
Estimating Residual Risk in Greybox Fuzzing

Marcel Böhme
Monash University, Australia

MPI-SP, Germany

Danushka Liyanage
Monash University

Australia

Valentin Wüstholz
ConsenSys
Germany

ABSTRACT

For any errorless fuzzing campaign, no matter how long, there is

always some residual risk that a software error would be discovered

if only the campaign was run for just a bit longer. Recently, greybox

fuzzing tools have foundwidespread adoption. Yet, practitioners can

only guess when the residual risk of a greybox fuzzing campaign

falls below a specific, maximum allowable threshold.

In this paper, we explain why residual risk cannot be directly

estimated for greybox campaigns, argue that the discovery proba-

bility (i.e., the probability that the next generated input increases

code coverage) provides an excellent upper bound, and explore

sound statistical methods to estimate the discovery probability in

an ongoing greybox campaign. We find that estimators for blackbox

fuzzing systematically and substantially under-estimate the true

risk. An engineerÐwho stops the campaign when the estimators

purport a risk below the maximum allowable riskÐis vastly misled.

She might need execute a campaign that is orders of magnitude

longer to achieve the allowable risk. Hence, the key challenge we

address in this paper is adaptive bias: The probability to discover a

specific error actually increases over time. We provide the first prob-

abilistic analysis of adaptive bias, and introduce two novel classes

of estimators that tackle adaptive bias. With our estimators, the

engineer can decide with confidence when to abort the campaign.

CCS CONCEPTS

• Security and privacy→ Software and application security; •

Software and its engineering→ Software testing and debugging.

KEYWORDS

software testing, statistics, estimation, assurance, correctness

ACM Reference Format:

Marcel Böhme, Danushka Liyanage, and Valentin Wüstholz. 2021. Estimat-

ing Residual Risk in Greybox Fuzzing. In Proceedings of the 29th ACM Joint

European Software Engineering Conference and Symposium on the Founda-

tions of Software Engineering (ESEC/FSE ’21), August 23ś28, 2021, Athens,

Greece. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3468264.

3468570

1 INTRODUCTION

On the one hand, we have software verification which allows to

demonstrate the correctness of the program for all inputs. On the

other hand, we have software testing which can demonstrate the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8562-6/21/08.
https://doi.org/10.1145/3468264.3468570

●●●
●

●

●

●●
●●

●

●

●●
●

●

●

●

●●
●●

●
●●

●

●

●●●●

●

●
●●

●

●●
●●●●●

●

●●
●●

●

●
●●

●

●●●●●●●●

●●

●
●●

●

●

●●●

●

●

●●

●
●●

●●
●

●

●
●

●●

●

●●●

●●

●

●
●

●●●

●
●●

●●●

●●

●●●●

●

●
●

●●●●●●●●●

●

●●

●

●

●

●●●

●
●

●

●

●●●●
●

●●

●●●●●●

●

●
●●

●●

●

●●

●●

●
●●●●●●●

●

●●●●

●

●

●●●●●●●●●

●

●

●

●

●

●
●●

●

●
●●

●●●●

●●

●

●

●

●
●

●

●●
●

●

●

●
●

●
●

●

●
●●●●

●

●●
●●

●●
●

●●
●

●

●

●●●●●●●●●

●

●

●

●

●

●

●
●

●●
●●

●●●
●

●
●●●

●
●●●

●

●●●●
●

●

●●

●

●
●

●

●

●●●
●

●●●

●●●●●
●

●●●●●●●●●●

●

●

●
●●●●●●●

●

●

●●●
●

●●

●
●●

●●●
●●

●●●
●●

●

●

●

●●

●

●
●

●
●

●●
●

●●
●

●

●

●●

●

●
●

●●●●●●●

●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●●

●

●

●●

●

●●
●

●
●●

●

●

●
●●

●
●●●●●

●

●●

●

●

●

●●●●●●●●●

●●●
●

●●

●●
●

●●●
●

●

●

●●
●●

●●

●

●

●

●
●●

●●●

●

●
●

●●
●

●

●●

●●

●
●

●
●

●●●●
●

●●●

●●●●●●●●

●●●●●●●
●●

●
●

●

●

●

●●

●

●●
●

●

●

●

●

●●

●●
●●

●

●●

●

●

●

●

●

●●

●
●●

●●●●●●●●
●

●

●●●●●●●●

●

●●

●●
●●●●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●

●

●

●
●

●●●

●

●
●

●
●

●●

●
●

●
●

●●

●

●

●●●●●●●●

●

●●

●●

●
●

●●●●

●
●●

●●

●

●

●

●
●●●

●

●
●●

●
●

●
●●

●

●

●

●
●●●

●●
●●

●

●
●

●●
●

●●
●

●

●●●●●●●●

●●●●
●●●●●●

●

●

●

●●●

●

●●●
●●

●
●●

●●

●

●

●

●
●

●●
●

●
●

●●
●●●●●

●
●●●

●
●

●●●●●●●●●●●

●

●

●●
●

●

●●●

●

●●
●●

●

●

●

●

●●

●

●●

●

●●
●

●●●●

●

●

●
●●●●●●●●

●

●

●

●
●

●
●●

●
●

●●●●●●●●●

●●●
●

●

●●

●

●●●●

●

●●●

●●
●●

●
●

●●

●
●●

●
●

●
●

●

●
●●

●
●

●
●

●

●

●

●●
●●●

●●
●

●

●●●●●●●●●●

●

●

●●
●

●
●●

●
●

●

●
●●●

●
●●

●

●
●

●
●●●

●

●
●

●
●

●●●

●

●●●●
●

●
●

●

●
●

●

●
●

●●●

●

●●●●●●●●●●

●●

●

●●●

●

●●
●

●

●●

●

●●●

●

●

●
●●

●●

●
●

●●

●

●

●

●

●
●●

●
●

●

●

●●
●●

●
●●●

●

●●

●
●

●●●●●●●●●

●●

●

●

●

●●●●

●●

●

●

●
●●

●

●

●

●
●●●●

●●

●●●●

●
●

●
●

●
●

●

●

●●
●●

●

●
●

●●●
●●●

●●●
●●

●●●●●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●●●●
●

●●

●

●

●

●●

●
●●

●●●

●

●

●
●

●

●

●

●
●

●●
●●

●
●

●
●

●

●●●●●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●●
●

●●
●

●

●

●●
●

●
●●

●
●

●●●●●

●●●

●

●●●●●●●●●●

●

●●

●●
●●

●●
●●●

●

●

●
●

●●
●

●
●

●

●●●

●

●
●

●

●
●

●
●

●●
●●●●

●●●

●

●

●●●●●

●
●

●
●

●●●●●●●●

●●●
●●●

●●●

●

●

●
●●

●
●

●
●

●●

●●●
●

●

●

●●

●

●●
●●●

●●●

●●●●●●●
●●●●●

●●
●

●●

●●●●●●●

●●

●

●
●●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●●
●

●●●
●●●

●

●
●

●

●

●

●

●●
●●●

●
●

●●●●
●●

●

●

●

●●●●●●●●

●●●●

●●●
●●●●

●
●●●

●●

●

●

●

●

●●
●

●
●

●
●●●

●

●

●
●

●

●

●

●
●●●

●
●

●

●●
●●

●

●●
●

●

●●●●●●●●

●●●●
●●

●
●

●

●●●●●

●●●

●

●

●
●

●●●

●

●
●

●●

●
●

●

●
●

●●●●

●
●

●

●●

●
●

●●●●
●

●●

●

●●●●●●●●

●

●

●

●

●●●

●

●
●●●

●
●

●

●
●

●
●

●
●●

●

●●
●

●

●

●

●●
●

●

●

●
●

●
●

●
●●

●●
●

●●●●

●

●●●●●●●●●●●●

●●●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●●
●●●

●

●

●
●●●

●

●

●
●●

●●

●

●

●
●

●
●

●●

●

●

●
●●

●●●

●●●●●●●●●●

●●●●
●●●

●●●

●

●
●●

●

●

●
●●●●●●

●●●●

●●●
●

●

●

●●

●

●
●

●●
●

●
●

●
●

●
●●

●●
●

●

●●●●●●●●●

●

●●

●●

●
●

●
●

●
●●●

●
●●

●
●

●

●
●

●

●

●

●
●●

●●

●

●
●

●

●●
●●

●
●●

●
●●●●●

●●
●

●
●●

●●●●●●●●●

●

●

●
●

●
●

●

●●

●●

●●

●

●
●

●
●

●

●
●●●

●

●
●

●

●
●●

●

●●
●

●

●

●
●

●●●
●

●●●

●

●
●

●●
●

●●

●●●●●●●●

●

●

●
●●

●

●

●
●

●

●

●

●
●●●

●

●

●

●●●●

●

●

●●

●

●

●

●●●●

●

●
●

●

●
●

●
●●●

●

●●
●

●
●

●

●

●

●●●●●●●●

Greybox

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of generated test inputs (n)

