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In Google’s FuzzBench platform, we find that the outcome of coverage-based evaluation more strongly agrees

with the outcome of a bug-based evaluation than an independent bug-based evaluation itself. Recently, Böhme

et al. found that despite a very strong correlation between coverage achieved and bugs found, there is no strong

agreement between the outcome of a coverage- and a bug-based evaluation: The fuzzer best at achieving

coverage may be the worst at finding bugs. However, in trying to explain this moderate agreement, we

wondered whether the outcome of bug-based benchmarking itself is perhaps much more “noisy” and turned

to applied statistics to develop the tools necessary to investigate our hypothesis.

In this paper, we call this degree of “noisiness” of a benchmarking outcome the concordance of the bench-
marking procedure and quantify it using a measure of statistical reliability widely used in psychology, called

mean split-half reliability, i.e., the expected agreement on the benchmark outcome between two random halves

of the benchmarking suite. In our experiments with FuzzBench and Magma, we find that the concordance

of coverage-based benchmarking is consistently strong while that of bug-based benchmarking is weak on

FuzzBench and moderate on Magma. In contrast to FuzzBench, for the Magma benchmark suite (which was

designed for bug-based evaluation) a coverage-based evaluation does not predict the outcome of a bug-based

evaluation better than an independent bug-based evaluation.

Moreover, to demonstrate the utility of concordance also for developers of benchmarking suites, we investi-

gate concordance as a measure of benchmarking efficiency, as in green fuzzer benchmarking. We empirically

confirm that the resources of a procedure with higher concordance can be reduced more substantially (in

terms of campaign length or benchmark sampling size) while maintaining a similar benchmark outcome as a

procedure with lower concordance. We report the corresponding savings in terms of carbon emissions.
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1 Introduction
Fuzzing continues to gain popularity in the industry due to its effectiveness and ease of adoption.

As the field evolves, an increasing number of fuzzers continue to emerge–each claiming to best

others in some performance metric. The most direct way to compare fuzzers is by measuring

their effectiveness in finding bugs, i.e., bug-based benchmarking. However, a post-hoc analysis as
in FuzzBench [33] requires substantial computational resources (after all, bugs are rare), while a

ground-truth based analysis as in Magma [25] might feature various sources of bias [15]. Hence, a

common approach remains coverage-based benchmarking where the coverage a fuzzer achieves

serves as a proxy for the bugs it can find. After all, it can only find bugs in code that it executes.

Recently, with the release of new benchmarking suites like Magma [25] and the integration

of bug-based benchmarks into FuzzBench [34], bug-based benchmarking has become a viable

option. The latest version of Magma forward-ports 138 bugs across nine programs. Forward porting

reintegrates and verifies the reproducibility of previously discovered bugs in stable–or even the

latest–versions of these programs, ensuring they are compatible with various fuzzers. Meanwhile,

FuzzBench counts bugs in a post-hoc analysis where the number of bugs found by a fuzzer is

determined after the campaigns were run without any expectation of which bugs to find.

While both bug-based and coverage-based benchmarking evaluate fuzzer effectiveness, previous

work [7] highlights an intriguing discrepancy between them: Although a very strong correlation

exists between a fuzzer’s ability to discover bugs and to achieve code coverage, the outcome of a

coverage-based evaluation does not strongly agree with that of a bug-based evaluation. One possible

explanation is that bugs are just much more sparsely distributed than coverage elements, which

might lead to greater variability in the benchmarking outcome. This raises a key question: “Does
bug-based benchmarking exhibit a greater randomness than coverage-based benchmarking?"
We refer to this randomness as the procedure’s concordance. The concordance reflects how

consistently a benchmarking procedure rates tool performance, or equivalently, the degree to

which randomness influences the procedure’s outcome. We quantify concordance using split-half
reliability [11], which is commonly used in psychology to evaluate the statistical reliability of

a test. The mean split-half reliability is the expected agreement on the procedure’s benchmark

outcome between two random halves of the benchmarking suite.
1
If the outcomes (dis)agree to a

large degree, then the procedure is said to have a (low) high concordance.

Based on over 100,000 CPU hours (≈ 11 CPU years) of fuzzing campaigns conducted using

FuzzBench [34] andMagma [25], we analyze the concordance of bug- and coverage-based evaluation.

For FuzzBench, we leverage the publicly available dataset created by Böhme et al. [7], which covers

20 fuzzing campaigns of 23 hours each for nine fuzzers applied to 24 C benchmarks, resulting in bug

findings in 16 benchmarks. ForMagma, we conduct our own experiment of a similar scale and closely

aligned with the FuzzBench setup, comprising 20 fuzzing campaigns of 23 hours for each of eight

fuzzers on 18 C benchmarks. We find a strong concordance for coverage-based benchmarking: The
ranking of fuzzers in terms of branch coverage achieved is similar across independent benchmark

subsets.

We only find a weak to moderate concordance for bug-based benchmarking. In FuzzBench, the

split-half reliability of the ranking of fuzzers based on the number of bugs found in 23 hours is

weak. Consider two disjoint, equi-sized benchmark subsets 𝑏1 and 𝑏2 randomly sampled from the

FuzzBench benchmarking suite. The ranking of fuzzers in terms of bugs found on 𝑏1 only weakly

agrees with the ranking of fuzzers in terms of bugs found on 𝑏2. Counterintuitively, the agreement is

stronger when𝑇 are ranked on𝑏1 using coverage and𝑇 are ranked on𝑏2 using bug counts, compared

to evaluating both subsets using bug counts alone. In other words, for FuzzBench, a coverage-based

1
A benchmark is an element (e.g., a fuzz driver or a program) in a benchmarking suite (e.g., FuzzBench or Magma).

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.



In Bugs We Trust? On Measuring the Randomness of a Fuzzer Benchmarking Outcome FSE084:3

evaluation is more predictive of the outcome of a bug-based evaluation than an independent bug-based
evaluation itself, due to that high degree of outcome randomness. This might explain the previous

results by Böhme et al. [7] who observe that there is no strong agreement between the outcomes of

coverage- and bug-based benchmarking in FuzzBench. For Magma, which is designed for bug-based

evaluation, the concordance is moderate. Still, a coverage-based evaluation is equally predictive

of the outcome of an independent bug-based evaluation. These findings establish coverage-based

evaluation as a reliable benchmarking procedure.

Finally, to demonstrate the utility of concordance also for developers of benchmarking suites,

we investigate concordance as a measure of benchmarking efficiency. As evident in our experiments,

fuzzer benchmarking can have an extremely high carbon footprint. Green fuzzer benchmarking

[35] is an effort to reduce the carbon footprint of fuzzer benchmarking substantially. We empirically

confirm that the amount of resources necessary for a procedure with higher concordance can

be reduced more substantially (in terms of campaign length or benchmarking suite size) while

maintaining a similar outcome compared to a procedure with lower concordance. We provide the

first model of the ecological footprint of fuzzer benchmarking and report the corresponding savings

in terms of carbon emissions.

In summary, this paper makes the following contributions:

• We define the concept and measure of concordance for a benchmarking procedure and argue

that a high-quality benchmarking procedure offers a high degree of concordance.

• We evaluate the concordance of bug-based and coverage-based benchmarking on FuzzBench

and Magma, and find that the outcome of coverage-based benchmarking exhibits a substantially

greater concordance. Notably, the outcome of a coverage-based evaluation is as effective as, or

better than, a bug-based one in predicting the outcome of an independent bug-based evaluation.

• We establish concordance as a measure of benchmarking efficiency and show that the bench-

mark subset and campaign length for coverage-based can be reduced more substantially while

maintaining a similar benchmark outcome as bug-based benchmarking.

• We make our code, data, and analysis publicly available. Full details for reproducing our experi-

ments can be found at: https://github.com/ardier/in_bugs_we_trust/.

2 Concordance of a Benchmarking Procedure
Benchmarking procedure. The purpose of benchmarking is to compare two or more tools on

a set of benchmarks in terms of their performance. A tool solves a particular problem where the

benchmark suite is expected to represent instances of that problem. For instance, since fuzzers are

designed to discover bugs in programs, one might define the benchmark suite as a collection of

programs containing bugs. A measure of performance quantifies how well a tool solves a problem

instance. For instance, one might measure the performance of a fuzzer in terms of the number

of bugs it can find in a benchmark or, in their absence, the code coverage it can achieve. More

formally, a benchmarking procedure 𝑃 = ⟨𝐵,𝑚⟩ specifies the benchmark suite 𝐵 and the measure of

performance𝑚.

