://doi.org/10.1145/3510003.3510230
https://github.com/google/oss-fuzz
https://www.cpubenchmark.net

In Bugs We Trust? On Measuring the Randomness of a Fuzzer Benchmarking Outcome FSE084:21

[14] Crucial. [n.d.]. How much power does memory use? https://www.crucial.com/support/articles-faq-memory/how-

much-power-does-memory-use. [Accessed 05-09-2025].

Haroon Elahi and Guojun Wang. 2024. Forward-porting and its limitations in fuzzer evaluation. Information Sciences

662 (2024), 120142. do0i:10.1016/j.ins.2024.120142

Leonard S Feldt. 1969. A test of the hypothesis that cronbach’s alpha or kuder-richardson coefficent twenty is the

same for two tests. Psychometrika 34, 3 (1969), 363-373.

[17] Andrea Fioraldi, Dominik Maier, Heiko Eiffeldt, and Marc Heuse. 2020. AFL++ : Combining Incremental Steps of
Fuzzing Research. In 14th USENIX Workshop on Offensive Technologies (WOOT 20). USENIX Association, Virtual Event,
12 pages. https://www.usenix.org/conference/woot20/presentation/fioraldi

[18] Miroslav Gavrilov, Kyle Dewey, Alex Groce, Davina Zamanzadeh, and Ben Hardekopf. 2020. A practical, principled
measure of fuzzer appeal: A preliminary study. In 2020 IEEE 20th International Conference on Software Quality, Reliability
and Security (QRS). IEEE, 510-517.

[19] Gregory Gay. 2017. Generating effective test suites by combining coverage criteria. In International Symposium on
Search Based Software Engineering. Springer, 65-82.

[20] Milos Gligoric, Alex Groce, Chaogiang Zhang, Rohan Sharma, Mohammad Amin Alipour, and Darko Marinov. 2015.
Guidelines for coverage-based comparisons of non-adequate test suites. ACM Transactions on Software Engineering
and Methodology (TOSEM) 24, 4 (2015), 1-33.

[21] Google. n.d.. Power usage effectiveness. https://datacenters.google/efficiency/. Accessed: 2025-09-04.

[22] Google Cloud. n.d.. Carbon free energy for Google Cloud regions. https://cloud.google.com/sustainability/region-

carbon. Accessed: 2025-09-04.

Google Cloud. n.d.. CPU platforms - Compute Engine Documentation. https://cloud.google.com/compute/docs/cpu-

platforms. Accessed: 2025-09-04.

[24] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Code coverage for suite evaluation by developers. In Proceedings
of the 36th international conference on software engineering. 72-82.

[25] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-Truth Fuzzing Benchmark. Proc. ACM
Meas. Anal. Comput. Syst. 4, 3, Article 49 (Dec. 2020), 29 pages. doi:10.1145/3428334

[26] Chin-Chia Hsu, Che-Yu Wu, Hsu-Chun Hsiao, and Shih-Kun Huang. 2018. Instrim: Lightweight instrumentation

for coverage-guided fuzzing. In Symposium on Network and Distributed System Security (NDSS), Workshop on Binary

Analysis Research, Vol. 40. NDSS, San Diego, CA, USA, 7 pages.

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018. Evaluating fuzz testing. In Proceedings

of the 2018 ACM SIGSAC conference on computer and communications security. 2123-2138.

[28] Loic Lannelongue, Jason Grealey, and Michael Inouye. 2021. Green algorithms: quantifying the carbon footprint of
computation. Advanced science 8, 12 (2021), 2100707.

[29] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy for increasing greybox fuzz testing
coverage. In Proceedings of the 33rd ACM/IEEE international conference on automated software engineering. 475-485.

[30] Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang, Wei-Han Lee, Yueyao Chen, Chenyang Lyu, Chunming Wu, Raheem
Beyah, Peng Cheng, et al. 2021. {UNIFUZZ}: A holistic and pragmatic {Metrics-Driven} platform for evaluating
fuzzers. In 30th USENIX Security Symposium (USENIX Security 21). 2777-2794.

[31] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and Raheem Beyah. 2019. {MOPT}:
Optimized mutation scheduling for fuzzers. In 28th USENIX security symposium (USENIX security 19). 1949-1966.

[32] J Laird Marshall and Edward H Haertel. 1975. A Single-Administration Reliability Index for Criterion-Referenced Tests:
The Mean Split-Half Coefficient of Agreement. (1975).

[33] Jonathan Metzman, Laszl6 Szekeres, Laurent Simon, Read Sprabery, and Abhishek Arya. 2021. Fuzzbench: an open
fuzzer benchmarking platform and service. In Proceedings of the 29th ACM joint meeting on European software engineering
conference and symposium on the foundations of software engineering. 1393-1403.

[34] Jonathan Metzman, Laszlé Szekeres, Laurent Simon, Read Sprabery, and Abhishek Arya. 2021. Fuzzbench: an open
fuzzer benchmarking platform and service. In Proceedings of the 29th ACM joint meeting on European software engineering
conference and symposium on the foundations of software engineering. 1393-1403.

[35] Jiradet Ounjai, Valentin Wiistholz, and Maria Christakis. 2023. Green fuzzer benchmarking. In Proceedings of the 32nd

ACM SIGSOFT International Symposium on Software Testing and Analysis. 1396-1406.

Pratyush Patel, Theo Gregersen, and Thomas Anderson. 2024. An agile pathway towards carbon-aware clouds. ACM

SIGENERGY Energy Informatics Review 4, 3 (2024), 10-17.

[37] Van-Thuan Pham, Marcel Bohme, Andrew E Santosa, Alexandru Razvan Ciciulescu, and Abhik Roychoudhury. 2019.