P
ro

b
a

b
ili

ty

factor ● Discovery probability Bug Probability

Figure 1: In greybox fuzzing, the probability 𝑝bug to generate

a bug-revealing input (dashed line) increases as 𝑛 increases.

The probability Δ(𝑛) that the (𝑛 + 1)-th input is coverage-

increasing (solid line) provides an upper bound on the prob-

ability (residual risk) that it is the first bug-revealing input.

The vertical line is when we expect the first bug-rev. input.

correctness of the program only for some inputs. While verifica-

tion provides much stronger correctness guarantees, it is greybox

fuzzing, a specific form of software testing, which has found wide-

spread adoption in industry [24ś26].

From a fuzzing campaign that has found no bugs, can we derive

some statement about the correctness of the program? Fuzzing

being a random process, it should be possible to derive statistical

claims about the probability that the next generated input is the

first bug-revealing input. We call this probability the residual risk.

We know how to quantify residual risk for whitebox fuzzing (using

model counting) [10] and blackbox fuzzing (using estimation) [1],

but not for greybox fuzzingÐwhich has emerged as the state-of-

the-art in automated vulnerability discovery.

Greybox fuzzing is subject to adaptive bias, i.e., the probability

to generate a bug-revealing input actually increases throughout the

fuzzing campaign.1 Figure 1 shows simulation results for greybox

fuzzing. As more seeds become available, the bug probability 𝑝bug
increased (dashed line). In contrast, blackbox fuzzing is not subject

to adaptive bias and the probability to generate a bug-revealing

input remains constant throughout the campaign. If this was the

case for greybox fuzzing, we could cast residual risk estimation as

a sunrise problem2 and employ the well-known Laplace estimator.

However, in our experiments we find that, in the presence of adap-

tive bias, the Laplace estimator severely under-estimate the residual

risk for greybox campaigns. The true risk is orders of magnitude

higher than the estimator purports. A practitioner would abort the

campaign many days earlier than necessary, and assume a higher

degree of confidence in the correctness than warranted.

1We mean the probability 𝑝bug to generate any bug-revealing input, not just the first.
2The sunrise problem is the following riddle: "Suppose, we have seen the sun rise ever
since we were born 𝑁 days, ago. What is the probability that the sun rises tomorrow?"

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

230

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3468264.3468570
https://doi.org/10.1145/3468264.3468570
https://doi.org/10.1145/3468264.3468570

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Marcel Böhme, Danushka Liyanage, and Valentin Wüstholz

To tackle adaptive bias in greybox fuzzing, we first propose to

estimate an upper bound on residual riskÐcalled discovery proba-

bility. Let’s start with the model. Suppose, we are drawing 𝑛 balls

with replacement from an urn containing colored balls. Each ball

represents a generated input. The ball’s color represents, e.g., the

executed program path (i.e., whatever we wish to measure the cov-

erage of). Without loss of generality, we assign the color black to

balls representing bug-revealing inputs. Discovery probability Δ(𝑛)

is the probability that the (𝑛+1)-th ball we draw has a color we

have previously not observed. Residual risk is the probability that

the (𝑛+1)-th ball we draw is black. We argue, as long as we have

not seen any black balls after drawing 𝑛 balls with replacement,

the probability to draw a ball with an arbitrary unobserved color

provides an upper bound on the probability to draw a ball with the

color black.

In this paper, we extend the probabilistic framework for blackbox

fuzzing [1] to incorporate concepts from greybox fuzzing, and prob-

abilistically analyze the functional behavior of residual risk and

adaptive bias. We define adaptive bias as the difference in discovery

probability between grey- and blackbox campaigns of equivalent

length, started with the same corpus and formally show that, under

realistic assumptions, adaptive bias reduces with campaign length.

We propose and study three general approaches to tackle adap-

tive bias during estimation in greybox fuzzing: (i) reset estimation,

(ii) mean local estimation, and (iii) extrapolation. Reset estimation

arises from the observation that a greybox campaign can be mod-

elled as a sequence of blackbox campaigns, each started when a

new seed is added to the corpus. Instead of the entire campaign, an

𝑎-reset estimator is applied to the partial campaign started before

the 𝑎 most recently added seeds. However, in our experiments, reset

estimators systematically overestimate and exhibit a high variance.

Mean local estimation is motivated by the observation that the

number of times a seed has been fuzzed in the past and the prob-

ability to be selected next is entirely disconnected. For instance,

old seeds will have been fuzzed much more than new seeds but

are less likely used to generate the next input. Hence, mean local

estimators are defined as weighted combinations of seed-specific

local estimates. In our experiments, we find that those perform best

with low bias and variance.

Extrapolation is motivated by our observation from simulation

and empirical results that discovery probability follows a power law.

In our experiments, we find that, at the cost of measuring ground

truth, discovery probability can be extrapolated by several orders

of magnitude with high accuracy.

In summary, the paper makes the following contributions.

• Novel class of estimators that account for adaptive bias.

• Empirical investigation of estimator performance of ex-

isting and new estimators of discovery probability.

• Probabilistic analysis of adaptive bias in greybox fuzzing.

• Empirical and simulation study of the functional behav-

ior of discovery probability as more inputs are generated.

• Extension of STADS [1] to accommodate greybox con-

cepts, such as current corpus and current global distribution.

• All data & scripts are publicly available:

★ https://www.kaggle.com/adaptivebias/empirical

★ https://www.kaggle.com/adaptivebias/simulation

2 MOTIVATING EXAMPLE

Why does the probability to generate a bug-revealing input increase

for greybox fuzzing but not for blackbox fuzzing? Let us explore

this question for a concrete example.

1 void crashme(char* s) {

2 if (strlen(s) != 4) return;

3 if (s[0] == 'b')

4 if (s[1] == 'a')

5 if (s[2] == 'd')

6 if (s[3] == '!')

7 abort ();

8 }

Listing 1: This program crashes for "bad!". Taken from [5].

Listing 1 shows a program that crashes for input "bad!" when

the input executes the abort statement in Line 8. Our task is to

generate inputs for crashme, some of which would expose this bug.

Blackbox fuzzer. Suppose, we have a blackbox fuzzer that ran-

domly generates strings (char*) of length four (e.g., "3>r+"). In C,

char is one byte and can have one of 28 = 256 values. There are

2564 = 4 billion different strings of length four that our blackbox

fuzzer can generate. Only one of those would expose the bug.

Thus, for our blackbox fuzzer, the probability 𝑝bug to generate

a bug-revealing input is roughly one in four billion throughout

the entire fuzzing campaign.

Greybox fuzzer. Suppose, our greybox fuzzer generates the first

seed using the blackbox fuzzer. Assume that our greybox fuzzer

has the following mutation operator: Given a seed, choose an arbi-

trary character uniformly at random and substitute it with another

character chosen uniformly at random.