Benchmarking outcome. Given a set of tools 𝑇 , we define the outcome of a benchmarking

procedure 𝑃 = ⟨𝐵,𝑚⟩ as the ranking of 𝑇 with respect to the performance measure 𝑚 on the

benchmark suite 𝐵, denoted by outcome(𝑃,𝑇 ) or 𝑅:

outcome(𝑃,𝑇 ) = 𝑅 = {𝑟 𝑡 }𝑡 ∈𝑇 . (1)

If there are only two tools𝑇 = {𝑡1, 𝑡2}, we call this an analysis of superiority, and can also measure

the effect size and statistical significance of the difference in performance of 𝑡1 and 𝑡2 to assess
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Table 1. Interpretation of measures of agreement (and concordance), following Schober et al. [41].

Range Interpretation ID Range Interpretation ID
-0.00 to -0.09 Negligible disagreement NNG 0.00 to 0.09 Negligible agreement NG

-0.10 to -0.39 Weak disagreement NWK 0.10 to 0.39 Weak agreement WK

-0.40 to -0.69 Moderate disagreement NMD 0.40 to 0.69 Moderate agreement MD

-0.70 to -0.89 Strong disagreement NST 0.70 to 0.89 Strong agreement ST

-0.90 to -1.00 Very strong disagreement NVS 0.90 to 1.00 Very strong agreement VS

the impact of randomness across repetitions on the outcome. Throughout this paper, we report

rankings over three or more tools, and suggest to break ties at random for an unbiased evaluation.

2.1 Agreement on Outcome
Given two benchmarking procedures 𝑃1 and 𝑃2, we can define their agreement on the outcome for a
set of tools 𝑇 as the degree of similarity between the corresponding rankings of 𝑇 using 𝑃1 and 𝑃2,

respectively. If we consider a benchmarking procedure as a rater of the tools’ performance, then

𝑃1’s and 𝑃2’s agreement on outcome is also called inter-rater agreement [46].

Agreement vs correlation. Given two performance measures𝑚1 and𝑚2 and a benchmark set

𝐵, and a set of tools 𝑇 , it is possible that the performance of 𝑡 ∈ 𝑇 on 𝐵 in terms of𝑚1 and𝑚2 is

strongly correlated. Yet, procedures 𝑃1 = ⟨𝐵,𝑚1⟩ and 𝑃2 = ⟨𝐵,𝑚2⟩ may only moderately agree on

the outcome for a set of tools 𝑇 . As Schober et al. [41] highlight, "two variables can exhibit a high

degree of correlation but at the same time disagree substantially." Similarly, Bland and Altman [4]

note that two measures of the same construct may not always strongly agree, even if they correlate

highly.

Example. Consider students’ study time and exam scores. Although studying more generally leads

to higher exam scores on average (high correlation), rankings based on study time and exam

performance may not strongly agree. This could be especially the case when exam outcomes are

influenced by stochastic factors, such as exam randomness or differences in study effectiveness

(e.g., which topics the questions are drawn from), as well as students’ conditions on the exam day.

Computing agreement. We compute the agreement between two rankings 𝑅1 = {𝑟 𝑡
1
}𝑡 ∈𝑇 and

𝑅2 = {𝑟 𝑡
2
}𝑡 ∈𝑇 of a set of tools𝑇 using Spearman’s rank correlation or equivalently Pearson’s correla-

tion as the data are already ordinal [41]. The correlation coefficient ranges from -1 to 1. We interpret

negative values as disagreement and positive values as agreement; the magnitude | · | indicates
the strength of that (dis-)agreement. Table 1 summarizes this interpretation. Specifically, assuming

a unique ranking for each tool in 𝑅1 and 𝑅2, we can compute the agreement agreement (𝑅1, 𝑅2)
between two rankings 𝑅1 and 𝑅2 using Spearman’s rank correlation coefficient, i.e.,

agreement (𝑅1, 𝑅2) = 1 −
6

∑
𝑡 ∈𝑇

(
𝑟 𝑡
1
− 𝑟 𝑡

2

)
2

𝑛𝑇 (𝑛2𝑇 − 1)
where 𝑛𝑇 = |𝑇 |. (2)

Fuzzer benchmarking. In earlier work [7], we studied the agreement on outcome between

coverage- and bug-based evaluation procedures for fuzzers 𝑇 and benchmarks 𝐵 in the FuzzBench

benchmarking platform [33], e.g., agreement (outcome(⟨𝐵, #edges⟩,𝑇 ), outcome(⟨𝐵, #bugs⟩,𝑇 )). In-
deed, while the coverage achieved (#edges) and the number of bugs found (#bugs) are strongly

correlated (i.e., a fuzzer that achieves more coverage also finds more bugs), the ranking of fuzzers in

terms of coverage achieved and bugs found agrees only moderately (i.e., the fuzzer best at achieving

coverage may be the worst at finding bugs). We used this result to propose reporting empirical
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results for both coverage- and bug-based benchmarking when evaluating fuzzer performance.

However, what we seemed to miss is that the outcome of a bug-based evaluation itself may be
substantially noisy: even two bug-based evaluations on disjoint, random, equally sized benchmark

subsets may not strongly agree. This is precisely the subject of our study.

2.2 Concordance of a Procedure
We let the concordance of a benchmarking procedure 𝑃 = ⟨𝐵,𝑚⟩ measure how “noisy” the outcome

of 𝑃 is when evaluating a set of tools using𝑚 over the set of all unique partitions of 𝐵 into two

disjoint, equi-sized subsets 𝐵1 and 𝐵2. Informally, concordance measures how reliably the outcome

of 𝑃 predicts the tools’ performance on an unknown benchmark set of the same size. Treating a

benchmarking procedure 𝑃 as a rater of tool performance, we interpret the concordance of 𝑃 as the

statistical reliability of 𝑃 , specifically its internal consistency.

Split-half reliability (𝛾 ). We measure the concordance 𝛾 (𝑃,𝑇 ) of a benchmarking procedure 𝑃

on tools 𝑇 using the mean split-half reliability [13, 32, 48, 54]. Split-half reliability is widely used in

psychology as a measure of the statistical reliability of a survey and indicates the extent to which

survey questions on a scale consistently measure the same underlying concept.

Themean split-half reliability of the procedure 𝑃 = ⟨𝐵,𝑚⟩ given tools𝑇 is the expected agreement

in outcome between two procedures 𝑃1 = ⟨𝐵1,𝑚⟩ and 𝑃2 = ⟨𝐵2,𝑚⟩, where 𝐵1 and 𝐵2 range over all

unique disjoint halves of the benchmark suite 𝐵, i.e.,

𝛾 (𝑃,𝑇 ) = 1

|𝑆𝐵 |
∑︁

⟨𝐵1,𝐵2 ⟩∈𝑆𝐵

agreement (outcome(⟨𝐵1,𝑚⟩,𝑇 ), outcome(⟨𝐵2,𝑚⟩,𝑇 )) (3)

where

𝑆𝐵 =

{
⟨𝐵1, 𝐵2⟩

���� (𝐵1, 𝐵2 ⊆ 𝐵) ∧ (𝐵1 ∩ 𝐵2 = ∅) ∧
(
|𝐵1 | = |𝐵2 | =

⌊
|𝐵 |
2

⌋) }
(4)

Technically, for a benchmark suite 𝐵 of size |𝐵 |, 𝛾 (𝑃,𝑇 ) only computes the expected reliability of

subsets of size ⌊|𝐵 |/2⌋ rather than the entirety of the benchmark suite. While we do not use it in

this paper (as it is a simple monotonic transformation and hampers an intuitive interpretation),

the Spearman–Brown formula 2𝛾 (𝑃,𝑇 )/(1 + 𝛾 (𝑃,𝑇 )) can adjust the value to the full benchmark set

of size |𝐵 |. The mean split-half reliability is also related to Cronbach’s alpha [13], another widely
used measure of reliability. Under the equal-variance assumption, alpha provides a conservative

lower-bound estimate of the mean split-half reliability when scaled to the full benchmark suite [48].

