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ABSTRACT

Given a target program state (or statement) B , what is the proba-

bility that an input reaches B? This is the quantitative reachability

analysis problem. For instance, quantitative reachability analysis

can be used to approximate the reliability of a program (where B

is a bad state). Traditionally, quantitative reachability analysis is

solved as a model counting problem for a formal constraint that

represents the (approximate) reachability of B along paths in the

program, i.e., probabilistic reachability analysis. However, in pre-

liminary experiments, we failed to run state-of-the-art probabilistic

reachability analysis on reasonably large programs.

In this paper, we explore statistical methods to estimate reach-

ability probability. An advantage of statistical reasoning is that

the size and composition of the program are insubstantial as long

as the program can be executed. We are particularly interested in

the error compared to the state-of-the-art probabilistic reachabil-

ity analysis. We realize that existing estimators do not exploit the

inherent structure of the program and develop structure-aware

estimators to further reduce the estimation error given the same

number of samples. Our empirical evaluation on previous and new

benchmark programs shows that (i) our statistical reachability anal-

ysis outperforms state-of-the-art probabilistic reachability analysis

tools in terms of accuracy, e�ciency, and scalability, and (ii) our

structure-aware estimators further outperform (blackbox) estima-

tors that do not exploit the inherent program structure. We also

identify multiple program properties that limit the applicability of

the existing probabilistic analysis techniques.
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1 INTRODUCTION

The traditional assessment of the reachability of a program state

provides only a true-false answer: either the state is reachable

(e.g., the program may crash for some input) or not (e.g., it never

crashes for any input). Due to the undecidability of the analysis

problem [16] and the restricted expressiveness of the analysis result,

such a binary answer provides only limited information. Instead

of a binary answer, quantitative reachability analysis provides the

probability of how likely a certain program state is reached given

the workload of the program. Such a quantitative measure of reach-

ability can provide more comprehensive information about the

program semantics. For instance, it can estimate how probable is

to reach a crashing state under normal workload, which can be

critical information for software reliability/security/maintenance.

The typical method considered for quantitative reachability anal-

ysis is called probabilistic reachability analysis [26], which analyt-

ically computes the reaching probability directly from the source

code. Probabilistic Symbolic Execution (PSE), the pioneering work

by Geldenhuys et al. [12], computes the reaching probability of a

program state by �nding all the path conditions to reach the state

using symbolic execution and counting the number of inputs satisfy-

ing the path conditions using model counting; the sum of the proba-

bilities becomes the exact reaching probability of the program state.

As PSE may su�er from scalability issues for a large and complex

program, many follow-up works have been proposed to improve

the scalability of probabilistic reachability analysis [11, 13]. Most

recently, Saha et al. proposed PReach which computes the reaching

probability using branch-level probability information [26].

When facing a problem too complex for the analytical method,

especially when it is unmanageable to compute a quantity exactly,

a sampling-based statistical method can be used to overcome the

limitation [4]. It is well-known that Monte Carlo methods have

been successfully applied to numerous problems across various

�elds, including natural sciences [10] and engineering [22], where

the solution is intractable for analytic computation. Recently, in

the context of program analysis, Liyanage et al. [20] proposed a

statistical method to approximate the number of elements that can

be reached by actual program execution, which, previously, can

only be upper-bounded by static analysis.

This work explores how the statistical method can be applied to

quantitative reachability analysis. We propose a statistical reach-

ability analysis, which tackles the quantitative reachability analy-

sis problem with random sampling and statistical modeling. The

main issue of statistical reachability analysis is how to estimate

the reaching probability of a certain program state that has not

yet been observed in the sampling process. To overcome this issue,

we �rst suggest a naive approach of using two well-known esti-

mators, Laplace smoothing and Good-Turing estimator [15], that

can estimate the non-zero probability of unseen events from the

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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frequency of the seen events in a blackbox manner, i.e., without

considering the structural aspect of the program. Then, we further

investigate how the intrinsic structural property of the program,

the dependency between program states, can be used to improve

the estimation accuracy of the statistical reachability analysis, espe-

cially when the number of samples is small: the classic problem of

sampling-based blackbox estimation. We claim that the structural

relation between program states can be an essential ingredient

to improving estimation accuracy. Consequently, we propose a

structure-aware estimator, a novel statistical reachability estimator

that considers the structural relation between program states.

To evaluate the performance of the statistical reachability anal-

ysis, we use a set of programs that have been used for evaluating

the state-of-the-art probabilistic reachability estimator, and com-

pare the statistical reachability estimator against two representative

probabilistic reachability analysis, PSE [12] and PReach [26]. Our

evaluation shows that the statistical reachability estimator can pre-

cisely estimate the reaching probability for all subject programs,

mostly in less than 0.1 seconds, while probabilistic reachability

analyzers fail or take a signi�cantly longer time to estimate for

a considerable amount of programs. In addition, we investigate

the e�ect of using structural information on the estimation accu-

racy and the e�ciency of the quantitative reachability analysis. We

evaluate the structure-aware estimator against blackbox estimators

with the Siemens suite and open-source softwares. Our empirical

results show that, within 10% of the expected number of samples

needed to reach the target state, the structure-aware estimator can

estimate the reaching probability with less than one magnitude

of error, while Laplace and Good-Turing estimator produces the

estimates with 1.28 and 2.41 magnitudes of error, respectively.

The contributions of this paper are as follows:

• We propose statistical reachability analysis, a novel sampling-

based quantitative reachability analysis that estimates the reach-

ing probability of program states from a statistical perspective.

• Our empirical evaluation for a set of programs from SV-COMP

benchmarks shows that the statistical reachability estimator can

precisely estimate the reaching probability with small samples

for all subjects. In contrast, probabilistic reachability analyzers

applicablilty and performance are limited.

• We design a structure-aware reachability estimator that leverages

the dependence information between program states to provide

a more accurate estimation with a small number of samples.

• We evaluate the (blackbox and structure-aware) statistical reach-

ability estimators on a large and complex real-world software.

• Our empirical results show that the structure-aware estimator is

more accurate with a small number of samples than the black-

box estimators, indicating the advantage of using the structural

information of the program.

2 BACKGROUND

2.1 Quantitative Reachability Analysis

Quantitative Reachability Analysis is an extension of reachability

analysis that computes the probability of whether a certain program

state is reached for arbitrary program execution. Given a program % ,

a set of program states ( , and an arbitrary operational distribution of

program execution �, the reaching probability Pr(B) of a program

state B ∈ ( is de�ned as the probability of a random program

execution 4 ∈ � reaching the state B:

Pr(B) =
∑

4∈�

Pr(4) · 1(B is reached by 4), (1)

where 1(B is reached by 4) is an indicator function that returns

1 if B is reached by 4 and 0 otherwise.

Quantitative reachability analysis can be a primary goal of pro-

gram analysis for �guring out the reaching probability of a certain

critical program state. For example, it can provide how likely a

crashing program state is reached in a normal workload of pro-

gram execution. Such a crashing state could be an assertion that

the developer placed in the program, assuming it is always true, or

a recently discovered bug that is not yet �xed. It can also estimate

for load testing a server-client program quantifying how often a

certain query is sent to the server in various workloads in di�erent

stages of software deployment. Such an information could be useful

for the service provider to decide the how many servers are needed

to handle the workload. The result of the quantitative reachability

analysis can further be used for the downstream software testing

tasks. One can use it to design an optimal concolic testing strategy

by balancing the cost for the concrete execution and the symbolic

execution [28, 30].