Table 1: Expected #inputs to generate the next coverage-

increasing seed (To), given the current corpus.

#Seeds From To Expected #inputs required

1 ???? b??? (1 ∗ 4−1 ∗ 2−8)−1 = 1024

2 b??? ba?? (1/2 ∗ 4−1 ∗ 2−8)−1 = 2048

3 ba?? bad? (1/3 ∗ 4−1 ∗ 2−8)−1 = 3072

4 bad? bad! (1/4 ∗ 4−1 ∗ 2−8)−1 = 4096

5 Total: 10240 inputs

Table 1 illustrates how adding coverage-increasing inputs to the

seed corpus gradually increases the probability 𝑝bug to generate the

bug-revealing input. Our greybox fuzzer uses our blackbox fuzzer

to generate the first seed ????, where ? denotes a placeholder

for an arbitrary character. As we know, the probability that this

initial seed exposes the bug is one in four billion. For simplicity,

we will assume the initial seed does not start with a ‘b‘. The next

coverage-increasing input b??? is generated with probability 1
4

(to choose the first character) multiplied by 1
256 to choose b as the

first character, i.e., one in 1024. Once this new seed is added to the

corpus, suppose we choose the next seed from the corpus uniformly

at random. So, the next coverage-increasing input ba?? is generated

with probability (12 ·
1
4 ·

1
28
), i.e., one in 2048. We proceed accordingly

until the bug is found.

231

https://www.kaggle.com/adaptivebias/empirical
https://www.kaggle.com/adaptivebias/simulation

Estimating Residual Risk in Greybox Fuzzing ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

For a greybox fuzzer, starting from an arbitrary initial seed and

given the mutation operators, the probability 𝑝bug to generate

an input that exposes the bug increases from one in four billion

for the first generated input to one in four thousand for the final

corpusÐbecause new seeds are added throughout the campaign.

In expectation, we only need about ten thousand inputs, total.

Residual Risk is the probability that the (𝑛+1)-st generated

input is the first bug-revealing input, i.e., a new bug is discovered.

For our blackbox fuzzer, the probability 𝑝bug to generate any bug-

revealing input remains constant while generating 𝑛 inputs. The

residual risk decreases monotonically with 𝑛, i.e., 𝑝bug (1 − 𝑝bug)
𝑛 .

For our greybox fuzzer, as 𝑝bug increases, the residual risk may also

increase when new seeds are added before it decreases again.

Discovery probability is the probability that the (𝑛+1)-st gener-

ated input increases coverage. Suppose our fuzzer generates inputs

that exercises the five paths in lines 3ś7 of Listing 1 with probabil-

ities ⟨𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5⟩, respectively.
3 For our blackbox fuzzer, the

discovery probability is
∑5
𝑖=1 𝑝𝑖 (1 − 𝑝𝑖)

𝑛 . For our greybox fuzzer,

as 𝑝𝑖 may vary, the discovery probability may increase when new

seeds are added before it decreases again. This difference between

black- and greybox is the source of adaptive bias.

Adaptive bias is the difference between in discovery probability

between grey- and blackbox campaigns of equivalent length, started

with the same corpus.

3 PROBABILISTIC ANALYSIS

3.1 Background

Wepresentmore formally the same urnmodel from the introduction

using the species discovery model [1]. Let P be the program that

we wish to fuzz. We refer to the set of all inputs that P can consume

as P’s input spaceDDD. Fuzzing program P is a stochastic process

F = {𝑋𝑛 | 𝑋𝑛 ∈ DDD}𝑁𝑛=1 (1)

of sampling 𝑁 inputs with replacement from the program’s input

space. We call F a fuzzing campaign and a tool that performs F a

non-deterministic blackbox fuzzer.

Suppose, we can divide the search space DDD into 𝑆 individual

subdomains {D𝑖 }
𝑆
𝑖=1 called species [1]. An input 𝑋𝑛 ∈ F is said to

discover speciesD𝑖 if𝑋𝑛 ∈ D𝑖 and there does not exist a previously

sampled input 𝑋𝑚 ∈ F such that𝑚 < 𝑛 and 𝑋𝑚 ∈ D𝑖 (i.e., D𝑖 is

sampled for the first time). An input’s species are defined based on

behavior observed when executing the input. For instance, a branch

that is exercised by input 𝑋𝑛 ∈ DDD can be seen as a species. The

discovery of new species then corresponds to an increase in branch

coverage.

Global species distribution. We let 𝑝𝑖 be the probability that

the 𝑛-th generated input 𝑋𝑛 belongs to species D𝑖 ,

𝑝𝑖 = 𝑃 [𝑋𝑛 ∈ D𝑖] (2)

for 𝑖 : 1 ≤ 𝑖 ≤ 𝑆 and 𝑛 : 1 ≤ 𝑛 ≤ 𝑁 . We call {𝑝𝑖 }
𝑆
𝑖=1 the

fuzzer’s global species distribution. The expected number of dis-

covered species 𝑆 (𝑛) can be derived as the complement of the prob-

ability that a species D𝑖 remains undiscovered after generating 𝑛

3Note that 𝑝5 = 𝑝bug in this example. In general, 𝑝bug does not need to correspond to

a path, branch, or statement in a program. For more details, see Section 3.2.

test inputs, summed over all species.

𝑆 (𝑛) =

𝑆∑

𝑖=1

[
1 − (1 − 𝑝𝑖)

𝑛
]
= 𝑆 −

𝑆∑

𝑖=1

(1 − 𝑝𝑖)
𝑛 . (3)

We can show that the number of species 𝑆 that the fuzzer discovers

in the limit, i.e., the asymptotic total number of species is given as

𝑆 = lim
𝑛→∞

𝑆 (𝑛) . (4)

Mutation-based fuzzing. In a mutation-based fuzzing cam-

paign new inputs are generated by mutating existing inputs, so-

called seeds. In addition to the global species distribution, this

suggests the existence of a local species distribution for each seed

[3]. Let C be a set of seed inputs, called the seed corpus and 𝑞𝑡 be

the probability that the fuzzer chooses to mutate the seed 𝑡 ∈ C.4

For each seed 𝑡 , letDDD𝑡 be the set of all inputs that can be generated

by applying the available mutation operators to 𝑡 . Mutation-based

fuzzing of 𝑡 is a stochastic process

F 𝑡
=

{
𝑋 𝑡
𝑛 | 𝑋 𝑡

𝑛 ∈ DDD𝑡
}𝑁 𝑡

𝑛=1 (5)

of sampling 𝑁 𝑡 inputs with replacement by random mutation of

the seed 𝑡 . Note that F 𝑡 ⊆ F where F is a mutation-based fuzzing

campaign and 𝑡 is a member of a corpus C of seeds. We call all

species that can be found by fuzzing a seed 𝑡 as the species in 𝑡 ’s

neighborhood.