As an aside, the split-half reliability defined over a particular split ⟨𝐵1, 𝐵2⟩ ∈ 𝑆𝐵 (as originally

conceived by Charles Spearman and William Brown [44]) is sensitive to how the benchmarks 𝑏 ∈ 𝐵

are divided between 𝐵1 and 𝐵2. In our case, one half 𝐵1 may contain benchmarks with a lot of bugs

while the the other half 𝐵2 may not contain any bugs at all. The mean split-half reliability reduces

the influence of any particular split [13].

Proxy split-half reliability (𝜔). Intuitively, the mean split half reliability also measures how

"predictive" the outcome on one half of the benchmark suite is of the outcome on the other half

using the same performance measure𝑚orig. To evaluate how predictive the outcome using a proxy

measure𝑚proxy is of the outcome using the original measure𝑚orig, in comparison, we define the

proxy split-half reliability. We assume that𝑚proxy and𝑚orig both measure the same latent construct

(i.e., fuzzer effectiveness) [16], which is also precisely what permits a comparison with split-half

reliability [47]. Specifically, given two measures𝑚proxy and𝑚orig—if the split-half reliability for

a𝑚orig-based evaluation is lower than the proxy split-half reliability of a𝑚proxy w.r.t.𝑚orig, then

a𝑚proxy-based evaluation is more predictive of the outcome of a𝑚orig-based evaluation than an

independent𝑚orig-based evaluation itself.

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.
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Example. Imagine the above situation arises when𝑚proxy is #edges (coverage achieved) and𝑚orig

is #bugs (the number of bugs found). Then, it means that a coverage-based evaluation is more

predictive of bug-based outcomes than an independent bug-based evaluation.

Given a set of tools 𝑇 , a set of benchmarks 𝐵, and two measures𝑚proxy and𝑚orig of the tools’

performance, we compute the proxy split-half reliability 𝜔 (𝑚proxy,𝑚orig, 𝐵,𝑇 ) of a benchmarking

procedure using 𝑚proxy w.r.t. a procedure using 𝑚orig as the expected agreement on outcome

between two procedures 𝑃1 = ⟨𝐵1,𝑚proxy⟩ and 𝑃2 = ⟨𝐵2,𝑚orig⟩ using all unique, disjoint halves 𝐵1

and 𝐵2 of 𝐵, i.e.,

𝜔 (𝑚proxy,𝑚orig, 𝐵,𝑇 )

=
1

|𝑆𝐵 |
∑︁

⟨𝐵1,𝐵2 ⟩∈𝑆𝐵

agreement (outcome(⟨𝐵1,𝑚proxy⟩,𝑇 ), outcome(⟨𝐵2,𝑚orig⟩,𝑇 )). (5)

where 𝑆𝐵 is defined as in Equation (4). For efficiency, instead of evaluating over all possible splits in

𝑆𝐵 , we approximate these reliabilities using maximum likelihood estimates on a random subset of

𝑆𝐵 . Specifically, both 𝛾 (𝑃,𝑇 ) and 𝜔 (𝑚proxy,𝑚orig, 𝐵,𝑇 ) are estimated by 𝛾 and 𝜔̂ , which compute

the average agreement over a random subset 𝑆 ⊆ 𝑆𝐵 of a given size.

3 Experimental Setup
In this paper, we primarily investigate the concordance of bug-based and coverage-based bench-

marking, and examine whether the outcome of a coverage-based evaluation can be a better predictor

of the outcome of a bug-based evaluation than an independent bug-based evaluation itself.

Second, we explore the potential of our proposed concordance measure as a predictor of bench-

marking efficiency. Specifically, we conjecture that, given sufficient effort, it is possible to substan-

tially reduce the size of benchmark subsets for highly concordant procedures while incurring only

a negligible impact on the benchmarking outcome.

The research questions and experimental setup for the first part are presented in this section,

with corresponding results reported in Section 4. Under the same experimental setup, the second

part is discussed in Section 5.

3.1 ResearchQuestions
• RQ.1 (Concordance). What is the concordance of a bug- versus a coverage-based fuzzer bench-

marking procedure? In other words, how reliable is the outcome of a bug-based evaluation of

fuzzer performance in comparison to that of a coverage-based evaluation?

• RQ.2 (Concordance as a Function of Benchmarking Suite Size). How does the concordance of a

benchmarking procedure behave as the size of the benchmarking suite increases?

• RQ.3 (Split-half Reliability versus Proxy Split-half Reliability). How does the concordance of bug-

based benchmarking compare to the agreement on outcome between coverage- and bug-based

benchmarking? If proxy split-half reliability is higher, then the outcome of a coverage-based

evaluation better predicts the outcome of a bug-based evaluation than an independent bug-based

evaluation itself.

Open Science. We make both our datasets and analysis script available in section 9.

3.2 FuzzBench: Fuzzers and Benchmarks
FuzzBench [34] is a fuzzer benchmarking platform developed and computationally supported by

Google to help the fuzzing community (incl. fuzzer developers, maintainers, and users) evaluate
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Table 2. Programs used from FuzzBench and Magma datasets. #B is the number of benchmarks (fuzz drivers);
Size is the number of lines of code (LoC); KB is the number of known bugs.

FuzzBench Magma

Name #B Size #KB Name #B Size #KB Name #B Size #KB Name #B Size #KB

aspell 1 30.0k 1 grok 1 23.6k 4 libpng 1 467.6k 7 libsndfile 1 67.4k 18

libgit2 1 611.0k 3 libhevc 1 54.7k 11 libtiff 2 99.2k 14 libxml2 2 401.0k 17

libhtp 1 19.3k 1 libxml2 1 401.0k 3 lua 1 35.7k 4 openssl 6 913.0k 20

matio 1 35.0k 49 ndpi 1 42.9k 15 php 1 1.35M 16 poppler 3 241.0k 22

njs 1 132.0k 10 openh264 1 146.0k 22 sqlite3 1 1.1k 20

php 2 1.35M 17 poppler 1 241.0k 17

stb 1 93.6k 11 wireshark 1 5.27M 10

zstd 1 110.0k 1

Total: 16 B, 8.56M LoC, 175 Bugs Total: 18 B, 3.58M LoC, 138 Bugs

Overall Total: 34 B, 12.14M, 313 Bugs

fuzzers according to the current evaluation standards. FuzzBench primarily supports coverage-

based benchmarking procedures, but also facilitates post-hoc bug-based evaluations. To facilitate a

comparison with the results of Böhme et al. [7], who studied the agreement on outcome between a

coverage-based and a bug-based evaluation of fuzzers in FuzzBench, we reuse their experimental

setup and data.

Tools𝑇 (fuzzers). FuzzBench already integrates a diverse set of widely used fuzzers. The dataset

produced by Böhme et al. [7] includes many AFL-based fuzzers (incl. AFL [51], and AFL++ [17],

AFLFast [6], AFLSmart [37], FairFuzz [29], and MOPT [31]), two LibFuzzer-based fuzzers (Lib-

Fuzzer [42] and Entropic [5]), as well as Honggfuzz [45]. These fuzzers were used in the original

study by Böhme et al. [7], represent the current state-of-the-art, and were also integrated into

OSS-Fuzz [8]. From this dataset, we only exclude Eclipser [10] (which we also drop from our Magma

experiments) as it does not contain trial data on three benchmarks.

Benchmarks 𝐵. FuzzBench [34] facilitates the swift integration of any of the hundreds of open

source C/C++ programs that were previously added to the OSS-Fuzz [8] continuous fuzzing platform.

All of these programs are deemed crucial to the security of the internet. To minimize experimenter

bias, benchmarks and seed corpora are provided by the corresponding program maintainers.

For economic reasons, Böhme et al. [7] selected the benchmark set based on historical bug

density, prioritizing programs that were known to contain a high number of previously identified

bugs. To increase the statistical power of their analysis, they further selected only benchmarks

where at least 30% of fuzzers discovered any bugs. Notably, in their experiments, they include a

single benchmark for each of the programs, except for PHP, where they include two benchmarks.