2.2 Probabilistic Reachability Analysis

Probabilistic reachability analysis [11–13, 26], the primary approach

for quantitative reachability analysis, has been widely studied in

the last few decades. Based on the symbolic execution and the

model counting [14], probabilistic reachability analysis computes

the reaching probability of a program state directly from the source

code. Probabilistic Symbolic Execution (PSE) [12] is a pioneering

technique that computes the probability of executing portions of

the program to perform a quantitative reasoning for symbolic ex-

ecution. Given a path condition for executing a portion of a pro-

gram, PSE computes the probability by counting the number of

inputs that satisfy the condition using model counting. PSE solves

the probabilistic reachability analysis problem by adding up all

the probabilities of the paths that reach the target program state.

Geldenhuys et al. show that PSE can estimate the probability of

triggering a bug in the program with high accuracy. As the path

explosion problem is a well-known obstacle for symbolic execution

to analyze a practical program, several subsequent works went on

to improve the scalability of PSE: Filieri et al. [11] proposed Statisti-

cal Symbolic Execution that still runs the model counting but only

for subset of paths sampled from all existing paths and uses the

information for Bayesian Estimation to estimate the gross probabil-

ity. Gerrard et al. [13] proposed Conditional Quantitative Program

Analysis, which blends evidence from multiple static analyses to

reduce the search space of the input reaching a target program

statement.

Most recently, PReach has been proposed to overcome the path

explosion problem [26]. To avoid directly dealing with the probabili-

ties of execution paths, PReach chooses to compute the probabilities

of satisfying branch conditions in the program and use them to

estimate the reaching probability of a program statement. Branch

selectivity, which denotes the percentage of values satisfying the
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branch condition, is calculated using model counting as the ra-

tio of the number of values in the domain to the domain size of

the variable type satisfying the branch condition. Then, PReach

constructs a discrete-time Markov chain model representing the

transition probabilities of the statement execution using the con-

trol �ow graph together with the branch selectivity. The reaching

probability of a program statement is computed by solving the

Markov chain model. While PReach reduces the cost of the model

counting, it can only approximate the reaching probability of a

program statement since it does not consider the context of the

program execution. The domain of the variable can be changed by

the other statements executed before. Thus, the branch selectivity

may signi�cantly di�er from the actual probability of satisfying

the branch condition in the program execution. To overcome such

an imprecision, PReach suggests applying abstract interpretation

to infer the domain of the variable. There are two variations of

PReach: PReach-I, which uses the interval domain, and PReach-P,

which uses the polyhedra domain.

2.3 Statistical Estimator for Unseen Events

In statistics, while all observable events in the domain space have

non-zero probability, some rare events may not be observed in the

sample space. Estimating the probability of an unobserved event is

the sunrise problem. To avoid assigning zero probability to unob-

served events, several statistical estimators have been proposed.

Laplace smoothing, also known as additive smoothing, is one of

the popular estimators for estimating the non-zero probability of an

unobserved event by adding a small positive smoothing parameter

U to all the events. The Laplace smoothing estimator estimates the

probability of the 8-th category as 28+U
=+U3

, where 28 is the number of

8-th category samples, and U > 0 is a smoothing parameter.

Another well-known estimator for estimating the probability

of an unseen event is the Good-Turing estimator [15]. The Good-

Turing estimator estimates the probability of discovering an object

of hitherto unseen species from the number of already seen species.

It �rst de�nes the incidence frequency .8 for a species �8 as the

number of times that the species 8 is observed in the sample $= .

Then, the number of singleton species 51 is de�ned as the num-

ber of species that are observed only once, i.e., |{.8 = 1}8 |. The

Good-Turing estimator estimates the probability of discovering any

unseen species in the next sampling as: 51/=. The probability of

discovering a certain unseen species �8 is 51/(50=), where 50 is

the number of unseen species within $= . However, in general, it is

unknown howmany species exist and, therefore, howmany unseen

species are in the sample $= . Therefore, Good Turing provides an

upper bound on the probability of discovering a certain unseen

species �8 .

3 STATISTICAL REACHABILITY ANALYSIS

While probabilistic reachability analysis computes the true reaching

probability of a program state,1 one can approximate the reaching

probability using stochastic sampling. Let us say we want to es-

timate the reaching probability Pr(B) of a program state B in a

1While they aim to compute the true probability, often the analysis outcome is also an
approximation due to theoretical limitations and impractical computational cost.

program % under a certain workload, where we can sample a ran-

dom program execution from. Assuming we have su�cient number

= of program execution samples $= , the ratio of the number of

samples that reach B to the total number of samples (i.e., empirical

probability P̂r(B)) will be a close approximation of Pr(B):

P̂r(B) =
-B

=

=→∞
=====⇒ Pr(B), (2)

where -B is the number of executions in $= that reach B .

However, for a certain program state that is extremely rare to ob-

serve, the empirical probability estimator can generate a substantial

bias:

E

(

-B

=
| -B > 0

)

=

Pr(B)

1 − (1 − Pr(B))=
, E

(

-B

=
| -B = 0

)

= 0; (3)

if the reaching probability Pr(B) is very small, the empirical proba-

bility becomes signi�cantly larger than the true probability if it is

observed (the left equation), and underestimated to zero if it is not

observed (the right equation). Especially, such an underestimation

can be detrimental in the program reliability analysis: the analysis

may conclude that the program is reliable even though there is a

reachable erroneous state in the program. Therefore, the statistical

reachability analysis should always deal with the sunrise problem.

3.1 Blackbox Reachability Estimators

To estimate the reaching probability for both observed and unob-

served program states, we employ the Laplace estimator and the

Good-Turing estimator, which can deal with the sunrise problem.

For given executions $ and the target program state B , the Laplace

estimator (Lap) estimates the probability of reaching B as:

Lap(B) =
2B + U

= + 2U
, (4)

where 2B is the number of executions that reach B , considering there

are two categories: the executions that reach B and the executions

that do not reach B . For the same setting, the Good-Turing estimator

(GoTu) estimates the probability of reaching B as:

GoTu(B) =

{

2B/=, if 2B > 0,

51/=, otherwise,
(5)

where 51 is the number of singleton program states in > ; it gives

the empirical probability if the target program state is observed in

the executions $ ; otherwise, it gives the Good-Turing estimation.

Drawbacks of Blackbox Estimators. A typical drawback of sampling-

based estimators is that they may not be accurate for small sample

sizes. For example, the theoretical background of the Laplace esti-

mator lies in the normal approximation of binomial distribution,

which is sensible if the number of samples is large. Similarly, Good

also described that the estimation is expected to be good if the

number of sample = is large and 51 is not too small [15].