Local species distribution. We let 𝑝𝑡𝑖 be the probability that

the 𝑛-th input 𝑋 𝑡
𝑛 which is generated by mutating the seed 𝑡 ∈ C

belongs to species D𝑖 ,

𝑝𝑡𝑖 = 𝑃 [𝑋 𝑡
𝑛 ∈ D𝑖] (6)

for 𝑖 : 1 ≤ 𝑖 ≤ 𝑆 and 𝑛 : 1 ≤ 𝑛 ≤ 𝑁 . We call {𝑝𝑡𝑖 }
𝑆
𝑖=1 the local species

distribution in the neighborhood of the seed 𝑡 . Note that global and

local distributions, by the law of total expectation, are related as

𝑝𝑖 =
∑

𝑡 ∈C

𝑞𝑡 · 𝑝
𝑡
𝑖 . (7)

for 𝑖 : 1 ≤ 𝑖 ≤ 𝑆 where selection probability 𝑞𝑡 is the probability

that 𝑡 ∈ 𝐶 is chosen for fuzzing. Hence, the number of species dis-

covered over time for a mutation-based blackbox fuzzer according

to Equation (3) is given by

𝑆 (𝑛) =

𝑆∑

𝑖=1

[

1 −

(

1 −
∑

𝑡 ∈C

𝑞𝑡 · 𝑝
𝑡
𝑖

)𝑛]

. (8)

Assumptions. For our probabilisticmodel, we require that global

and local species distributions are invariant throughout the fuzzing

campaign. A contribution of the present work is to relax this as-

sumption for greybox campaigns (cf. Section 3.3). So far, we require

𝑝𝑖 = 𝑃 [𝑋𝑛 ∈ D𝑖] = 𝑃 [𝑋𝑛+1 ∈ D𝑖] and (9)

𝑝𝑡𝑖 = 𝑃 [𝑋 𝑡
𝑛 ∈ D𝑖] = 𝑃 [𝑋 𝑡

𝑛+1 ∈ D𝑖] (10)

for 𝑖 : 1 ≤ 𝑖 ≤ 𝑆 and 𝑛 : 1 ≤ 𝑛 < 𝑁 , where 𝑞𝑡 is the probability that

the fuzzer chooses the seed 𝑡 ∈ C, where 𝑋𝑛 and 𝑋𝑛+1 are the 𝑛-th

and (𝑛+1)-th generated test inputs, respectively, and where 𝑋 𝑡
𝑛 and

𝑋 𝑡
𝑛+1 are the 𝑛-th and (𝑛+1)-th test inputs generated by fuzzing the

seed 𝑡 , respectively.

4This selection probability is also known as the seed’s energy or weight.

232

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Marcel Böhme, Danushka Liyanage, and Valentin Wüstholz

This holds if, for any program input 𝑑 ∈ D in the program’s

input space, we have that 𝑃 [𝑋𝑛 = 𝑑] = 𝑃 [𝑋𝑛+1 = 𝑑], i.e., the

probability to generate some input 𝑑 is invariant throughout the

campaign. Our model accommodates that a blackbox fuzzer may

generate inputs from a non-uniform distribution, i.e., for any two

inputs 𝑑1, 𝑑2 ∈ D, it is entirely possible that the probability that

the 𝑛-th test input is 𝑑1 or 𝑑2 differs, i.e., 𝑃 [𝑋𝑛 = 𝑑1] ≠ 𝑃 [𝑋𝑛 = 𝑑2].

For random testing tools and for generation- or mutation-based

blackbox fuzzers that generate inputs by some random process it is

realistic to assume that the probability to sample from a subdomain

D𝑖 ⊆ DDD does not change during the fuzzing campaign. After all,

without dynamic program feedback, a non-deterministic blackbox

fuzzer has no reason to vary its fuzzing heuristics during the cam-

paign. A mutation-based blackbox fuzzer usually has a fixed-size

seed corpus C and fixed-size set of mutation operators.

Otherwise, we make no assumptions about the number 𝑆 , rela-

tive abundance {𝑝𝑖 }
𝑆
𝑖=1, or distribution of species in the fuzzer’s

search space. Specifically, there is no assumption that species are

distributed equally. Some rare species (i.e., 𝑝𝑖 is very small) may

well be clustered within a small region of the input space.

3.2 Residual Risk and Discovery Probability

We define the residual risk of an ongoing fuzzing campaign of length

𝑛 as the probability that the (𝑛+1)-th generated test input discovers

a bug. Given a set of species, without loss of generality, we remove

all bug-revealing inputs and add them to a new, dedicated species

D✗. In this context, residual risk is the probability that the (𝑛+1)-th

generated input belongs to D✗.

Figure 1 shows a simulation of 30 greybox campaigns on a subject

with 50 species, including a rare, bug-revealing species. To ensure

our simulation is realistic, we extended the publicly available simu-

lation script that was used to explain the empirical results on the

exponential cost of vulnerability discovery [2]. In the simulation,

we sample 𝑛 balls from an urn where each ball has one of 𝑆 = 50

colors. Each color represents a species while the color black is ded-

icated to the bug-revealing species. To simulate greybox fuzzing,

whenever a ball is sampled that belongs to a previously unobserved

color, the probability 𝑝𝑖 for future samples to have one of the "neigh-

boring" colors D𝑖 slightly increases. The resulting distribution is

normalized such that
∑𝑆
𝑖=1 𝑝𝑖 = 1. The residual risk is the expected

probability that the (𝑛+1)-th ball is black as 𝑛 increases. We repeat

this simulation 30 times and show individual and average values

(triangles and lines, resp.).

In greybox fuzzing, the probability to generate a bug-revealing

input actually increases over time. However, without any evidence

about the presence of the bug, there is no way that we can account

for this increase in our missing mass estimation. We investigate

this adaptive bias in Section 3.3.

To overcome this challenge, we propose to estimate discovery

probability as an upper bound on the residual risk. Like residual risk,

discovery probability is subject to adaptive bias. However, unlike

residual risk, we can empirically measure the discovery probability

in an ongoing fuzzing campaign. While the residual risk measures

the probability that the (𝑛+1)-th ball is black (which we have not

observed), the discovery probability measures the probability that

the (𝑛+1)-th ball has an arbitrary color which we have not observed

(including the color black; cf. Fig. 1 top curve).

●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

Number of generated test inputs (n)

D
is

c
o
ve

ry
 p

ro
b
.

D
e

lt
a

(n
) Fuzzer

● Blackbox

Greybox

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●●●●●●●●●●

0%

25%

50%

75%

100%

10
0

10
1

10
2

10
3

10
4

Number of generated test inputs (n)

S
p

e
c
ie

s
 c

o
ve

ra
g

e
 S

(n
)/

S

Fuzzer

● Blackbox

Greybox

Figure 2: Discovery probability Δ(𝑛) (top) and proportion of

discovered species 𝑆 (𝑛)/𝑆 (bottom) as the number 𝑛 of gener-

ated test inputs increases (log-log-scale). Grey triangles are

values for individual campaigns while lines show average

values. Simulation of 30 greybox and blackbox campaigns

of length 𝑁 = 50𝑘).

We define the discovery probability Δ(𝑛) as the probability that

test input 𝑋𝑛+1 ∈ F discovers a new species, which is derived as

the difference in the expected number of discovered species when

𝑛 and 𝑛+1 test inputs have been generated,

Δ(𝑛) = 𝑆 (𝑛 + 1) − 𝑆 (𝑛) =

𝑆∑

𝑖=1

𝑝𝑖 (1 − 𝑝𝑖)
𝑛 (11)

Power Law. Figure 2.top illustrates the general behavior of dis-

covery probability.5 Discovery probability Δ(𝑛) appears to be scale

invariant: one order of magnitude more test inputs reduce the dis-

covery probability by roughly one order of magnitudeÐa property

that holds over the entire campaign. In fact, in the log-log plot, dis-

covery probability for both black- and greybox campaigns appear

almost like straight lines. Scale invariance is a well-known attribute

of power law relationships where a quantity 𝑓 (𝑥) varies as a power

of another quantity 𝑥 , i.e., 𝑓 (𝑥) = 𝑎𝑥−𝑘 , where 𝑎 and 𝑘 are two

non-negative (fixed) parameters.