However, for simplicity, they elevate each of them to be an independent benchmark. As shown in

Table 2, we include 16 benchmarks from the widely used open-source C/C++ programs found in

the FuzzBench benchmarking suite, spanning multiple computing domains.

Bug identification (post-hoc). To mitigate survivorship and confirmation bias, Böhme et al. [7]

use a post-hoc analysis. The bugs discovered by a fuzzer are identified in a semi-automated manner

using AddressSanitizer [43] as a bug detector, the standard OSS-Fuzz deduplication strategy to

cluster similar bug reports, and a manual deduplication to identify the unique set of bugs discovered

by a fuzzer. Concretely, after running the fuzzing campaigns, they automatically reduced thousands

of bug reports to 409 clusters and finally manually reduced this set to 235 unique bugs.

Computational infrastructure. The experiments are run within Ubuntu 16.04 Docker contain-

ers deployed on Google n1-standard-1 instances. Each instance has one virtual CPU core, 3.75 GB

Proc. ACM Softw. Eng., Vol. 3, No. FSE, Article FSE084. Publication date: July 2026.



FSE084:8 Madadi et al.

of RAM, and 30 GB of disk space. Böhme et al. [7] ran fuzzing campaigns for each fuzzer-benchmark

combination for 23 hours, repeating each between 20 and 30 times, for a total of more than 11

CPU years. In our experiments, for each fuzzer × benchmark combination, we select the first 20

instances of the trials for analysis.

3.3 Magma: Fuzzers and Benchmarks
Magma [25] is primarily a bug-based benchmarking platform with a large number of known bugs

in widely-used open source C/C++ programs. To maximize statistical power, Hazimeh et al. [25]

forward-ported a large number of previously discovered bugs to a single, most recent version of

the corresponding program.

Tools𝑇 (fuzzers). Magma supports a diverse set of widely-used fuzzers, including six of the nine

fuzzers supported by FuzzBench (i.e., AFL [51], AFL++ [17], AFLFast [6], FairFuzz [29], MOPT [31],

and Honggfuzz [45]). In addition to those six, Magma also supports an LLVM-based fuzzer that uses

lightweight instrumentation called Instrim [26] and an LLVM-based symbolic-execution-driven

whitebox fuzzer called SymCC[38]. Many Magma benchmarks are incompatible with in-process

fuzzers (i.e., they cannot be linked against the benchmark). Consequently, we exclude LibFuzzer

and Entropic from our Magma experiments.

Benchmarks 𝐵. We use Magma v1.2.0 [25], which integrates 21 benchmarks across nine open-

source C/C++ programs widely used in security-critical settings. Magma provides a ground truth

of 138 bugs that fuzzers are expected to find. The benchmark authors originally found these bugs

in older versions of the programs and forward-ported them into the current versions. As shown

in Table 2, we selected all 18/21 benchmarks that we were able to compile. Three benchmarks,

namely, (json, unserialize, and parser) from the PHP library did not compile for most fuzzers.

Moreover, consistent with the original Magma paper [25], SymCC fails to compile on exif, and we

therefore omit results for this combination.

Bug identification (forward-porting). Unlike the post-hoc bug identification in FuzzBench,

Magma uses manually inserted ”canaries” that automatically report when a fuzzer has reached or

triggered the corresponding bug. A canary is implemented as an assertion that is violated when

the bug-triggering condition is satisfied.

Computational infrastructure. The experiments are conducted on the Ubuntu 24.04.3 LTS

64-bit (Linux 6.14.0-24-generic) operating system running on a single HP ProLiant DL580 Gen9

machine equipped with a 4× Intel Xeon E7-8867 v4 processor running at 2.40 GHz (72 cores/144

threads) and 3.0 TiB RAM. The fuzzing campaigns for each fuzzer × benchmark combination were

run for 23 hours and repeated 20 times, totaling more than five (5) CPU years.

Adding Support for Coverage Collection. The Magma experimental infrastructure does not
support the collection of code coverage information out-of-the-box. We implemented a new feature

to automatically record the current branch coverage achieved at regular intervals during a fuzzing

campaign, and to generate an integrated report that combines Magma’s bug-finding results with

our coverage results. In fact, the llvm-cov tool, part of the LLVM compiler infrastructure, did not

support branch coverage until three versions after that, which is available in the default Magma

Docker images (LLVM 9 vs LLVM 12). To enable branch coverage, we forked Magma to build the

coverage harness with LLVM 15 to match the llvm-cov version used by FuzzBench. We use this fork

only for instrumentation and post-processing, so the fuzzing campaigns are unaffected. We provide

this forked version of Magma and pipeline to the community for reproducibility (see section 9).
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3.4 Measures of Fuzzer Performance
In a coverage-based benchmarking procedure, we measure the branch coverage achieved, whereas

in a bug-based procedure, we measure the number of bugs found.

Code Coverage (#edges). Our measure of coverage is branch coverage, i.e., the number of

control-flow edges (#edges) exercised over time during a fuzzing campaign (higher is better).

Branch coverage subsumes statement coverage and is widely used as a proxy for code coverage

due to its effectiveness [19, 20, 27]. We measure branch coverage directly on the buggy program to

avoid the clean program assumption [9]. FuzzBench and Magma collect branch coverage using the

LLVM compiler instrumentation and tooling (llvm-cov). Compiled with the appropriate compiler

flags, the input queue of a fuzzing campaign is replayed, and per-input coverage is recorded with

the corresponding time stamps. For Magma, we implemented the recording of branch coverage

over time as a new feature.

Bug Finding (#bugs). Our measure of bug finding is the number of bugs found over time during

a fuzzing campaign (higher is better). The total number of known bugs differs between benchmark

programs: in Magma, this number is pre-determined, whereas in FuzzBench, it is unknown and

determined post hoc through semi-automated analysis with a sophisticated de-duplication process.

In Magma, we count the number of bugs “triggered”.

Ranking fuzzers in terms of performance. We model the computation of the benchmarking

outcome 𝑅 = outcome(𝑃,𝑇 ) exactly as in FuzzBench [7] and Magma [25]. Given a fuzz benchmark 𝑏,

a set of fuzzers 𝑇 , a performance measure𝑚, a number of trials #trials (default 20), and a campaign

length 𝑙 , we compute a benchmark-specific ranking 𝑅𝑏 by ranking each fuzzer 𝑡 ∈ 𝑇 according to

its mean performance on 𝑏 under𝑚, measured at the end of the length-𝑙 campaign and averaged

over #trials trials, as follows.

𝑅𝑏 = {𝑟𝑏𝑡 }𝑡 ∈𝑇 = Rank

(〈
#trials∑︁ 𝑚(𝑡, 𝑏, 𝑙)

#trials

〉
𝑡 ∈𝑇

)
(6)

Here,𝑚(𝑡, 𝑏, 𝑙) denotes a random measurement of fuzzer 𝑡 on benchmark 𝑏 with respect to measure

𝑚 at time 𝑙 . The function Rankmaps a sequence of values to an ordering s.t. larger values correspond

to better performance (e.g., Rank(⟨300, 700, 400⟩) = ⟨3, 1, 2⟩), breaking ties by random assignment

within equivalence classes to ensure unique rankings. Given a benchmarking procedure 𝑃 = ⟨𝐵,𝑚⟩,
we define the overall benchmarking outcome as the ranking induced by the average rank across

benchmarks. Since smaller ranks indicate better performance, we negate the average rank before

applying Rank to ensure consistency:

outcome(𝑃,𝑇 ) = Rank

(〈
− 1

|𝐵 |
∑︁
𝑏∈𝐵

𝑟𝑏𝑡

〉
𝑡 ∈𝑇

)
. (7)

Split-half and proxy split-half reliability. For each benchmark subset size𝑛 ∈ {1, . . . , ⌊|𝐵 |/2⌋}
and each evaluation metric𝑚 ∈ {#𝑒𝑑𝑔𝑒𝑠, #𝑏𝑢𝑔𝑠}, we estimate both split-half reliability (Equation 3)

and proxy split-half reliability (Equation 5) by sampling up to 10,000 unique disjoint benchmark

subset pairs ⟨𝐵1, 𝐵2⟩ without replacement where |𝐵1 | = |𝐵2 | = 𝑛 and 𝐵1 ∩ 𝐵2 = ∅ and reporting the

mean correlation across samples. For efficiency, we avoid duplicated pairs (i.e., if ⟨𝐵1, 𝐵2⟩ is sampled,

then ⟨𝐵2, 𝐵1⟩ is not). Our Magma experiment contains 18 benchmarks (𝑛 ≤ 9), while FuzzBench

contains 16 benchmarks (𝑛 ≤ 8).
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FuzzBench ( |𝐵 | = 16)

𝑚 𝛾 Interpretation

#edges 0.843 ST
#bugs 0.373 WK

Magma ( |𝐵 | = 18)

𝑚 𝛾 Interpretation

#edges 0.782 ST
#bugs 0.603 MD

(a) Mean split-half reliability.