Another limitation of the above estimators is that they do not

exploit the dependencies between the program states. For example,

if a statement B2 is the statement under the true branch of the if

statement B1, then the reaching probability Pr(B2) is always smaller

than (or equal to) Pr(B1). However, if they are not reached in the

sample executions, none of the above estimators can distinguish

between the reaching probability of B1 and B2.
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3.2 Structural Relation for Better Estimation

Program execution is a sequence of program state transitions, and,

therefore, there exists a hierarchical dependence relation between

the states. Often a rare event, such as a crash, of a program execution

is placed deeply in the program’s state hierarchy; they may occur

only if several preconditions are satis�ed during the execution. In

such a case, the hierarchical relation between program states until

reaching the rare event becomes a vital factor in estimating the

probability of the rare event.

Structural relations between program states can be an indicator

distinguishing the reachability probability of multiple unreached

program states. Figure ??, for instance, represents that the program

state B1 is the direct predecessor of B2, similar to the if statement

and its true branch we discussed in Section 3.1. Since B2 can only

be reached only if B1 is reached, the reaching probability of B2 is

less than or equal to that of B1.

Using the given executions and the structural information, we

can even quantify the reaching probabilities of di�erent unreached

states. In Figure ??, we assume that states B1 and B3 are reached

1,000 times and three times, respectively, from 1,000 executions,

and those executions never reached their direct successor states B2
and B4. Then, we consider applying Laplace estimation on each B1
and B3 to estimate the reaching probability of B2 and B4:

Pr(B2) = Pr(B1) ×
U

1, 000 + 2 × U

U = 2
= 1 ×

2

1, 004
≈ 0.0020,

Pr(B4) = Pr(B3) ×
U

3 + 2 × U

U = 2
= 0.003 ×

2

10
= 0.0006.

The equation represents that there are more chances to reach B2
by reaching B1 than B4 by reaching B3, yet, if they reach their direct

predecessors, B4 is more likely to be reached than B2.

Now, we can estimate the reaching probability of an unreached

state, which exists deep in the structure, using the reaching prob-

abilities of its predecessors and the path probability that lead to

the unreached state. Given a structure and the executions, the state

reached by the executions constructs the frontier of the reaching

region. The frontier consists of states that have an unreached di-

rect successor. For instance, the state ' in Figure ?? belongs to

the frontier. Then, there could be a hypothetical execution that

can reach the unreached hidden state � from ' following the path

' → B2 → B5 → � . We call this path a hypothetical path or a

hy-path of � . The reaching probability of � by following the hy-

pothetical path ' → B2 → B5 → � is the product of the reaching

probability of ' and the transition probability at each state in the

path. Assuming that there is no prior information on the unreached

state, we may estimate the transition probability on each state as

the reciprocal of the number of its direct successors. Then, the

probability of executing the hypothetical path is

Pr(') ×
U

#(') + 2 × U
×
1

3
×
1

2
.

Note that an unreached state can have multiple hy-paths. In general,

we can estimate the reaching probability of an arbitrary unreached

state ℎ by summing up all the probability of executing the hypo-

thetical path of ℎ. Based on this motivation, we formally de�ne the

structure-aware reachability estimator in the next section.

3.3 Structure-aware Reachability Estimator

Notations & Hy-Path. Structure-aware reachability estimation is

based on a given directed graph� = (+ , �), called a structure graph,

representing the dependence relation between the program states

in the program % . Nodes + is a set of discrete program states, and

� is a set of edges representing the viable state transitions during

the program execution. A typical example of such a graph can be a

control-�ow graph, a data-�ow graph, or a call-graph, etc., which

are widely used in program analysis, but, not limited to these, it

can be any graph that approximates the dependency of the program

states. We will further discuss the precision of the graph at the

end of this section. A path p = (E1, E2, . . . , E=) in � is a sequence

of nodes such that (E8 , E8+1) ∈ � for 1 ≤ 8 ≤ = − 1. We call a path

starting from an entry node (a node having no predecessor in �)

and ending at the exit node (a node having no successor in �) a

complete path, or an execution as a single program execution can be

treated as sampling a complete path from � .

Given a set of executions O, we partition + into two sets: a set

of reached nodes +A and a set of unreached nodes +D . Then, the

de�nition of a hy-path is as follows:

Definition 3.1 (Hy-Path (hp)). Assume a node ℎ ∈ + is not

reached for a given set of executions $ ; ℎ ∈ +D . A path hp = {?1, ?2,

· · · , ?= = ℎ} is a hypothetical path or a hy-path of ℎ if ?1 ∈ +A ,

{?2, · · · ?=} ⊂ +D , and ∃ > ∈ O, whose execution is

o = {entry = >1, >2, · · · , >= = ?1, · · · , exit},

such that

he = {entry = >1, >2, · · · , >= = ?1, ?2, · · · , ?= = ℎ, · · · , exit}

is a complete path. We call node ?1 a critical node and complete path

he a hypothetical execution of hp.

Probability Estimation. Our estimator estimates the reaching prob-

ability of an unreached node ℎ ∈ +D by the sum of the reaching

probability of all hy-paths of ℎ. The estimator theoretically over-

approximates the reaching probability of ℎ since every (hypothet-

ical) execution reaching ℎ contains at least one non-overlapping

hy-path of ℎ: for any hypothetical execution, one can consider the

last reached node ?1 in the execution before reaching ℎ. Then, the

sub-path from ?1 to ℎ is a hy-path of ℎ. Now, the di�erence between

the estimate and the estimand is the probability of the hypothetical

execution that contains more than one non-overlapping hy-path

of ℎ. We claim that the bias is negligible in practice since the node

ℎ we want to estimate is already a hard-to-reach node for a large

number of executions. Considering a hy-path instead of a whole

(hypothetical) execution can signi�cantly reduce the graph traver-

sal space and thus the estimation time as the majority of reachable

program states can be reached with a relatively small number of

executions [5].

Path Probability. The key idea to estimate Pr(p), the probability

of executing the path p in � , is to consider a path as the state

transition of the discrete-time Markov chain de�ned on top of� . The

probability of hp = {?1, ?2, · · · , ?= = ℎ} is the reaching probability

of node ?1 multiplied by the product of the transition probabilities
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of all edges in the hy-path:

Pr(hp) = Pr(?1) × Pr(?1 → ?2) ×

=−1
∏

8=2

Pr(?8 → ?8+1), (6)

where Pr(G → ~) denote the state transition probability from stateG

to state~ in theMarkov chain. In hp, only the �rst node ?1 is reached

by executions, and the rest of the nodes ?2, · · · , ?= are not reached.

We use the empirical probability for estimating the probability of

the �rst node ?1: P̂r(?1) = |{o ∈ O → ?1 ∈ o}|/|O|. We estimate

the transition probability Pr(?2 → ?1) using Laplace smoothing

for the local executions that reach ?1: given that none of the =1
number of executions that reach ?1 move to ?2, P̂r(?2 → ?1) =

(=1 +U)/(=1 +2×U). Then, for the remaining transition probability,

we used the reciprocal of the number of children of the previous

node as the transition probability: P̂r(?8+1 → ?8 ) = 1/|?8 .succ|.