Extrapolation. To leverage the power law relationship, at the

beginning of a campaign, we could measure the true discovery

probability6 in exponentially increasing intervals and employ a

linear regression on the logarithm of discovery probability and

number of generated tests to extrapolate discovery probability by

several orders of magnitude. Indeed, a linear regression of [log(𝑛)
∼ log(Δ(𝑛))] yields a very high goodness-of-fit. Concretely, in black-

and greybox campaigns, respectively, on average𝑅2 = 99% and𝑅2 =

5For now, we ask the reader to focus on the greybox line. We discuss adaptive bias as
the difference between blackbox and greybox fuzzing in Section 3.3.
6Note that measuring discovery probability (as opposed to estimating it) incurs a cost
that is prohibitive for reasonably large 𝑛 (cf. Section 5.3)

233

Estimating Residual Risk in Greybox Fuzzing ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●
●

●
●●●●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●
●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●
●●

●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●●

●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●
●

●
●●

●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●●●

●

●●●
●●

●
●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●●●
●●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●●
●

●●●●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●●●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●●

●
●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●●●
●●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●●●●

●

●
●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●●●●
●

●

●●

●

●

●●
●●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●

●

●
●

●

●●●●

●

●

●

●

●
●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●
●●●

●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●
●

●

●

●●

●

●

●●

●●●

●●

●
●

●

●
●●

●

●●●

●

●●●●●●●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●●

●
●

●

●●●●●●●●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●●

●●●

●

●●

●
●

●
●

●
●

●

●

●
●●

●

●●

●

●

●

●

●●

●●●●

●●

●

●

●●●●●●●●●●

●

●
●

●
●

●
●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●
●●

●

●

●
●●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●●●●●●●●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●●

●●

●●

●

●
●

●

●
●●

●

●

●

●

●

●

●●●●●●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●●

●

●

●

●

●

●●

●

●●

●

●
●

●●
●

●
●

●

●

●
●

●

●●●●●●●●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●●●●●●●●●●●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●●

●

●

●●●●●

●
●

●

●
●

●

●

●

●
●

●

●

●●●●●●●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●
●●

●
●

●
●●

●

●
●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●●

●●

●

●●

●
●

●

●

●

●●●●●●●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●●
●

●

●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●●

●

●
●

●

●

●

●●
●

●

●●

●●
●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●
●

●

●●

●

●

●●●●●●●●

●
●

●
●

●
●

●●
●●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●
●

●●●●●●●●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●●

●

●●●●●●●●●●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●
●

●●

●●

●

●
●●

●

●

●

●

●●
●

●

●

●●●●●●●●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●●●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●
●

●●●●●●●●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●●●●●●●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●
●

●

●

●●

●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●●●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●●●●●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●

●●

●

●

●
●●

●

●

●

●●●

●

●

●●

●

●

●

●●●

●

●
●

●

●●●●●●●●●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●●

●●
●

●
●

●

●●

●

●

●

●●

●
●

●

●●●
●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●

●●●●●●●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●
●

●●
●●

●

●

●

●
●

●

●

●●●●●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●●●●
●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●●●●●●●●

●
●

●

●

●

●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●
●●

●

●

●●

●

●
●

●
●●

●

●●●●●●●●

●

●

●

●
●

●

●
●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●●
●●

●
●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●
●

●
●●

●
●

●

●●●
●

●

●

●

●●●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●●●●

●

●

●●●●●●●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●●●●●●●

−0.5

0.0

−1.0

−0.5

0.0

0.5

1.0

10
0

10
1

10
2

10
3

10
4

Number of generated test inputs (n)

A

d
a

p
ti
ve

 b
ia

s
 (

G
B

 −
 B

B
)

A
d

a
p

ti
ve

 b
ia

s
 (

lo
g

1
0

(G
B

)−
lo

g
1

0
(B

B
)

Figure 3: Adaptive bias (on a log-x-scale, top: Δ𝐺 (𝑛) − Δ𝐵 (𝑛);

bottom: log10 (Δ𝐺 (𝑛))−log10 (Δ𝐵 (𝑛)), where Δ𝐺 and Δ𝐵 are dis-

covery probabilities for greybox and blackbox campaigns,

resp.). As discovery probabilities span several orders of mag-

nitude, the bottom shows difference in magnitude.

94% of the variance found in the response variable log(Δ(𝑛)) can

be explained by the predictor variable log(𝑛). We investigate this

approach empirically in Section 6.3 for a state-of-the-art greybox

fuzzer, and the results confirm our observation (median 𝑅2 ≥ 97%).

3.3 Adaptive Bias

Residual risk and discovery probability are subject to adaptive bias.

Suppose, our fuzzer can be run in two modes, a greybox mode and a

blackbox mode. The only difference between the two modes is that,

in a greybox campaign F𝐺 , the fuzzer adds a generated input to

the seed corpus if it discovers a new species, while in a blackbox

campaign F𝐵 , the fuzzer always maintains the initial seed corpus.

All other fuzzer properties, such as the initial corpus, the set of

mutation operators, or the power schedule, are equal in both modes.

Informally, we can define adaptive bias as the difference in dis-

covery probability between grey- and blackbox campaigns of equiv-

alent length, started from the same corpus. Figure 2 illustrates the

impact of adaptive bias on the discovery probability in a greybox

campaign within our simulation study.

Due to adaptive bias, the discovery probability is consistently

higher in the greybox campaign than the blackbox campaign

(until shortly before 100% of species are discovered; Fig. 3).

We extend the STADS probabilistic model [1] to accommodate

greybox fuzzing and adaptive bias. Let C𝑛 be the current seed cor-

pus after exactly 𝑛 test inputs have been generated in a greybox

campaign F𝐺 = {𝑋1, . . . , 𝑋𝑛, . . . , 𝑋𝑁 }. Concretely,

C𝑛 = {𝑋𝑚 | 𝑋𝑚 ∈ F𝐺 ∧ disc(𝑋𝑚, F𝐺) ∧𝑚 ≤ 𝑛} (12)

where disc(𝑋𝑚, F𝐺) holds if there exists a species D𝑖 for 𝑖 : 1 ≤

𝑖 ≤ 𝑆 , such that generated input 𝑋𝑚 ∈ D𝑖 and there does not exist

a previously generated input 𝑋𝑙 ∈ F𝐺 such that 𝑙 < 𝑚 and 𝑋𝑙 ∈ D𝑖 .

Adaptive bias emerges in greybox campaigns as seeds are added

to a corpus. Suppose without loss of generality that the (𝑛+1)-th

generated input discovers a new species, thus |C𝑛 | < |C𝑛+1 |. Even if

the discovery probabilities Δ𝐺 (𝑛) and Δ𝐵 (𝑛) of grey- and blackbox

campaigns, respectively, were the same when 𝑛 test inputs have

been generated, i.e., Δ𝐺 (𝑛) = Δ𝐵 (𝑛)Ðwe generally have Δ𝐺 (𝑛 +

1) ≠ Δ𝐵 (𝑛 + 1) because of the impact of the added seed’s local

species distribution on the global distribution (cf. Equation 7 & 11).

Current distribution 𝑝𝑖,𝑛 . To quantify the impact of adding

seeds on the global species distribution, we use Kullback-Leibler

(KL) divergence [13] as a measure of distance between two distri-

butions. For a greybox campaign, let {𝑝𝑖,𝑛}
𝑆
𝑖=1 be the current global

species distribution when 𝑛 test inputs have been generated, i.e.,

𝑝𝑖,𝑛 =

∑

𝑡 ∈𝐶𝑛

𝑞𝑡𝑝
𝑡
𝑖 (13)

for 𝑖 : 1 ≤ 𝑖 ≤ 𝑆 , where 𝑞𝑡 it the probability that the fuzzer chooses

to mutate the seed 𝑡 ∈ C𝑛 .

Adaptive bias reduces. Under a realistic assumption, we show

that the łdistancež between the species distributions before and

after the seed was added reduces as the number 𝑛 of generated test

inputs increases. Our assumption is that the probability 𝑞𝑡 ′ that

the fuzzer chooses to mutate the most recently added seed 𝑡 ′ also

reduces as the seed corpus grows, where 𝑡 ′ ∈ C𝑛+1 but 𝑡
′
∉ C𝑛 .

This assumption holds for all known power schedules in the most

popular greybox fuzzers, LibFuzzer [14] and AFL [29].