(b) Split-half reliability distributed over 10,000 randomly sampled bench-
mark subset pairs of size |𝐵 |

2
, where |𝐵 |FB = 16 and |𝐵 |MG = 18.

Fig. 1. Concordance of bug- and coverage-based benchmarking for Magma and FuzzBench.

(a) Concordance: m is #edges (FuzzBench) (b) Concordance: m is #bugs (FuzzBench) (c) Proxy reliability (#edges vs #bugs; FuzzBench)

(d) Concordance: m is #edges (Magma) (e) Concordance: m is #bugs (Magma) (f) Proxy reliability (#edges vs #bugs; Magma)

Fig. 2. Scatter plots of fuzzer rankings on metrics 𝑋 vs. 𝑌 over 20 trials of 23 hours (𝑋,𝑌 ∈ {#edges, #bugs}).
Circle size and color indicate frequency; colors span deep blue (1) to bright green (10000). For concordance
plots (𝑎, 𝑏, 𝑑, 𝑒), rank pairs are treated as unordered (e.g., (1, 3) and (3, 1)), and their frequencies are averaged.
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4 Experimental Results
RQ.1 Concordance of Bug-based versus Coverage-based Benchmarking
We study the concordance of a bug-based versus a coverage-based fuzzer benchmarking procedure.

In other words, we empirically measure how reliable the outcome of a bug-based evaluation of

fuzzer performance is in comparison to that of a coverage-based evaluation.

Presentation. Figure 1.a shows the concordance between fuzzer rankings induced by branch

coverage (#edges) and bug discovery (#bugs). Figure 1.b shows the distribution of split-half reliability

over 10,000 random, disjoint pairs of benchmark subsets of size
|𝐵 |
2
, computed separately for each

performance measure on FuzzBench and Magma. Finally, Figure 2 depicts scatterplots of fuzzer

rankings across two disjoint benchmark subsets, using #edges (Fig. 2.a+d) and #bugs (Fig. 2.b+e),

for 10,000 random pairs (subset size 8 for FuzzBench and 9 for Magma).

Results. As shown in Figure 1a, coverage-based benchmarking achieves higher concordance (0.78

on Magma, 0.84 on FuzzBench) than bug-based benchmarking (0.60 on Magma, 0.37 on FuzzBench).

While coverage-based concordance is consistently strong, bug-based concordance is at bestmoderate.
This suggests that coverage-based benchmarking provides more reliable and consistent fuzzer

rankings across benchmark subsets.

Notably, bug-based concordance differs sharply between Magma (0.60) and FuzzBench (0.37).

We hypothesize that this gap arises because Magma was explicitly designed as a ground-truth bug

benchmarking suite with over a hundred forward-ported bugs, whereas FuzzBench uses bugs that

organically exist and are thus much more sparsely distributed. We elaborate on these results below.

Coverage-based benchmarking (#edges). As shown in Figure 1, coverage-based benchmarking

exhibits strong (ST) concordance on both Magma and FuzzBench. In other words, if we ranked

fuzzers by branch coverage on two random benchmark subsets of equal size, the rankings would

strongly agree. The green box plots in Figure 1b further show that the variance of split-half reliability

across 10,000 randomly sampled disjoint pairs is low compared to bug-based benchmarking.

This concordance is most clearly illustrated in Figure 2. For FuzzBench (Fig. 2.a), points closely

aligned with the diagonal indicate strong agreement between ranks. For Magma (Fig. 2.a), two

distinct clusters emerge: fuzzers consistently ranked in the Top-4 (AFL++ [17], MOPT [31], Hongg-

fuzz [45], and SymCC [38]) and those consistently in the Bottom-4. A Top-4 fuzzer on one benchmark

subset rarely falls below fifth on another set. For more technical details on the performance of

these fuzzers, we refer to Hazimeh et al. [25].

Bug-based benchmarking (#bugs). As shown in Figure 1, bug-based benchmarking yields

markedly different concordance distributions on Magma and FuzzBench. On Magma, concordance

ismoderate (MD, 0.60). The red box plots in Figure 1b show relatively low variance, with the median

half above the moderate (MD) threshold. Only the lower quartile reaches into disagreement (𝛾 < 0;

as low as NWK). Figure 2.e exhibits clustering similar to Magma’s coverage-based evaluation.

On FuzzBench, by contrast, concordance is only weak (WK, 0.37) as shown in Figure 1.a. The

ranking of fuzzers on FuzzBench in terms of the number of bugs found may not always agree very

well across two equi-sized random benchmark subsets. Figure 1.a shows a wide spread of split-half

reliability values. The lowest quartile even reaches into moderate disagreement (𝛾 ≤ −0.4, NMD).

This spread is confirmed in Figure 2.b, which reveals a subtle diagonal valley starts from (1,6) to

(6,1), indicating that a fuzzer ranked first on one subset often falls to fourth through sixth on the

other. A manual inspection of the FuzzBench data suggests that this pattern arises from the wide

variation in an individual fuzzer’s performance across different benchmarks. A fuzzer may excel

on one benchmark but perform poorly on others. As a result, whether a benchmark that favors a
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Table 3. Concordance of coverage- and bug-based benchmarking procedures, measured via split-half reliabil-
ity, and inter-measure agreement on ranking between coverage- and bug-based fuzzer performance, both
evaluated on benchmark subsets of size 𝑛 = ⌊|𝐵 |/2⌋.

Test FuzzBench Magma
n 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9

Split-half

#edges 0.309 0.438 0.572 0.640 0.718 0.769 0.809 0.843 0.346 0.474 0.601 0.659 0.709 0.734 0.754 0.767 0.781

#bugs 0.067 0.103 0.154 0.220 0.258 0.302 0.339 0.373 0.181 0.274 0.368 0.442 0.500 0.545 0.578 0.599 0.603

Proxy (#e vs #b) 0.162 0.245 0.347 0.421 0.483 0.541 0.590 0.634 0.187 0.328 0.414 0.475 0.518 0.552 0.578 0.599 0.613

given fuzzer falls into the first half or the second half can substantially change that fuzzer’s rank,

leading to large differences between the two half-set rankings.

RQ.1: While the concordance of coverage-based benchmarking is strong in both Magma and
FuzzBench, the concordance of bug-based benchmarking is only weak to moderate. In other words,
if we took two random benchmark subsets of equal size and ranked fuzzers by bug finding, the
resulting rankings would often differ. By contrast, if we ranked the same fuzzers by coverage,
we would expect the rankings to be almost identical. Across benchmarks, bug-based concordance
is notably higher on Magma (0.60), which includes a wide set of forward-ported bugs, than on
FuzzBench (0.37).

RQ.2 Concordance as a Function of Benchmarking Suite Size
We study how the concordance of coverage- and bug-based benchmarking procedures changes as

the size of the benchmarking suite increases.

Presentation. Table 3 reports concordance (split-half reliability) for benchmarking suite of size

2𝑛, i.e., the agreement between rankings obtained from two disjoint subsets of size 𝑛. ‘Split-half’

rows correspond to rankings based on branch coverage (#edges) and bug discovery (#bugs) Figure 3

complements this by visualizing how concordance changes with benchmark subset size: the dotted

green line for #edges and the solid red line for #bugs.