Cycles. If the structure has cycles, there could be an in�nite number

of hy-paths of ℎ. Such a cycle can be dealt with a stationary proba-

bility distribution calculation for the discrete-time Markov chain

(e.g., the PageRank [7] or the random walk [8]), which is a well-

known technique in the �eld of stochastic processes. In addition,

based on the features of the given graph structure, we can further

reduce the search space of the hy-paths, which will be discussed in

Section 3.4 with a concretized analysis task for our evaluation.

Approximation of Structure Graph. It is worth noting that a structure-

aware estimator can provide the reaching probability even if the

given structure graph is abstracted or less precise compared to the

graph with the exact dependence information of the program. Due

to the dynamic nature of the program (e.g., dynamic function call),

obtaining the exact dependence information between the program

states is not always possible. Nonetheless, as the execution set size

increases, the frontier of the reaching region gets closer to the target

state, which means the distance between the critical node and the

target state gets smaller. Thus, the bias due to the imprecision of

the structure graph reduces, i.e., the estimation result is generally

getting more accurate as the execution set size increases. Such a

property of structure-aware estimation makes itself more robust to

the imprecision of the given structure graph.

3.4 Optimization using the Structural Properties

We evaluate our structure-aware and blackbox reachability esti-

mators on the statement reachability estimation problem, a typical

problem for evaluating the reachability analysis methods [12, 26].

For the structure graph, we use the inter-procedural control-�ow

graph (InterCFG) as it represents the order of reaching the pro-

gram statements during execution. We �rst set our assumption

that the program has a single exit point while we argue about this

assumption at the end of this section.

The property of the structure graph can be used to avoid unneces-

sary computation for the structure-aware estimator. In this section,

we suggest three optimizations using the structural properties of

the InterCFG: 1) terminating inter-procedural call, 2) modularizing

the hy-path, and 3) loop handling.

Terminating Inter-procedural Call. A program execution may con-

tain zero or more inter-procedural transitions. Given a path in

InterCFG, one can identify the terminating inter-procedural call by

matching the function-call edge and corresponding function-return

edge in the path. Then, the whole sub-path under the terminating

inter-procedural call can be replaced with a single edge connect-

ing the calling node and the next node in the caller function; the

transition probability of this edge is one because the execution will

always return to the next node after the function call.

Modularizing the Hy-path. After removing the terminating inter-

procedural calls, we can modularize the reduced hy-path into a

sequence of intra-procedural paths, called path units; the probability

of the hy-path becomes the product of the probabilities of the path

units:

Pr(hp) =
∏

pu⊂rhp

Pr(pu), (7)

where pu denotes a path unit in a reduced hy-path rhp. The advan-

tage of modularization is that the estimator can reuse the proba-

bility of the path units for multiple hy-paths. For example, if the

function 5 , where the target statement B is located, has not been

reached yet, every last path unit of the hy-path hp will be the same

as pu = [entry → · · · → B] 5 , where [· · · ]func indicates the path

unit belongs to the function func. Therefore, until the function 5

is reached, the probability of the path unit pu can be e�ciently

reused. Our empirical evaluation shows that modularization can

signi�cantly reduce the estimation time.

Loop Handling. The cycle in an inter-procedural path occurs either

by a loop appearing at a path unit-level or a cyclic call sequence

appearing at a modularized hy-path-level. Using the feature of the

inter-procedural control-�ow graph, we can avoid computing the

stationary probability distribution of the Markov process to deal

with the cycles in the hy-path.

When estimating the probability of a path unit, the structure-

aware estimator can only consider the acyclic path unit by adjusting

the transition probability so that the probability of an acyclic path

includes the chances of the cyclic path. There are two cases: 1) the

path unit passes a loop (it does not end in the loop), 2) the path

unit ends in the loop. If a path unit passes a loop, the adjustment

to the transition probability Pr(loop-entry → loop-exit) = 1 since

every loop entrance must reach the loop exit if there is a single

program exit. Assume the path unit’s last node 4 is in the loop,

and let us denote the true branch of the loop a loop-start. The

original transition probability Pr(loop-start → loop-entry) before

adjustment is 1/|loop-entry.succ| = 1/2. Let us say the reaching

probability of 4 after entering the loop is @; Pr(loop-start →+ 4) =

@.2 Then, the reaching probability of 4 in any loop iteration after

reaching the loop entry is:

@

2
+
1 − @

2
·
@

2
+

(

1 − @

2

)2

·
@

2
+ · · · =

@

1 + @
= @ ×

1

1 + @
. (8)

Thus, the probability of a path unit can be estimated by 1) starting

from the last node of the path unit, 2) multiplying the transition

probability in the reverse direction of the path unit, and 3) if it meets

the loop entry, adjust the transition probability to Pr(loop-entry →

loop-start) = 1
1+@ , where @ is the probability computed until the

current process. As the cyclic call sequence works similarly in the

2Pr(G →+ ~) is the sum of the probabilities of the intra-procedural paths from G to ~
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Table 1: RQ1 subject programs from SV-COMP [25].

jpf-regress. (26) ExMIT-T, Exe1-F, Exe2-F, Exe4-F, Exe6-F, Exe8-

F, Exe10-F, Exe10-T, Exe12-F, Exe12-T, Exe13-T,

Exe14-T, Exe15-T, Exe18-F, Exe19-T, Exe20-F, Exe20-

T, Exe26-F, Exe27-F, FNEG-T, LCMP-T, Simple-F,

Simple-T, Suzette-F, Suzette-T, Assign-T

jbmc-regress. (4) assert3, if_icmp1, switch1, Token2

algorithms (2) InsertSort2, RBTree1

path-level, we can make the same adjustment to avoid computing

the stationary probability distribution of the Markov process.

We �nally mention the single exit assumption. In the general

case, a program can have multiple exits. When there is a program

exit between the frontier of the reaching program statements and

the target statement, our estimator may overestimate the reaching

probability of the target statement. The bias due to the imprecision

of the single exit assumption will decrease as the sample size in-

creases since there will be less chance of having a program exit

between the frontier and the target statement.

4 EXPERIMENTAL SETUP

4.1 Research Questions

We mainly ask two research questions to evaluate the performance

of the statistical reachability analysis.

RQ1: How does the statistical reachability analysis perform

compared to the probabilistic reachability analysis? In this

research question, we investigate the limitation of existing ana-

lytic methods and how the statistical reachability analysis performs

compared to the probabilistic reachability analysis. Our investiga-

tion considers both the accuracy of the estimation for the program

with nontrivial semantics, and the scalability of the method. We

use PSE and PReach as baseline probabilistic reachability analyzers

for comparison with the statistical reachability estimators on the

benchmark programs used in the PReach work.

RQ2: How do the structure-aware and the blackbox reachabil-

ity estimators perform on hard-to-reach states in a complex

program? We claim that the statistical reachability estimators are

scalable regardless of how complex the program semantic is. To

verify this claim, we investigate the performance of the statistical

reachability estimators for estimating the reaching probability of

hard-to-reach states in the program with bigger sizes and much

more complex semantics than the benchmark programs used in

RQ1. We also investigate the e�ciency of the structure-aware

model compared to the blackbox model.