The KL-divergence from the global species distribution 𝑝𝑖,𝑛 (be-

fore adding the seed 𝑡 ′) to the distribution 𝑝𝑖,𝑛+1 (after adding 𝑡
′) is

a measure of distance between both distributions,

𝐷 (𝑝𝑖,𝑛+1 | | 𝑝𝑖,𝑛) =

𝑆∑

𝑖=1

𝑝𝑖,𝑛+1 log

(
𝑝𝑖,𝑛+1

𝑝𝑖,𝑛

)
(14)

We observe that the global distribution {𝑝𝑖,𝑛+1}
𝑆
𝑖=1 after 𝑡

′ was

added is composed of the previous global distribution {𝑝𝑖,𝑛}
𝑆
𝑖=1 and

the local distribution {𝑝𝑡
′

𝑖 }
𝑆
𝑖=1 of the new seed 𝑡 ′

𝑝𝑖,𝑛+1 = (1 − 𝑞𝑡 ′) · 𝑝𝑖,𝑛 + 𝑞𝑡 ′ · 𝑝
𝑡 ′

𝑖 (15)

for 𝑖 : 1 ≤ 𝑖 ≤ 𝑆 , such that

𝐷 (𝑝𝑖,𝑛+1 | | 𝑝𝑖,𝑛) =

𝑆∑

𝑖=1

𝑝𝑖,𝑛+1 log
(
1 − 𝑞𝑡 ′ · 𝑐𝑖,𝑛,𝑡 ′

)
, (16)

where 𝑞𝑡 ′ is the probability that the fuzzer chooses to mutate the

most recently added seed 𝑡 ′, and 𝑐𝑖,𝑛,𝑡 ′ =
𝑝𝑡

′

𝑖

𝑝𝑖,𝑛
− 1.

Recalling that log(1) = 0 and assuming that 𝑝𝑖,𝑛 > 0 for all

𝑖 : 1 ≤ 𝑖 ≤ 𝑆 , we can see that

lim
𝑞𝑡′→0

𝐷 (𝑝𝑖,𝑛+1 | | 𝑝𝑖,𝑛) = 0 (17)

KL-divergence 𝐷 approaches zero as 𝑞𝑡 ′ approaches zero. ■

4 OUR ESTIMATORS OF DISCOVERY
PROBABILITY

Discovery probability Δ is the probability that the next generated

input discovers a new species. In Section 3.2, we discussed how

discovery probability provides an upper bound on the residual risk.

In our evaluation, we consider a good estimator to be conservative

234

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Marcel Böhme, Danushka Liyanage, and Valentin Wüstholz

and accurate. Seeking an upper bound on the residual risk, a conser-

vative Δ estimator might systematically overestimate risk, but it can

never systematically underestimate. An accurate estimator has a

low mean bias, i.e., the average difference between the estimate and

the true value is low, and it has a low variance, i.e., the individual

estimates are usually quite close to the average estimate.

Unfortunately, the maximum likelihood estimator of residual

risk, i.e., the proportion of vulnerability-exposing inputs, is neither

conservative nor accurate. It would always estimate a zero residual

risk. However, in the absence of evidence for the existence of a

vulnerability, we cannot assign the entire probability mass to the

one observed event (i.e., no vulnerability). Hence, the problem of

estimating the probability of an event that has not been observed

is also known as estimating the missing mass. In the following, we

recall and propose some estimators of the missing mass.

4.1 Laplace Estimator

The well-known Laplace estimator distributes some probability

mass across unobserved events by counting every unobserved event

as observed exactly once. Pierre-Simon Laplace was interested in

solving the sunrise problem: based on prior knowledge that the sun

has risen n consecutive days up to and including today, what is the

probability that the sun will rise tomorrow? In what would become

the foundations of Bayesian statistics, Laplace developed the rule

of succession.

Let 𝑋 ′
1, . . . , 𝑋

′
𝑛 be a sequence of independent Bernoulli random

variables where 𝑋 ′
𝑖 = 1 if the 𝑖-th trial is considered a "success". If 𝑠

out of 𝑛 trials were successes, then the rule of succession provides an

estimator 𝜃 (𝑠, 𝑛) of the probability 𝑃 (𝑋 ′
𝑛+1 = 1 | (𝑋 ′

1 + . . .+𝑋
′
𝑛) = 𝑠)

that the (𝑛+1)-th trial will be a success as

𝜃 (𝑠, 𝑛) =
𝑠 + 1

𝑛 + 2
(18)

Hence, we introduce the Laplace estimator Δ̂𝐿 (𝑛) as our first esti-

mator of residual risk. Given that, throughout the fuzzing campaign,

𝑠 = 0 out of 𝑛 generated inputs have exposed a vulnerability, the

probability to discover a vulnerability when generating (𝑛+1)-th

test input is estimated as

Δ̂𝐿 (𝑛) = 𝜃 (0, 𝑛) =
1

𝑛 + 2
(19)

Intuition. The key idea of Laplace was to report the proportion

of times we have observed the sun not rise assuming we have

observed both events once more than we actually have. As

the evidence for the sun always rising increases, the Laplace

estimate of the probability of the sun not rising approaches

zero. Yet, there always remains a non-zero probability for the

sun not to rise. Similarly, as an estimator of residual risk there

always remains a non-zero probability that the (𝑛+1)-th test

input exposes a vulnerability. While Laplace is certainly the

first, better missing mass estimators have since been proposed.

4.2 Good-Turing Estimator

The Good-Turing estimator is perhaps the most widely used esti-

mator of the missing probability mass. It was proposed in a seminal

paper by I. J. Good and Alan Turing in 1953 [11]. The Good-Turing

estimator is computed based on the frequency of rarely observed

species. Compared to Laplace, the Good-Turing estimator consid-

ers more łstructurež in the available data and is thus also more

amenable to our adjustments for adaptive bias. Concretely, Good-

Turing gives an estimate of the probability to discover a previously

unseen species. As discussed in Section 3.2, the discovery probabil-

ity provides an upper bound on the residual risk.

When 𝑛 test inputs have been generated during a fuzzing cam-

paign, let the incidence frequency 𝑌𝑖 for a species D𝑖 be the number

of generated test inputs that belong to species D𝑖 ,

𝑌𝑖 = |{𝑋 𝑗 | 𝑋 𝑗 ∈ D𝑖 ∧ 1 ≤ 𝑗 ≤ 𝑛}|. (20)

Let the number of singleton species 𝑓1 be the number of discovered

species to which exactly one generated input belongs,

𝑓1 = |{D𝑖 | 𝑌𝑖 = 1 ∧ 1 ≤ 𝑖 ≤ 𝑆}|. (21)

We introduce the Good-Turing estimator Δ̂𝐺𝑇 (𝑛) as our first es-

timator of discovery probability. Suppose, after generating 𝑛 test

cases throughout the fuzzing campaign, 𝑓1 species were observed

exactly once. The Good-Turing estimator of the probability to dis-

cover a previously unseen species is computed as the maximum

likelihood estimate of the probability to observe a singleton species,

Δ̂𝐺𝑇 (𝑛) =
𝑓1

𝑛
(22)

Intuition. The key idea of the Good-Turing estimator is to

use an estimate of the probability to observe a rare species as

an estimate of the probability to observe an unseen species

(which is generally rarer). Concretely, Good-Turing reports the

maximum likelihood of the probability that the next generated

test input 𝑡 belongs to a singleton species as an estimate of the

probability that 𝑡 discovers a new species.

The main properties of Good-Turing are, i) the estimator’s accu-

racy strictly increases as the sample size (i.e., number of generated

test inputs) increases [21], ii) its convergence to the true value is

also reasonably fast [30], iii) its mean squared error is reasonably

low [19], and iv) its performance is close to the best natural esti-

mator for any distribution [18]. While Good-Turing is classically

defined for multinomial distribution, the definition for the case

where an input can belong to multiple species is equivalent [6].