Results. Concordance generally increases with the number of benchmarks for both performance

measures and both benchmarking suites. In comparison, coverage-based benchmarking shows a no-

ticeably faster rise in concordance than bug-based benchmarking. For both Magma and FuzzBench,

split-half reliability of coverage-based benchmarking exceeds the strong threshold (𝛾 > 0.7) once

the benchmarking suite size reaches 2𝑛 ≥ 10 (i.e., 𝑛 ≥ 5). In contrast, bug-based benchmarking on

FuzzBench only attains the weak threshold (𝛾 ≥ 0.1) at 2𝑛 = 2 (𝑛 = 1) and remains at that level up

to the maximum size of 2𝑛 = 16 (𝑛 = 8). On Magma, bug-based concordance reaches the moderate
threshold (𝛾 ≥ 0.4) relatively early at 2𝑛 = 8 (𝑛 = 4). Still, the rate of increase diminishes as the set

grows, and it stays below the strong threshold (𝛾 ≥ 0.7) until 2𝑛 = 18 (𝑛 = 9).

Single benchmark (𝑛 = 1). As a special case, we examine the agreement in benchmarking

outcomes when the same set of fuzzers is evaluated on one benchmark and then on another. On

FuzzBench, bug-based benchmarking shows only a negligible agreement (NG, 0.07): On FuzzBench,

the ranking of fuzzers in terms of the number of bugs found in one benchmark is effectively random

with respect to the ranking on another benchmark. On Magma, this agreement is weak (WK,

0.18), though barely above negligible. This suggests that using a single benchmark (𝑛 = 1) renders

bug-based benchmarking largely unreliable.
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(a) FuzzBench (b) Magma

Fig. 3. Concordance of coverage-based (green) and bug-based (red) benchmarking procedures, measured by
split-half reliability, and inter-measure agreement between coverage-based and bug-based fuzzer performance
rankings (blue). All quantities are average agreement on ranking (y-axis), evaluated on benchmark subsets of
size 𝑛 = ⌊|𝐵 |/2⌋ (x-axis). Increasing n increases ranking stability by averaging over more benchmarks.

On Magma, bug-based benchmarking only reaches a moderate agreement (MD) after it reaches

benchmark subset size 𝑛 = 4, whereas on FuzzBench it never rises above weak levels. In contrast,

even at 𝑛 = 1, coverage-based benchmarking already achieves a weak agreement (WK, 0.35 on

Magma and 0.31 on FuzzBench), which quickly rises tomoderate (MD) at 𝑛 = 2 and strong (ST) at 𝑛 =

5. Taken together, these results highlight the superior reliability of coverage-based benchmarking,

even with minimal benchmark sets.

RQ.2: Concordance increases with benchmarking suite size for both coverage- and bug-based
benchmarking. However, coverage-based benchmarking achieves strong concordance with as few
as five benchmarks, while bug-based benchmarking remains weakly concordant on FuzzBench
and only moderately concordant on Magma, even with largest possible benchmark subset pairs.
Notably, with a single Benchmark (𝑛 = 1), coverage-based benchmarking already attains weak
concordance, i.e., there is some agreement between the rankings of fuzzers on two benchmarks in
terms of coverage, whereas bug-based benchmarking is largely unreliable.

RQ.3 Split-half Reliability versus Proxy Split-half Reliability
We investigate the comparison between the split-half reliability (as a measure of concordance) of

bug-based benchmarking and the proxy split-half reliability of coverage with respect to bugs. If the

proxy reliability of #edges with respect #bugs exceeds the mean split-half reliability of #bugs-based

benchmarking, then coverage-based benchmarking predicts the outcome of a bug-based evaluation

more reliably than bug-based benchmarking on itself.

Presentation. Figure 2.c+f shows scatter plots of proxy reliability, comparing fuzzer rankings by

#edges on one half of the benchmarks with their rankings by #bugs on the other half. The last row
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(a) FuzzBench (b) Magma

Fig. 4. Agreement on ranking between a benchmarking procedure that uses the entire benchmarking suite
and one that uses a benchmark subset of size 𝑛 for coverage- and bug-based benchmarking.

of Table 3 (‘Proxy (#b vs #e)’) reports how proxy reliability changes with benchmark subset size.

Finally, the dashed blue line in Figure 3 visualizes how proxy reliability evolves as the benchmark

subset size increases.

Results. For FuzzBench, the concordance of bug-based benchmarking is consistently worse than

the proxy split-half reliability of coverage- with respect to bug-based benchmarking. In other words,

evaluating the fuzzers in terms of #edges offers a more reliable prediction of the outcome of an

evaluation in terms of #bugs than an independent evaluation in terms of the #bugs itself. Proxy

split-half reliability relations increase monotonically with benchmark subset size, in line with the

increase in concordance. On FuzzBench, when the set size reaches 𝑛 = 8, the proxy reliability

achieves moderate agreement (MD, 0.63), which is substantially higher than the bug-based split-half

reliability (0.37). This trend is persistent across all set sizes: in most cases, the proxy reliability is

nearly double that of the bug-based reliability.

This observation can be interpreted in light of the example discussed earlier comparing study

time and exam scores (Section 2.1). Bug-based benchmarking resembles exam scores with limited

discriminative power: bugs are sparse, their locations are unknown a priori, and triggering them

often depends on highly specific inputs, making outcomes sensitive to randomness. As a result,

performance on one benchmark subset does not necessarily translate into consistent performance on

another, leading to low split-half reliability. In contrast, coverage-based measures are analogous to

study time, reflecting a fuzzer’s sustained exploration effort rather than rare events. Consequently,

coverage-based rankings tend to be more stable across benchmark subsets and better predict

bug-based outcomes on unseen benchmarks than an independent bug-based evaluation itself.

For Magma, the concordance of bug-based benchmarking is at least comparable to the proxy

split-half reliability of coverage- with respect to bug-based benchmarking. Bug-based benchmarking

already achieves a moderate level of split-half and proxy reliability (MD, 0.60) at half size (𝑛 = 9 =

|𝐵 |/2). The interpretation levels are generally identical across set sizes, except for 𝑛 = 3, where

bug-based reliability is classified as weak (WK, 0.37) while the proxy reliability already reaches a
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Table 4. For each similarity threshold 𝜃 , we report the smallest |𝐵′ | that attains that agreement (top) and
the corresponding tree-years (bottom), computed as ( |𝐵′ |/|𝐵 |) × 𝑇𝑌 , where |𝐵 |FB = 16, |𝐵 |MG = 18, and
𝑇𝑌𝐹𝐵 ≈ 𝑇𝑌𝑀𝐺 ≈ 6 tree-years.

Benchmarking FuzzBench Magma
Procedure 𝜃 = 0.5 0.7 0.8 0.9 0.95 𝜃 = 0.5 0.7 0.8 0.9 0.95

#edges

1 3 4 6 9 1 2 4 8 13

#bugs

3 6 9 13 15 1 5 8 14 17

moderate level (MD, 0.41). This outcome aligns with expectations: since bug-based benchmarking

on Magma already exhibits moderate concordance, using edge coverage as a proxy does not yield

substantial additional gains in predicting the outcome of bug-based evaluation. In other words, the

Magma bug exam provides a more reliable and discriminative signal than the FuzzBench bug exam.

However, it does offer marginal improvements in the smaller subsets.

RQ.3: Surprisingly, the outcome of a coverage-based evaluation is at least as reliable (and for
FuzzBench much more reliable) as a predictor of the outcome of a bug-based evaluation than an
independent bug-based evaluation with a different, equi-sized benchmark subset. On FuzzBench,
where bug-based concordance is weak, the proxy reliability is nearly twice as reliable as the baseline,
revealing that coverage-based benchmarking can be a more consistent predictor of bug-based
outcomes than bug-based benchmarking itself. On Magma, however, where bug-based concordance
is already moderate, a coverage-based evaluation brings only marginal gains, underscoring that the
striking advantage of coverage-based proxies emerges most clearly when bug-based benchmarking
performs poorly.

5 Concordance as Measure of Benchmarking Efficiency
To explore an application of concordance, we experimentally investigate whether a benchmarking
procedure with greater concordance is also more resource efficient. This is an important consideration

for green fuzzer benchmarking [35].