4.2 Subject Programs and Target Statements

To evaluate the performance of statistical reachability estimators

compared to probabilistic reachability analyzers, we concretize

the problem of quantitative reachability analysis into the problem

of statement reachability analysis and use the same benchmark

programs used in the PReach work [25]: 142 java programs from

Competition on Software Veri�cation 2021 (SV-COMP). The target

statements are the assertions in the programs. Most 142 programs

Table 2: Statistics of RQ2 subject programs from Siemens

suite (above �ve) and the real-world programs (below �ve)

Program NCLOC # Func # BB GT

tcas 146 9 63 5.37E-04

schedule2 332 17 138 3.99E-04

totinfo 349 7 132 9.2E-04

printtokens2 438 19 198 7.82E-03

replace 534 21 228 2.73E-04

gif2png* 988 27 700 2.95E-04

jsoncpp 7,251 1,328 5,938 2.28E-03

jasper* 17,385 720 14,417 2.48E-04

readelf 22,347 477 18,578 1.99E-07

freetype2 44,686 1,635 27,521 8.25E-08

have very primitive semantics to reach the assertion; a single com-

parison (<, >,==, ! =) to an input is the only condition for the

control �ow to the assertion. As our interest is in more realistic pro-

grams, we �ltered out those programs with primitive semantics and

left only the programs whose semantics have meaningful changes

to the reaching probability. Our selection criterion is that the pro-

gram semantics should update the domain of the value used in

the comparison for reaching the assertion and a�ecting the branch

probability. We manually investigate all 142 programs and select

32 programs after �ltering. Table 1 shows the selected programs.3

The average non-comment-line-of-code (NCLOC) is 35.2.

Since the program size is relatively small, there is no singleton

after a few iterations of the sampling process. Therefore, we only

use the Laplace estimator for the statistical reachability analysis

method in RQ1. To get the ground-truth reaching probability of the

assertion, we check the semantics of each program and manually

compute the reaching probability; we consider the same domain

(a signed 31-bit for an integer input and a length of 16 with all

printable ASCII characters for a string input) and assuming the

uniform distribution of the input domain as the PReach work. To

validate the ground-truth, we seperately run a su�ciently large

number of iterations of the sampling process and compare the

ground-truth with the empirical reaching probability.

Subjects used in RQ1 are relatively small-sized with less com-

plexity. To evaluate the performance of statistical reachability esti-

mators in realistic programs, we choose �ve middle-sized programs

from the Siemens suite [9]4 and several large-sized free and open-

source (FOS) C/C++ applications and libraries. Table 2 shows the

selected programs, number of lines, functions, and basic blocks.

To remove the selective bias as well as to evaluate estimators

with a su�ciently challenging task, we select the statement that

is most-frequently lastly-found while running multiple greybox

fuzzing on each subject program. For the Siemens suite subjects,

we run greybox fuzzing for six minutes with 990 repetitions and

record the statement coverage hit-counts at each second. For the

FOS subjects, we run ten repetitions of one-week greybox fuzzing

taking more than one CPU year and record the statement coverage

3The program names are abstracted for the space issue.
4we remove ‘schedule’ and ‘printtokens’ as they have the same semantics with ‘sched-
ule2’ and ‘printtokens2’ but di�erent implementation
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hit-counts at each 15 minutes. If the fuzzing �nds the crashing input

during the campaign for FOS subject, we use the last statement of

the crashing path as the target statement considering the practical

reliability analysis scenario.5

4.3 Sampling Process

We use the greybox fuzzing data to generate random samples for the

statistical reachability analysis. Instead of using the raw statement

coverage hit-count from the fuzzing campaign, which contains the

adaptive bias due to the guidance of the greybox manner, we create

a simulated random sampling that is representative of the average

behavior of multiple greybox fuzzing campaigns. The simulated

random sampling process is as follows: for each greybox fuzzing

campaign that discovers the target statement in its campaign, we

record the hit-count of the statement coverage at the timestamp

where the target statement is reached �rst. The hit-count data di-

vided by the number of samples until the timestamp (i.e., empirical

probability) becomes the expected coverage per sample of the cer-

tain fuzzing campaign. By averaging the expected coverage per

sample for all the campaigns, we get the average expected coverage

per sample of the simulated random sampling. We use the target

statement’s ground-truth reaching probability, GT, as the empirical

probability of this average expected coverage, which is presented in

Table 2. Then, we can simulate the hit-count data for an arbitrary

number of samples by multiplying the average expected coverage

per sample by the number of samples. For example, the hit-count of

a statement whose average expected coverage per sample is 0.372

with 100 samples is ⌊0.372 × 100⌋ = 37. The implementation of the

simulated random sampling can be found in the public repository.

For RQ2 evaluation, we generate 10% of the samples expected to

reach the target statement: GT−1/10 per subject program.

There are two main advantages of using simulated random sam-

pling. First, it can be a representative of the average behavior of

multiple fuzzing campaigns. Di�erent fuzzing campaigns can have

di�erent hitting behavior due to randomness. Such a randomness

highly a�ects the Good-Turing estimator, which uses the number

of singletons, and the structure-aware estimator, which considers

what the critical node is and how many times it is hit. Therefore,

representative of the average behavior is needed to remove the

random bias for the evaluation. Second, random sampling from

an expected coverage per execution can simulate the hit-count

data for an arbitrary sample size. Since recording every hit-count

data for each new sample for a long fuzzing campaign of large

programs is not feasible, the hit-count data for our �ve open-source

programs are only available every 15 minutes. Therefore, the data is

coarse-grained as the total number of data points is limited, which

deteriorates the statistical reachability analysis evaluation. Con-

versely, hit-count data for an arbitrary sample size can provide a

�ne-grained evaluation of the statistical reachability analysis.

4.4 Evaluation Metric & Environment

For RQ1, we record the wall-clock time taken to measure the scala-

bility of the methods. The wall-clock time taken for the statistical

5‘*’ next to the subject name indicates the target node of the subject is the �nal
statement of the crashing path.

reachability estimator also includes the time for the sampling pro-

cess, as the computing cost of Laplace estimator is practically negli-

gible. While it is clear that the accuracy of the statistical reachability

estimator would increase as the sample size increases, we de�ne a

threshold of the successful estimation to measure how much cost is

needed to get an accurate estimation. We say the statistical reacha-

bility estimator succeeds in the estimation with #B executions if all

the errors of ten continuing estimates until #B -th estimation (e.g.,

Lap(B, #B − 9), · · · , Lap(B, #B ) for Laplace estimator) fall between

99% and 101% of the ground-truth probability in logarithmic scale.

0.99 ×
�

�log10 (GT)
�

�

<

�

�log10 (e)
�

�

< 1.01 ×
�

�log10 (GT)
�

� ,

where 4 is the estimated probability and �) is the ground-truth

probability. We use logarithmic scale since it is more sensitive to

the estimation error when the probability is small. The wall-clock

time taken for the statistical reachability estimator in RQ1 is then

the time taken until the #B -th estimation. Our timeout threshold

for the estimation is 15 minutes. If the estimation does not �nish

within 15 minutes, we consider the estimation as failed.