Smart greybox fuzzing. IEEE Transactions on Software Engineering 47, 9 (2019), 1980-1997.

Sebastian Poeplau and Aurélien Francillon. 2020. Symbolic execution with {SymCC}: Don’t interpret, compile!. In

29th USENIX Security Symposium (USENLX Security 20). 181-198.

[15

—

(16

—

—

[23

—_

[27

—

[36

—_

[38

[t

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

https://www.crucial.com/support/articles-faq-memory/how-much-power-does-memory-use
https://www.crucial.com/support/articles-faq-memory/how-much-power-does-memory-use
https://doi.org/10.1016/j.ins.2024.120142
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://datacenters.google/efficiency/
https://cloud.google.com/sustainability/region-carbon
https://cloud.google.com/sustainability/region-carbon
https://cloud.google.com/compute/docs/cpu-platforms
https://cloud.google.com/compute/docs/cpu-platforms
https://doi.org/10.1145/3428334

FSE084:22 Madadi et al.

[39] Moritz Schloegel, Nils Bars, Nico Schiller, Lukas Bernhard, Tobias Scharnowski, Addison Crump, Arash Ale-Ebrahim,
Nicolai Bissantz, Marius Muench, and Thorsten Holz. 2024. SoK: Prudent Evaluation Practices for Fuzzing. In 2024 IEEE
Symposium on Security and Privacy (SP). IEEE, San Francisco, CA, USA, 1974-1993. doi:10.1109/SP54263.2024.00137

[40] Ian Schneider and Taylor Mattia. 2024. Carbon accounting in the Cloud: a methodology for allocating emissions across

data center users. arXiv preprint arXiv:2406.09645 (2024).

Patrick Schober, Christa Boer, and Lothar Schwarte. 2018. Correlation Coefficients: Appropriate Use and Interpretation.

Anesthesia & Analgesia 126 (02 2018), 1. doi:10.1213/ANE.0000000000002864

[42] Kostya Serebryany. 2021. libFuzzer - a library for coverage-guided fuzz testing. https://llvm.org/docs/LibFuzzer.html

Online; accessed 16-August-2021.

Kostya Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. 2012. AddressSanitizer: A Fast

Address Sanity Checker. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC). USENIX, Boston,

MA, USA, 309-318. https://api.semanticscholar.org/CorpusID:11024896

[44] Charles Spearman. 1961. The proof and measurement of association between two things. (1961).

[45] Robert Swiecki. 2021. Honggfuzz. https://github.com/google/honggfuzz Online; accessed 10-October-2024.

[46] Howard EA Tinsley and Steven D Brown. 2000. Handbook of applied multivariate statistics and mathematical modeling.
Academic press.

[47] Howard EA Tinsley and David] Weiss. 2000. Interrater reliability and agreement. In Handbook of applied multivariate

statistics and mathematical modeling. Elsevier, 95-124.

Matthijs J Warrens. 2015. On Cronbach’s alpha as the mean of all split-half reliabilities. In Quantitative Psychology

Research: The 78th Annual Meeting of the Psychometric Society. Springer, 293-300.

[49] Yi Wei, Bertrand Meyer, and Manuel Oriol. 2008. Is branch coverage a good measure of testing effectiveness? Springer,
194-212.

[50] World Resources Institute. 2004. The Greenhouse Gas Protocol. World Resources Institute and World Business Council

for Sustainable Development: Washington, DC, USA (2004).

Michat Zalewski. 2021. american fuzzy lop. https://lcamtuf.coredump.cx/afl/. [Online; accessed 10.0ct.2024].

Andreas Zeller and Sascha Just. 2019. When Results Are All That Matters: Consequences. https://fuzzing-survey.org/

blog/when-results-are-all-that-matters-consequences. Accessed: 2026-01-11.

[53] Zenong Zhang, Zach Patterson, Michael Hicks, and Shiyi Wei. 2022. FIXREVERTER: A Realistic Bug Injection

Methodology for Benchmarking Fuzz Testing. In 31st USENIX Security Symposium (USENIX Security 22). USENIX

Association, Boston, MA, 3699-3715. https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-

zenong

Qingqing Zhu and Patricia A. Lowe. 2018. The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation.

SAGE, 2455 Teller Road, Thousand Oaks, CA 91320, USA, Chapter Split-Half Reliability, pages 1573-1574; pages

1573-1574.

[41

—

[43

[t}

—

[48

—

[51
[52

—

[54

—

Received 2025-09-12; accepted 2025-12-22

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.

https://doi.org/10.1109/SP54263.2024.00137
https://doi.org/10.1213/ANE.0000000000002864
https://llvm.org/docs/LibFuzzer.html
https://api.semanticscholar.org/CorpusID:11024896
https://github.com/google/honggfuzz
https://lcamtuf.coredump.cx/afl/
https://fuzzing-survey.org/blog/when-results-are-all-that-matters-consequences
https://fuzzing-survey.org/blog/when-results-are-all-that-matters-consequences
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-zenong
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-zenong

	Abstract
	1 Introduction
	2 Concordance of a Benchmarking Procedure
	2.1 Agreement on Outcome
	2.2 Concordance of a Procedure

	3 Experimental Setup
	3.1 Research Questions
	3.2 FuzzBench: Fuzzers and Benchmarks
	3.3 Magma: Fuzzers and Benchmarks
	3.4 Measures of Fuzzer Performance

	4 Experimental Results
	5 Concordance as Measure of Benchmarking Efficiency
	5.1 Green Fuzzer Benchmarking: Reducing Benchmarking Suite Size
	5.2 Green Fuzzer Benchmarking: Reducing Campaign Length

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	9 Data Availability and Reproducibility
	Acknowledgments
	A Modelling Energy Consumption of Fuzzing Campaigns
	References