Carbon emissions of fuzzer benchmarking. We estimate that the experiments for Magma and

FuzzBench each emitted as much carbon dioxide as six trees can absorb in one year, i.e., six tree-years.
To maintain focus on the main hypothesis, we postpone the concrete modelling of these carbon

emissions to Appendix A. FuzzBench ran nine fuzzers on 16 benchmarks for 23 hours, repeating

these experiments 20 times on n1-standard-1 Google Cloud VM instances in the us-west1 region.
For Magma, we assume the same configuration but running 8 fuzzers on 18 benchmarks for 23

hours. This means that one CPU year of fuzzer benchmarking corresponds roughly to
3

4
tree years.

We are the first to model and study the carbon emissions of fuzzer benchmarking. This allows

us to quantify the savings of green fuzzer benchmarking [2, 35] and to study the reduction of

carbon emissions as a trade-off w.r.t. the reliability of the benchmarking outcome. Indeed, the

environmental cost of cloud computing can be substantial and is of general interest [3, 36, 40].

5.1 Green Fuzzer Benchmarking: Reducing Benchmarking Suite Size
The benchmark set (i.e., the benchmarking suite) of a procedure with greater concordance can be

more substantially reduced while maintaining a similar outcome. Specifically, given the similarity

threshold 𝜃 , benchmarking procedures 𝑃1 = ⟨𝐵,𝑚1⟩ and 𝑃2 = ⟨𝐵,𝑚2⟩, as well as fuzzers𝑇 , let 𝐵1 ⊆ 𝐵
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(a) FuzzBench (b) Magma

Fig. 5. Agreement on ranking 𝑦 between a fuzzing campaign of length 𝑥 and one of length 23 hours for
coverage- and bug-based benchmarking.

be the smallest subset of 𝑏 s.t. 𝜃 ≤ agreement (outcome(⟨𝐵1,𝑚1⟩,𝑇 ), outcome(⟨𝐵,𝑚1⟩,𝑇 )) and let

𝐵2 ⊆ 𝐵 be the smallest subset of 𝑏 s.t. 𝜃 ≤ agreement (outcome(⟨𝐵2,𝑚2⟩,𝑇 ), outcome(⟨𝐵,𝑚2⟩,𝑇 )).
We study if the following is true: If 𝛾 (𝑃1,𝑇 ) > 𝛾 (𝑃2,𝑇 ), then |𝐵1 | ≤ |𝐵2 |.

Figure 4 shows how similar the outcome of a benchmarking procedure is if the benchmark set

was reduced to 𝑛 benchmarks—for bug-based and coverage-based benchmarking, for FuzzBench

and Magma. Table 4 illustrates the savings in carbon emissions as a tradeoff against the reliability of

the benchmarking outcome. Given a similarity threshold 𝜃 , the table shows how many benchmarks

can be removed while preserving a similar outcome for coverage- and bug-based benchmarking.

Observation: For both Magma and FuzzBench, we find that the benchmark set of coverage-
based benchmarking—which exhibits higher concordance—can be reduced more substantially while
maintaining a similar benchmarking outcome as that of bug-based benchmarking.

For instance, as we can see in Table 4, using half of the benchmarks (i.e., fuzz drivers) would

be sufficient for coverage-based benchmarking to achieve at least a very strong agreement on
outcome (𝜃 = 0.9) compared to running the procedure with the whole benchmarking suite. Yet,

three-quarters of the benchmark set is barely enough for FuzzBench to achieve the same similarity

threshold for bug-based benchmarking. The reduction in carbon emissions is more than twice for

coverage-based compared to bug-based benchmarking. For coverage-based benchmarking, even if

we used only three benchmarks (𝑛 = 3), we would achieve a strong agreement on outcome if we

used the entire benchmark set, which is five to six times larger, while for bug-based benchmarking,

such a small benchmark set would only achieve a moderate agreement.

5.2 Green Fuzzer Benchmarking: Reducing Campaign Length
We study whether the campaign length of a procedure with greater concordance can be more

substantially reduced while maintaining a similar benchmarking outcome. Specifically, given a simi-

larity threshold 𝜃 , two procedures 𝑃1 and 𝑃2, fuzzers𝑇 and campaign length 𝑙 , let outcome(𝑃,𝑇 , 𝑙) be
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Table 5. For each similarity threshold 𝜃 , we show the earliest time to reach it in minutes (top), and the
corresponding tree-years (bottom), computed as ( |𝐵′ |/|𝐵 |) ×𝑇𝑌 , where |𝐵 |FB = 16, |𝐵 |MG = 18, and 𝑇𝑌𝐹𝐵 ≈
𝑇𝑌𝑀𝐺 ≈ 6 tree-years.

Benchmarking FuzzBench Magma
Procedure 𝜃 = 0.5 0.7 0.8 0.9 0.95 𝜃 = 0.5 0.7 0.8 0.9 0.95

#edges

15 15 45 60 300 15 30 30 90 345

#bugs

105 180 180 1260 1275 15 240 240 1185 1230

the outcome of 𝑃 on𝑇 at time 𝑙 and let 𝜙𝜃 s.t. 𝜃 = agreement (outcome(𝑃1,𝑇 , 𝜙𝜃 𝑙), outcome(𝑃1,𝑇 , 𝑙)).
In other words, the campaign length of 𝑃1 can be reduced by a factor of 𝜙𝜃 while maintaining a

similar benchmark outcome (as determined by the similarity threshold 𝜃 ). We study if the following

is true: If 𝛾 (𝑃1,𝑇 ) > 𝛾 (𝑃2,𝑇 ) at time 𝑙 , then agreement (outcome(𝑃2,𝑇 ,Φ𝜃 𝑙), outcome(𝑃2,𝑇 , 𝑙)) < 𝜃 .

Observation: For both Magma and FuzzBench, we find that the campaign length of coverage-
based benchmarking—which exhibits higher concordance—can be reduced more substantially while
maintaining a similar benchmarking outcome as that of bug-based benchmarking.

As we can see in Figure 5, the agreement on the final ranking does vary quite substantially over

campaign length. Yet, the agreement with the final ranking of coverage-based benchmarking is

consistently higher than that of bug-based benchmarking. Clearly, there are more savings to be

expected for coverage-based benchmarking. Table 5 shows that running a coverage-based campaign

for 1 hour (or 1.5 hours) instead of 23 hours achieves benchmark outcomes that strongly agree, but

with carbon emissions of less than 3 tree months on FuzzBench (or 4.5 tree months on Magma).

Independently, Ounjai et al. [35] observe an agreement of 0.83 between a fuzzing campaign of

length 15 minutes (and substantially more benchmarks) and one of 23 hours in FuzzBench for

coverage-based benchmarking, which approximately aligns with our experiments.

6 Threats to Validity
We recognize several potential validity threats, which we categorize as internal, external, construct,

and conclusion validity. Each category outlines possible limitations and our mitigation strategies.

Internal Validity. The internal validity of our study could be subject to selection biases intro-

duced by Hazimeh et al. [25] and Böhme et al. [7] choice of programs, benchmarks, and fuzzers in

their respective studies. We mitigate these threats by analyzing random trials and benchmark subset

pairs, reducing the influence of randomness in fuzzing campaigns. We further analyze filtered

data from both FuzzBench and Magma, limiting bias from the idiosyncrasies of any single dataset.

Because FuzzBench draws its programs from OSS-Fuzz, it emphasizes bug-prone software and may

suffer from survivorship and selection biases [7]. However, since our study evaluates concordance

among benchmarking metrics rather than ranking fuzzers, these biases have limited impact on

our conclusions. Moreover, FuzzBench and Magma are popular and widely used, independently

developed fuzzer benchmarking platforms.

External Validity. The external validity, which pertains to the generalizability of our study to

other contexts, is affected by both the bug-detection approaches in Magma [25] and FuzzBench [7,

33] and the diversity of benchmarks and fuzzers. Magma forward-ports bugs to the latest program

versions, while FuzzBench relies on symbolized stack frames from crash reports [25, 33]. While this

already covers many bugs that fuzzer practitioners care about, it does not encompass all classes of
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bugs that do not result in crashes. Additionally, both datasets are constructed using C/C++ programs

and (mostly) gray-box fuzzers, which limits their applicability to other programming languages

and bug-detection methods. Moreover, our filtering for experimental consistency may bias results

toward a few particularly bug-prone benchmarks. To partially mitigate this threat, we evaluate

concordance in benchmarking results as the benchmark subset size increases (see section 4). A

broader evaluation will require more diverse programs, bugs, and fuzzing metrics.