For RQ2, we compute the accuracy of the estimated probability

by computing the logarithmic error between the estimated proba-

bility and the ground-truth probability:

log-err(4,�) ) = | log10 (e) − log10 (GT) |.

If the log-err is 1, it means that the estimated probability is one

order of magnitude di�erent from the ground-truth probability. We

measure the time taken for both the sampling process and esti-

mation in RQ2. In addition, we also record the time taken of the

estimation for the structure-aware estimator explicitly to compare

the scalability of the structure-aware estimator itself with the black-

box estimator whose time taken for the estimation is negligible. For

all the experiments, including the greybox fuzzing campaigns and

the estimation process, we repeat the process ten times and report

the average value to reduce the random bias.

For the experiments, we use the PSE implementation in [21],

which is implemented on top of Symbolic PathFinder (SPF) [24]

as the original work does, and uses LattE [27] model counting

tool. Since the implementation does not support a signed 32-bit

domain, we use a signed 31-bit domain for PSE. For the Laplace

and the structure-aware estimator, we use the smoothing factor

U = 2 as it is the representative value driven from the mid-point

of the Wilson interval with 95% con�dence [29]. We use PReach

implementation provided by the authors [25] with the polyhedra

domain as the default abstract interpretation domain (PReach-P). All

the experiments are performed in a Ubuntu 18.04 docker container

with 64 cores of AMD EPYC 7713P @ 2.0GHz and 251GB memory.

5 RESULT

5.1 RQ1: Analytic Method vs. Statistical Method

�antitative Results. Table 3 shows the quantitative reachability

estimation result for the programs we select from the SV-COMP

benchmark. The �rst and second columns show the program name

and the ground truth reaching probability of the target assertions.

Each (3rd, 4th), (5th, 6th), and (7th, 8th) column represents the

result from PSE, PReach, and Laplace estimator. Esti(·) and T(·) are

estimator’s probability estimate and time spent.
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Table 3: Quantitative reachability estimation for SV-COMP

2021 benchmarks. Esti(·) and T(·) are the probability estimate

and the time spent for the estimator; (TO, NL, DTMC) are the

failure states of the estimation. O/X in the parenthesis after

the value represents whether the estimator succeeds.

Program GT Esti(PSE) T(PSE) Esti(PR) T(PR) Esti(Lap) T(Lap)

ExMIT-T ∼0 4.7E-10 (O) .866s 7.6E-06 (O) 14.9s 1.0E-06 (O) 0.044s

Exe1-F 0.49 NL (X) - 0.500 (O) 13.5s 0.489 (O) 0.006s

Exe2-F 0.2 NL (X) - 0.125 (X) 14.6s 0.199 (O) 0.003s

Exe4-F 0.25 NL (X) - 0.125 (X) 14.7s 0.248 (O) 0.014s

Exe6-F 1.0 NL (X) - 2.3E-10 (X) 14.8s 0.990 (O) 0.001s

Exe8-F 0.3 NL (X) - 0.500 (X) 14.7s 0.300 (O) 0.005s

Exe10-F 0.25 NL (X) - 0.250 (O) 14.5s 0.250 (O) 0.005s

Exe10-T ∼0 NL (X) - 1.2E-10 (O) 14.5s 1.0E-06 (O) 0.085s

Exe12-F 0.5 0.500 (O) .934s 0.500 (O) 14.6s 0.501 (O) 0.004s

Exe12-T 0.375 0.250 (X) .966s 0.375 (O) 14.6s 0.376 (O) 0.007s

Exe13-T ∼0 0 (O) .909s 5.0E-11 (O) 13.7s 1.0E-06 (O) 0.087s

Exe14-T 0.25 0.5 (X) .860s 0.25 (O) 11.9s 0.251 (O) 0.018s

Exe15-T 0.25 0.125 (X) .910s 0.25 (O) 13.1s 0.251 (O) 0.011s

Exe18-F 0.5 NL (X) - 0.500 (O) 14.5s 0.502 (O) 0.011s

Exe19-T 0.25 0.375 (X) .950s 0.245 (O) 14.5s 0.251 (O) 0.015s

Exe20-F 0.25 NL (X) - 0.125 (X) 13.6s 0.249 (O) 0.008s

Exe20-T 0.5 0.500 (O) .903s 0.5 (O) 14.5s 0.500 (O) 0.008s

Exe26-F 0.5 NL (X) - 0.245 (X) 14.7s 0.500 (O) 0.006s

Exe27-F 0.5 0.500 (O) .849s 0.500 (O) 14.7s 0.500 (O) 0.004s

FNEG-T 0 0 (O) .850s 0.25 (X) 14.5s 1.0E-06 (O) 0.045s

LCMP-T 0 0 (O) .832s 0.5 (X) 14.9s 1.0E-06 (O) 0.044s

Simple-F 0 0 (O) .854s TO (X) - 1.0E-06 (O) 0.048s

Simple-T 0 0 (O) .844s TO (X) - 1.0E-06 (O) 0.047s

Suzette-F 0.25 0.250 (O) .910s 4.7E-10 (X) 13.8s 0.249 (O) 0.030s

Suzette-T ∼0 2.6E-9 (O) .926s 2.6E-09 (O) 14.4s 1.0E-06 (O) 0.084s

Assign-T 0 0 (O) .841s 0.25 (X) 14.6s 1.0E-06 (O) 0.045s

InsertSort2 2.1E-02 TO (X) - 2.5E-11 (X) 15.8s 2.1E-02 (O) 4,904s

RBTree1 0.125 TO (X) - DTMC (X) 14.4s 0.124 (O) 0.002s

assert3 ∼0 4.7E-10 (O) .847s 2.3E-10 (O) 10.6s 1.0E-06 (O) 0.044s

if_icmp1 0 0 (O) .856s 5.0E-11 (O) 10.5s 1.0E-06 (O) 0.045s

switch1 ∼0 2.8-09 (O) 1.03s 0.0 (O) 11.9s 1.0E-06 (O) 0.044s

Token2 4.8E-04 NL (X) - TO (X) - 5.2E-04 (O) 0.545s

Among 32 subject programs, PSE successfully estimates the

reaching probability of 15 programs. The symbolic expression of

the path condition to reach the target assertion contains non-linear

terms in 11 programs (NL in the table), which is not supported by

PSE implementation. PSE timeouts (TO in the table) for the two

programs, which are the exact two programs containing a loop.

PSE estimates the wrong probability for the other four programs

because the implementation does not consider the over�ow/under-

�ow of the integer variables. On average, PSE spends ∼1 second on

the estimation. In the case of PReach, the estimation succeeds only

for 17 out of 32 programs. For 15 failing estimations, there is one

timeout during the abstract interpretation, two timeouts during the

model counting (TO in the table), and one divergence of DTMC

(DTMC). For the remainings, PReach estimated far smaller/larger

probabilities than the ground truth. Without the cases where the

estimation fails, the time spent for estimation is over ten seconds.