4.3 Reset Estimators

To account for adaptive bias during the estimation of discovery

probability in greybox campaigns, we propose to apply estimators

of missing mass to incidence frequencies 𝑌𝑖 that are refreshed every

once in a while (i.e., reset 𝑌𝑖 = 0 for all 𝑖 : 1 ≤ 𝑖 ≤ 𝑆). Our class of

reset estimators is parameterized by the number of seeds that can

be added to the corpus before the incidence frequencies are reset to

zero. In the current instance, we suggest to apply the Good-Turing

estimator of missing mass on the refreshed frequency counts.

Given the same initial seed corpus 𝐶 , adaptive bias is the differ-

ence between discovery probabilities for a blackbox fuzzing cam-

paign and a greybox fuzzing campaign of length 𝑛. As more seeds

are added to the corpus, the probability to discover a previously un-

observed species the (𝑛+1)-th generated test input usually increases

for a greybox campaign (cf. Fig. 3). Given the same allowable risk,

235

Estimating Residual Risk in Greybox Fuzzing ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

compared to a blackbox campaign, a greybox campaign would need

to generate less inputs to fall below the given threshold.

We propose to consider a greybox campaign as a sequence of

blackbox campaigns each started when a new seed is added. We

observe that the adaptive bias emerges only because new seeds

are added to the seed corpus. As a new seed becomes available for

fuzzing, the probability 𝑝𝑖 that a generated input belongs to a rare

speciesD𝑖 might slightly increase. However, for the period between

two additions to the seed corpus the global species distribution

remains invariant, like in a blackbox fuzzing campaign. Hence, a

greybox campaign F is a sequence of blackbox campaigns

F = ⟨𝐹1, 𝐹2, . . . , 𝐹𝑘 ⟩ (23)

where 𝑘 is the number of new seeds that are added to the initial

seed corpus throughout the greybox campaign F .

Given parameter 𝑎, we define the 𝑎-reset frequency 𝑌𝑖,𝑎 of species

D𝑖 as the incidence frequency ofD𝑖 in the partial greybox campaign

that was started when the (𝑘−𝑎)-th seed was added to the initial

seed corpus, i.e.,

𝑌𝑖,𝑎 = |{𝑋 𝑗 | 𝑋 𝑗 ∈ ⟨𝐹𝑘−𝑎, . . . , 𝐹𝑘 ⟩ ∧ 𝑋 𝑗 ∈ D𝑖 ∧ 1 ≤ 𝑖 ≤ 𝑆}|. (24)

Using the 𝑎-reset frequency 𝑌𝑖,𝑎 , the definition of the number of

𝑎-reset singleton species is straightforward,

𝑓1,𝑎 = |{D𝑖 | 𝑌𝑖,𝑎 = 1 ∧ 1 ≤ 𝑖 ≤ 𝑆}|. (25)

We introduce the 𝑎-reset Good Turing estimator Δ̂𝑅 (𝑛, 𝑎) as our

first class of estimators of discovery probability that accounts for

adaptive bias in greybox campaigns. The 𝑎-reset Good Turing esti-

mator can be computed as

Δ̂𝑅 (𝑛, 𝑎) =
𝑓1,𝑎

𝑛
(26)

where, in practice, 𝑎 is the number of new seeds that can be added to

the seed corpusÐsince the last resetÐbefore the recorded incidence

frequencies must be reset again.

Intuition. The regular reset of incidence frequencies allows to

remove the łweightž of the evidence for the previous species

distribution when rare species were less likely. The inverse

of the 𝑎-reset frequencies {1/𝑌𝑖,𝑎}
𝑆
𝑖=1 provides a less biased

estimate of the current global species distribution {𝑝𝑖 }
𝑆
𝑖=1 than

the inverse of the actual incidence frequencies {1/𝑌𝑖 }
𝑆
𝑖=1.

However, considering only the shorter tail of the current greybox

campaign will also lead to an overestimate of the true discovery

probability.7 The actual probability to discover a new species might

already bemuch lower. In the following, we present a class of estima-

tors that allows us to use the entire evidence generated throughout

the full greybox campaign.

4.4 Mean Local Estimators

We can understand adaptive bias also as a property that emerges

from an unbalanced distribution of the number of times each seed

has been chosen for fuzzing. On the one hand, we have new seeds

thatÐwhile more likely to be chosen nextÐmay have never been

fuzzed before. On the other hand, we have old seeds thatÐwhile

7We note that we prefer conservative estimators. An estimator that overestimates
residual risk is preferred over one that underestimates the risk.

much less likely to be chosen nextÐmay have been fuzzed thou-

sands of times. Clearly, if we estimate discovery probability from

global incidence frequencies, where the global incidence frequency

𝑌𝑖 of a species D𝑖 is computed as a linear combination of the local

incidence frequencies𝑌 𝑡
𝑖 of a seed 𝑡 ∈ 𝐶 , i.e.,𝑌𝑖 =

∑
𝑡 ∈𝐶 𝑌 𝑡

𝑖 , then the

resulting estimate is bound to be biased towards the neighborhood

of the old (less likely) seeds.

Now, adaptive bias is not a concern for łlocal estimatorsž, i.e.,

estimators that are based on the local distribution {𝑝𝑡𝑖 }
𝑆
𝑖=1 of seed

𝑡 . Given a seed 𝑡 , let 𝑀 be the fuzzer’s mutation operators, 𝐿𝑡 be

the set of locations in 𝑡 where a mutation operator can be applied.

Without loss of generality, suppose the fuzzer generates an input 𝑡 ′

only when applying the operator𝑚 ∈ 𝑀 to location 𝑙 ∈ 𝐿𝑡 .8 Then,

𝑃 [𝑋 𝑡
𝑛 = 𝑡 ′] = 𝑃 [𝐴𝑡

𝑛 =𝑚] · 𝑃 [𝐵𝑡𝑛 = 𝑙] and (27)

𝑃 [𝑋 𝑡
𝑛 = 𝑡 ′] = 𝑃 [𝑋 𝑡

𝑛+1 = 𝑡 ′] (28)

where 𝑋 𝑡
𝑛 is the 𝑛-th input that is generated from 𝑡 by fuzzing 𝑡 ,

𝑋 𝑡
𝑛+1 is the (𝑛+1)-th input generated from 𝑡 by fuzzing 𝑡 ,𝐴𝑡

𝑛 and 𝐵𝑡𝑛
are the mutation operator and mutation location in 𝑡 , respectively,

and both are chosen at random when generating input 𝑋 𝑡
𝑛 .

We propose to consider a greybox campaign F as a set of con-

current blackbox campaigns, one for each seed.

F = {𝑋𝑛 | ∃𝑚.𝑋𝑛 ∈ F𝑋𝑚 ∧ disc(𝑋𝑚) ∧𝑚 < 𝑛}𝑁𝑛=1

where F𝑋𝑚 is a seed-specific fuzzing campaign (Eq. (5)), 𝑁 is the

total number of inputs that F generates, and disc(𝑋𝑚) holds if

there exists a species D𝑖 such that 𝑋𝑚 discovered D𝑖 . This per-

spective allows us to estimate quantities emerging from the global

distribution as a weighted combination of estimates of quantities

emerging from the local distributions.

We introduce the Mean Local Laplace estimator Δ̂𝑚𝑙.𝐿 (𝑛) as a

new class of estimators of discovery probability that (i) account

for adaptive bias in greybox campaigns and (ii) are computed as a

weighted combination of local missing mass estimates (not subject

to adaptive bias). Given the current corpus 𝐶𝑛 when 𝑛 test inputs

have been generated (cf. Section 3.3), then Δ̂𝑚𝑙.𝐿 (𝑛) is computed as

Δ̂𝑚𝑙.𝐿 (𝑛) =
∑

𝑡 ∈𝐶𝑛

𝑞𝑡

𝑛𝑡 + 2
(29)

where 𝑞𝑡 is the probability that, to generate the (𝑛+1)-th test input,

the fuzzer chooses to mutate seed 𝑡 ∈ 𝐶𝑛 , and 𝑛𝑡 is the number of

test inputs that were generated by fuzzing 𝑡 .