Conclusion Validity. In this work, we treat fuzz harnesses as the unit of benchmarking. A

natural concern is that programs with more harnesses could exert disproportionate influence on the

benchmarking outcome. Mean split-half reliability mitigates this effect by construction. However,

it is not robust to artificial ties, for example, when multiple harnesses within a program tend to

detect the same bugs, thereby increasing the frequency of equal ranks. To address this concern,

we recomputed all analyses at the program level by aggregating each fuzzer’s performance across

the harnesses of each program. The interpretation of the results remained essentially unchanged,

except for one benchmarking suite procedure combination.

7 Related Work
Böhme et al. [7] found that while a strong correlation exists between a fuzzer’s ability to discover

bugs and its code coverage, rankings based on coverage do not strongly agree with those based on

bug-finding effectiveness. This discrepancy motivates our study, which analyzes the concordance

of fuzzer benchmarking procedures. Unlike their work, which examines the agreement between

different benchmarking metrics, we focus on the concordance of benchmarking procedures, and

specifically, the self-agreement between bug-based and coverage-based metrics. Our work re-

flects the reliability of benchmarking procedures, offering a more nuanced understanding of the

trustworthiness of bug-based and coverage-based metrics.

Zeller and Just [52] caution that incentivizing researchers to focus on success on a given bench-

mark ranking risks missing valuable insight and can lead to fragile conclusions stemming from

results that overfit to the benchmark and may not generalize. They also highlight that tools con-

tributing to new code coverage gains remain very much relevant even if these gains do not lead to

finding new bugs. Our work introduces a framework for measuring the stability of benchmarking

procedures. Across suites, bug-based rankings are noisy and sensitive to the choice of benchmark

set and the bug selection approach (e.g., ad-hoc vs. forward porting). However, coverage-based

rankings are substantially more stable, enabling repeatable comparative insight.

In recent work, researchers frequently use code coverage as a proxy for assessing the bug-finding

capabilities of test suites, based on the assumption that uncovered code cannot reveal bugs [7].
However, Li et al. [30] caution against relying on a single metric for fuzzer evaluation, advocating

for a multidimensional approach that captures diverse performance characteristics. They argue

that variations in instrumentation and crash analysis can introduce bias. Code coverage—typically

measured by exercised program branches often correlates with bug-finding metrics like bug count

or time to first bug, but its reliability as a predictor remains under scrutiny. Gopinath et al. [24]

find strong correlations between coverage and bug discovery for developer-provided test suites and

moderate-to-strong correlations for auto-generated suites, despite low coverage levels. Similarly,

Gligoric et al. [20] report strong coverage-bug discovery correlations. In contrast, Wei et al. [49]

highlight that over 50% of bugs emerge in the late stages of fuzzing, where coverage gains are

minimal, suggesting a weaker correlation between coverage and fault discovery.

Beyond coverage-based concerns, recent work critiques the reliability of fuzzer evaluation

metrics, highlighting biases in bug-based measures and statistical shortcomings in benchmarking

procedures. Gavrilov et al. [18] argue that bug-based metrics suffer from ambiguities in defining
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“bugs” and challenges in mapping inputs to bug discovery, proposing an evaluation framework

based on behavioral changes over time. Schloegel et al. [39] emphasize statistical rigor in fuzzing

evaluations, warning that insufficient trial repetitions and weak statistical analyses undermine

reproducibility. They call for stricter evaluation guidelines to improve research reliability. Unlike

prior work, our study examines both intra-metric agreement (internal consistency) and inter-metric

agreement across coverage- and bug-based metrics to assess their predictive reliability.

Limitations in current benchmarks are further underscored by Zhang et al. [53], who argue that

existing benchmarks often fail to capture the complexity of real-world bugs due to challenges in

translating intricate vulnerabilities into standardized tests. Hazimeh et al. critique fuzzer evaluation

metrics such as crash count, noting inaccuracies stemming from imperfect deduplication. They

propose comparing fuzzers based on real-world bugs found, despite the lack of a standardized

“bug” definition. Their work introduces a benchmarking suite that incorporates real bugs into

actual software, aiming to standardize fuzzer evaluation across diverse benchmarks [25]. To our

knowledge, this is the first rigorous evaluation of concordance in fuzzer benchmarking, assessing

the consistency of these metrics across different benchmark sets.

8 Conclusion
In this work, we establish concordance as an important property for assessing the reliability of a

benchmarking procedure. A procedure with low concordance yields fairly unreliable outcomes,

characterized by low internal consistency. For instance, we found that a bug-based evaluation in

FuzzBench has a weak concordance. So weak in fact that the outcome of a coverage-based evaluation

agrees more with the outcome of a bug-based evaluation than with the bug-based evaluation itself.

Our analysis of FuzzBench and Magma results suggests that if we require a bug-based bench-

marking evaluation to have a high concordance, then its outcome aligns very well with code

coverage evaluation. In some sense, coverage-based benchmarking produces outcomes that are at

least somewhat representative of a bug-based evaluation with high concordance.

9 Data Availability and Reproducibility
For transparency and reproducibility, we provide our scripts, which contain the full data analysis

script along with all generated tables and figures. This resource is available at:

https://github.com/ardier/in_bugs_we_trust/
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A Modelling Energy Consumption of Fuzzing Campaigns
We use the modeling of carbon emissions from cloud resources by Lannelongue et al. [28], which

is widely used in academia. Böhme et al. [7] conduct 23-hour trials on a n1-standard-1 VM (1

vCPU ≈ one core, 3.75 GiB RAM) [23]. Among the five Intel Xeon models supporting this instance,

we use the E5-2696v2’s specifications, as it is a representative mid-range CPU.
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The energy consumption 𝐸 for the FuzzBench experiments is estimated as follows:

𝐸 = 𝑡 · (𝑛𝑐 · 𝑃𝑐 · 𝑢𝑐 + 𝑛𝑚 · 𝑃𝑚) · PUE (8)

where 𝑡 = 23 hours, 𝑛𝑐 = 2880 = 16 benchmarks · 9 fuzzers · 20 trials, per-core draw 𝑃𝑐 = 10W [12],

𝑢𝑐 = 1 (we assume full per-core utilization because fuzzers saturate CPUs), 𝑛𝑚 = 10800 = 𝑛𝑐 · 3.75
GiB of RAM, 𝑃𝑚 = 0.375 W per GiB [14, 28], and PUE is dependent on the cloud service provider.

For us-west1, a low-carbon region [22], Google reports a trailing twelve-month average PUE of

1.1 for this region [21]. Finally, we get 𝐸 = 831.11 kWh.

According to World Resources Institute [50], the location-based carbon emissions are given by:

𝐶 = 𝐸 × CI. (9)

where CI is the carbon intensity (in KgCO2eq/kWh) for the specific cloud region [28] and E is the

energy consumption (in kWh) of the fuzzing experiments. The us-west1 region has a grid carbon

intensity of 79 gCO2e/kWh, i.e., less than half that of the second-lowest North American region

(us-west2 at 169 gCO2e/kWh) [22]. Hence, the carbon footprint 𝐶 (in KgCO2e) is computed as

𝐶 = 65.658 KgCO2eq.

A common way to communicate carbon emissions is as the number of tree-years required to

sequester the emitted CO2e. Let 𝑆𝑇 = 11 kgCO2e tree
−1

yr
−1

denote the amount a mature tree

sequesters in one year (≈ 30 g

day
), following Akbari [1]. Thus, the required tree-years to sequester the

emissions 𝑇𝑌 is 𝑇𝑌 =
𝐶𝐹𝐵

𝑆𝑇
= 65.658

11
≈ 6 tree-years.

Assuming the same configuration for Magma, we estimate 𝐸MG = 825.33 kWh,𝐶MG = 𝐸MG×CI =
825.33 × 0.079 = 65.20 kgCO2e, and 𝑇𝑌MG =𝐶MG/𝑆𝑇 = 65.20/11 = 5.93 tree-years.
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