On the other hand, the Laplace estimator successfully estimates

the reaching probability for all 32 programs. Except InsertSort,

the time spent is strictly less than one second, including the time

for the sampling (program executions). Among the 31 programs,

the average time spent estimating the assertion statements with

feasible reaching probabilities (GT> 10−6) is 0.039 seconds (median:

0.007), and the average number of samples needed (#B ) is 9,615

(median: 1,531). To achieve an estimated probability of 10−6 for

the statements infeasible to reach, the Laplace estimator requires

2 × 106 samples, and the average time spent for it is 0.055 seconds

1 void test(String line) {

2 String [] toks =

line.split(" ");

3 int i = 0;

4 for (String t : toks) {

5 if (i == 3)

6 assert false;

7 ++i;

8 }

9 }

(a) TokenTest02

1 void test(int x, int z) {

2 if(z < 0) return;

3 // instead of int y = 3;

4 int y = call("./ret3.sh");

5 z = x - y - 4;

6 if (x < z)

7 assert false;

8 else

9 print("b4");

10 }

(b) Exe13-T

1 void test(int i) {

2 if (i >= 1000)

3 if (!(i > 1000))

4 assert false;

5 }

(c) assert3

1 void test(int z) {

2 z = z % 5 - 2;

3 if (z < 0) print("b1");

4 else assert false;

5 }

(d) Exe8-F

Figure 1: Simpli�ed pseudocodes of RQ1 subjects.

(median: 0.045). Only InsertSort2 takes 4,904 seconds, mostly on

the sampling process, not the estimation. This is because InsertSort

runs the insertion sort in the worst-case scenario ($ (=2)) for a

random positive integer number length ([1, 231 − 1]) array.

Our result shows that the Laplace estimator can successfully

estimate the reaching probability of all subjects in Table 3 with

high precision, generally, in a short period of time. On the other

hand, PSE and Preach fail to estimate the accurate reaching

probability of nearly half of the subjects.

�alitative Analysis. We further investigate the properties of the

programs that prevent the analytic approach from estimating the

correct reaching probability of the program state.

Token2 (Figure 1a) epitomizes the limitation of the previously

proposed probabilistic reachability analysis. An arbitrary size of

the array signi�cantly increases the domain space (Line 1), whose

complexity becomes squared after the String API split is applied

(Line 2). It is non-trivial and requires manual e�ort to interpret the

semantics of any API call (Line 2). The loop in Lines 4-9 are a typical

example of the path explosion problem; the number of paths to

consider would grow exponentially with the size of the array if the

true branch were not terminating the loop. The non-deterministic

loop iterations (Line 4) also obstructs the scalability/precision of

the analysis as it needs to consider the maximum number of itera-

tions. Finally, the domain of variable i in Line 6 keeps changing at

each loop iteration, which makes branch selectivity-based analysis

di�cult to compute the correct probability. According to the result,

PSE fails to estimate the reaching probability for Token2 due to

the limited support for the String API. Even if the String API is sup-

ported, the path explosion problem would still make the analysis

hardly feasible, as we have seen for the programs InsertSort2 and

RBTree1 in Table 3. Both of the abstract interpretation (interval

and polyhedra) of PReach reaches the timeout limit for Token2.

The ground truth reaching probability of Token2 is

1−

(

94

95

)15

− 15�1
1

95

(

94

95

)14

− 15�2

(

1

95

)2 (
94

95

)13

= 4.82674 − 04,
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which is the probability of the input string having more than two

spaces. The vanilla PReach without the abstract interpretation fails

to estimate (P̂r = 0.333) the correct reaching probability to the

assertion. Conversely, the Laplace estimator successfully estimates

the probability with less than 1% of log-scale error in a half-second.

By computing the branch selectivity probability and inducing

the path probability using DTMC, PReach avoids the path explosion

problem. However, applying the model counting to each branch

ignores the domain change of variables during execution, which

may lead to a signi�cant inaccuracy in the probability estimation.

For instance, without abstract interpretation, PReach computes

the reaching probability of the assertion in assert3 (Figure 1c) as

0.25 = 1/2 × 1/2, where 1/2 stands for the branch selectivity for

each branch, yet the true probability is 1/232. Abstract interpre-

tation, the solution by PReach, can partially solve the problem of

domain change. While it can assist the program like assert3, which

still has a uniform distribution after the domain change, it fails to

handle the case of Exe8-F (Figure 1d), where the domain space

becomes non-uniform; the value distribution of variable z at Line 3

in Figure 1d is a non-uniform distribution between [-6, 2], where

-2 has a double probability (2/10) than other values (1/10) due to

the previous instructions. Therefore, while the true probability of

reaching the assertion statement at line 9 is 3/10 = 0.3, the model

counting method computes 3/9 = 0.333, ignoring the non-uniform

distribution of the domain space.6 In addition, a disjoint domain

space or a domain space that requires a complex domain abstraction

exists in the real world, which also hinders the analytic approach.

Finally, we mention the opaque code problem. By simply chang-

ing the expression ‘3’ on the righthand side of Line 3 in Exe13-T

(Figure 1b) to an external call to a shell script that returns 3, so that

the semantics of the program remains unchanged, PSE and PReach

fail to determine the infeasibility to reach the assertion, returning

0.25 of reaching probability, because the code is unavailable. For the

same program with the shell script, the Laplace estimator correctly

estimates that the assertion statement is infeasible to reach.

Our qualitative investigation illustrates the limitation of the

probabilistic reachability analysis to scale to real-world pro-

grams. On the other hand, the statistical reachability analysis

can scale independently of the complexity of the program se-

mantics, as it requires only the samples of program executions.

5.2 RQ2: Evaluation of Structural Information

Figure 2a shows the estimation results of the three statistical reach-

ability estimators on the programs from the Siemens suite and FOS

C/C++ programs/libraries. The upper side of the �gure shows the

raw estimated reaching probability of the target statements, and

the below side shows the log-err compared to the ground-truth

reaching probability. For all the subject programs, the result shows

that the structure-aware estimator is the most accurate, and the

Good-Turing estimator is the least accurate across the di�erent

sample size; the structure-aware estimator is always better than

or equal to the Laplace estimator and so is to the Good-Turing

6In Table 3, PReach-P estimated 0.5 due to miss managing the ‘%’ operator.
7The horizontal dashed lines in the estimation plots represent the ground-truth reach-
ing probability of the target statements. The y-axis scale of ‘Readelf’ and ‘Freetype2’
estimation plots is logarithmic.

Table 4: The average estimation time and the total time to

produce the estimated probability 4 of log-err(4,�) ) < 2. ‘-

’ denotes that the estimator cannot produce the estimated

probability of log-err(4,�) ) < 2 within 10% of the samples.

Program Esti(Struct) Total(Lap) Total(GoTu) Total(Struct)

tcas 2.14e-04s 1.53e-01s 6.04e-01s 3.63e-02s

schedule2 2.43e-04s 2.54e-01s 4.75e-01s 4.88e-02s

totinfo 9.20e-04s 1.18e-01s - 9.30e-02s

printtokens2 1.28e-04s 4.54e-03s - 4.67e-03s

replace 2.74e-04s 3.07e-01s 1.32e+00s 4.65e-03s

gif2png 6.06e-03s 4.03e-01s 1.07e+00s 1.24e-02s

jsoncpp 7.30e-04s 1.83e-02s - 4.39e-03s

jasper 2.48e-04s 3.37e-01s - 1.40e-01s

readelf 8.56e-02s 4.82e+02s - 4.83e+02s

freetype2 2.77e-02s 7.04e+02s - 4.41e+00s

estimator except for very few cases due to the unprecise estimation

with a very small samples. Due to the non-existence of the single-

ton, the Good-Turing estimator produces no estimation for some

sample size. For instance, it does not produce any estimation for

the ‘Printtokens2’ and ‘Jsoncpp.’

Figure 2b presents the average log-err of the three statistical

reachability estimators across the programs in the log-scale. In

general, the error of all three estimators decreases as the number

of samples increases. Each Laplace, Good-Turing, and structure-

aware estimator has the log-error of 3.00, 4.67, and 1.77, respectively,

when 0.1% of the expected number of samples needed to reach the

target statement is provided. Only the structure-aware estimator

reaches a log-error below 1 (0.91), while Laplace and Good-Turing

estimators get to 1.28 and 2.41, respectively. The below side of

Figure 2b presents the di�erence in the average log-err between

the structure-aware estimator and the other two estimators. The

maximum di�erence between Laplace (Good-Turing) and structure-

aware estimator until 10% of the samples is 1.99 (4.08), and the

di�erence decreases as the number of samples increases.

It is worth noting that the structure-aware estimator is also cost-

e�cient. Table 4 shows the average time spent by the structure-

aware estimator across the programs; on average, it took 0.012

seconds for the estimation (median: 5e-04s), which is compara-

ble to the two other estimators, whose computation formula is

rudimentary. The last three columns of Table 4 show the total (sam-

pling + estimation) time spent by the three estimators to reach

the estimated probability of log-err(4,�) ) < 2 within 10% of the

executions, where the bold values denotes the least time among

the three estimators. ‘To reach’ means that every estimate after

the shown time is within the error bound. The structure-aware

estimator requires the least time for most programs. In contrast,

the Good-Turing estimator could not produce the estimate within

the error bound using 10% of the executions for several programs.

Since the structure-aware estimator gives a more accurate esti-

mation given the same number of samples, often the overall time

spent by the structure-aware estimator is less than the other two

estimators.
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(a) Individual plots for each subject7( y: # of samples (%) ) (b) Average log-err and di�erences

Figure 2: Three statistical reachability estimators’ (Good-Turing: orange, Laplace: blue, Structure-aware: green) reaching

probability estimation and the error of target statements in the programs from Siemens suite and FOS C/C++ programs/libraries.

The statistical reachability estimators are able to estimate the

reaching probability for practical-sized programs. Our structure-

aware estimator is themost accurate among the three estimators:

within 10% of the expected number of executions needed to

reach the target statement, the the estimate is less than one

order of magnitude away from the ground-truth probability.

6 THREATS TO VALIDITY

Various threats to the validity need to be concerned about as we

evaluate the performance of the reachability estimators empirically.

External validity concerns whether the results from the study can

be generalized. To mitigate this concern, we use various programs

with di�erent sizes and complexity: SV-COMP 2021, Siemens suite,

and FOS software. In RQ1, we use the same benchmark used by the

former study for a fair comparison and choose the subjects based on

the selection criteria. We extend our investigation to the programs

with a larger size and complexity in RQ2 for a more general eval-

uation. Internal validity concerns the degree of con�dence of our

study, having not been in�uenced by any factor beyond the scope

of the study. First, to mitigate the randomness of the experiment,

we use numerous repetitions of greybox fuzzing campaigns and run

every estimator with ten repetitions. Second, to avoid missing any

potential error in our evaluation and to facilitate the reproduction

of our study, we make our scripts and data publicly available.

7 RELATED WORK

Beyond the quantitative reachability analysis, Böhme and colleagues

study the empirical method and the statistical framework for pro-

gram analysis in general [4, 23] and for software testing speci�cally

[3, 5, 6]. For instance, they applied the statistical approach to ana-

lyze various properties of blackbox fuzzing campaigns, including

the total feasible branch coverage, the additional time required to

cover 10% more branches, and the residual risk that a vulnerability

exists when no vulnerability has been discovered so far. Later, they

extended the approach to greybox fuzzing, where the sampling

distribution is updated during the testing process, suggesting a

methodology to avoid the adaptive bias in the statistical model [6].

Another line of work that exploits the observation-based sta-

tistical approach to estimating the program properties has been

explored in the program dependency analysis [17]. Binkley et al.

�rst proposed an Observation-based Slicing (ORBS) [1], a program

slicing technique that can be applied to a program written in multi-

ple programming languages. It has shown that, regardless of how

actually the program is implemented, if the runtime behavior of a

program state is changed after perturbing another program state,

there is a dependency between the two states. Using this observa-

tion, ORBS can approximate the program dependency even for the

dependency that cannot be captured by the static analysis [2]. Later,

Lee et al. adopted statistical modeling and extended this slicing tech-

nique to a general program dependency analysis technique [18, 19].
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8 DISCUSSION & FUTUREWORK

Throughout the evaluation, we have shown that the statistical reach-

ability analysis is a promising approach to estimating the reaching

probability of a program. Not only is it scalable, but it can also

provide probability estimation with high precision for programs

that are not amenable to the probabilistic reachability analysis. Fur-

thermore, our novel structure-aware estimator demonstrates the

bene�t of incorporating structural information into the statistical

reachability analysis. The structure-aware estimator can provide a

more accurate estimation even with a small number of execution

samples.

The main advantage of our structure-aware reachability esti-

mator is that it systematically considers the hierarchical relation

between the reached and unreached states. Therefore, the esti-

mation is well-grounded in terms of the given structure (as we

illustrated in Figure ??) and expected to be more accurate than

the existing statistical estimators that consider the program as a

blackbox. At the same time, the structure-aware reachability es-

timator is much more scalable than the probabilistic reachability

analysis. Our estimator can employ any structural information that

can be driven from a light-weighted static analysis, which is more

applicable than the symbolic execution and the model counting.

For the future work, we will investigate how those advantages of

statistical/structure-aware reachability analysis can actually bene-

�t the concrete downstream applications on software testing and

maintenance.

The probability distribution of reaching the successor program

states from the unreached program states has been approximated

by the uniform distribution in our structure-aware estimator. While

this approximation is reasonable when there is no prior knowledge,

any prior knowledge can be integrated into the structure-aware

estimator by modifying the probability distribution. For instance,

the branch selectivity from PReach can be used for the probability

distribution of reaching the successor program states. Employing

the information from the static analysis can also be helpful to im-

prove the precision/soundness of the estimation result. For instance,

some statistical estimator (e.g., Laplace) may assign nonzero prob-

ability to the unreachable program states, which can be avoided

by using the information from the static analysis. Nonetheless, we

avoid using the model counting-based methods in this study since

it still requires considerable computational e�ort to run the model

counting for every branch in a large program, and it will restrict

the domain of the variable to the integer domain. In the future, we

will investigate the bene�cial integration of analytic and statistical

methods.

9 DATA AVAILABILITY

All data & scripts are publicly available through Zenodo: https:

//doi.org/10.5281/zenodo.7612964.
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