When 𝑛 test inputs have been generated, let the local incidence

frequency 𝑌 𝑡
𝑖 for species D𝑖 and seed 𝑡 be the number of test inputs

generated by fuzzing 𝑡 that belong to D𝑖 ,

𝑌 𝑡
𝑖 = |{𝑋 𝑡 | 𝑋 𝑡 ∈ D𝑖 ∧ 𝑋 𝑡 ∈ F 𝑡 }|. (30)

where F 𝑡 is the seed-specific campaign. Let 𝑓 𝑡1 be the number of

local singleton species for a seed 𝑡 (i.e., #locally discovered species

to which exactly one generated input belongs),

𝑓 𝑡1 = |{D𝑖 | 𝑌
𝑡
𝑖 = 1 ∧ 1 ≤ 𝑖 ≤ 𝑆}|. (31)

We introduce the Mean Local Good-Turing estimator Δ̂𝑚𝑙.𝐺𝑇 (𝑛)

as a weighted combination of the local Good-Turing estimates. In

8The application of a mutation operator to a mutation location is merely an abstraction.
It means that the fuzzer chooses at random from a large but fixed set of possible
modifications to 𝑡 .

236

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Marcel Böhme, Danushka Liyanage, and Valentin Wüstholz

our experiments, we often observed the special case where 𝑛𝑡 = 0

(i.e., the seed 𝑡 has never been fuzzed). In this case, we assume the

local discovery probability to be one (1). In the absence of local

singletons, we fall back to the local Laplace estimate.

Δ̂𝑚𝑙.𝐺𝑇 (𝑛) =
∑

𝑡 ∈𝐶𝑛

𝑞𝑡 ·

1 if 𝑛𝑡 = 0

1/(𝑛𝑡 + 2) if 𝑓 𝑡1 = 0

𝑓 𝑡1 /𝑛
𝑡 otherwise

(32)

where 𝑞𝑡 is the probability that, to generate the (𝑛+1)-th test input,

the fuzzer chooses to mutate seed 𝑡 ∈ 𝐶𝑛 , 𝑛𝑡 is the number of inputs

generated by fuzzing 𝑡 , and 𝑓 𝑡1 is the number of local singleton

species for 𝑡 .

Intuition. The weighted combination of local missing mass es-

timates tackles adaptive bias in discovery probability estimation

by accounting for the fact that some seeds have been fuzzed

more often than others. The contribution of each seed 𝑡 to the

final discovery probability estimate is decided based on the cur-

rent power schedule 𝑞𝑡 . While old seeds may have been fuzzed

much more often, if the probability 𝑞𝑡 to select that seed is

very low, the contribution from that seed to the final discovery

probability estimate will also be relatively low.

In contrast to 𝑎-reset estimators, our mean local estimators allow

to reuse incidence frequencies from the entire fuzzing campaign.

This facilitates less imprecision during estimation. However, the

weighted combination of local missing mass estimates systemati-

cally overestimates Δ(𝑛). For instance, when a new seed is added

before it has been fuzzed, a mean local estimator assumes that

the first input generated from that seed discovers a new species

(which is true only locally). However, a positively biased residual

risk estimator is well preferred over a negatively bias one.

5 EXPERIMENTAL SETUP

5.1 Research Questions

RQ.1 Classical Estimators. How do two classical estimators of

missing mass, Good-Turing and Laplace, perform in the pres-

ence of adaptive bias for greybox campaigns?

RQ.2 Our Estimators. How do our novel 1-reset, 10-reset, the

LaplaceMean Local, and Good-TuringMean Local estimators

perform in addressing adaptive bias for greybox campaigns?

RQ.3 Extrapolation. Given a small number of data points of dis-

covery probability at the very beginning of the greybox cam-

paign, how does a linear extrapolation of [log(𝑛) ∼ log(Δ(𝑛))]

perform in predicting the discovery probability several or-

ders of magnitude later in the campaign?

5.2 Fuzzer, Species, and Subject Programs

For our experiments, we use LibFuzzer [14], the default greybox

fuzzer in Google’s OSSFuzz [25] and Microsoft’s OneFuzz [26]. Our

species are a coverage elements called features. A feature is a com-

bination of covered branch and its hit count. So, feature coverage

subsumes branch coverage. We also considered evaluating estima-

tor performance in AFL. However, AFL selects each seed from a

circular queue that can have an orbit of several hours which makes

estimation difficult; in short, the discovery probability fluctuates

significantly depending on the current queue position. Very re-

cently, we became aware that the latest version of AFL’s successor

AFL++ (v3.0) substituted the AFL-style circular queue with a more

efficient LibFuzzer-style weighted sampling [23].

We chose six subjects from FuzzBench [22], a fuzzer benchmark-

ing platform. From FuzzBench, we chose six arbitrary, security-

critical programs that did not crash for the first 109 generated test

inputs. LibFuzzer is an in-process fuzzer that crashes with the sub-

ject and restarts, loosing all incidence frequencies. We chose exactly

six subjects for practical reasons. An experimental campaign for

one subject could run for up to one week. Freetype (286k LoC) is

a widely-used software font engine. JSON (12k LoC) is the JSON

parser library for CPP. Libpcap (69k LoC) is a library to capture

packets from the network. Libpng (423k LoC) is an image parser

library for PNG. Libxml2 (503k LoC) is an XML parser library. Zlib

(48k LoC) is a data-compression library.

5.3 Experiment Methodology

Data points. To run a greybox fuzzing campaign, we execute Lib-

Fuzzer on a subject with the provided seed corpus. At exponentially

increasing intervals, we record a time stamp and all relevant sta-

tistics required for estimation. Starting with 100 generated test

inputs, each subsequent data point is chosen after twice as many

test inputs were generated compared to the previous data point. We

stop the campaign either when we run out of resources, or when

𝑁 = 100 · 223 (approx. 109) test inputs were generated. For freetype

and libxml2, we ran out of disk space.

Repetitions. For each subject, we run 20 fuzzing campaigns

and, if not stated otherwise, report average values.

Ground truth. For each data point, we determine the true dis-

covery probability as follows. When recording the data point after

having generated 𝑛 test inputs, we suspend the greybox campaign

and start a blackbox campaign of length 𝑛 with the current seed

corpus. During that blackbox campaign, generated inputs that dis-

cover a new species are not added to the seed corpus, and incidence

frequencies or other statistics for the greybox campaign are not

updated. However, we count the number 𝑑 of inputs that belong to

species that have not been discovered in the greybox campaign.

We determine the true discovery probability as the proportion

𝑑/𝑛 of inputs generated in the data point-specific blackbox cam-

paign of length 𝑛 that belong to species that have not been dis-

covered in the greybox campaign of length 𝑛. Note that we let the

blackbox campaign generate as many inputs as the greybox cam-

paign has already generated. This is because of the exponential cost

of reducing discovery probability by one order of magnitude.

Determining ground truth is expensive. One fuzzing campaign

of length 𝑁 ≈ 109 took between 2 and 7 days of wall-clock time.

5.4 Measures of Estimator Performance

We use two classical measures of estimator performance, mean bias

and variance. Mean estimator bias quantifies the degree to which

the estimator systematically over- or under-estimates the estimand.

We consider a good estimator to have a small and positive mean bias.

The estimator might systematically over-estimate the probability

that a vulnerability exists, but it should never systematically under-

estimate it, and the magnitude of the bias should be small. Estimator

237

Estimating Residual Risk in Greybox Fuzzing ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

variance is literately the variance of the estimates.While the average

might be close to the true value (low mean bias), an individual

estimate might still be far from the average estimate (high variance).

We consider a good estimator to have a small variance.

However, unlike in traditional studies of estimator performance,

wemeasuremean bias and variance as a difference inmagnitude. The

discovery probabilityΔ(𝑛) for a long-running fuzzing campaign can

be very small. In fact, depending on the number of inputs 𝑛, Δ(𝑛)

ranges over many orders of magnitude (cf. Section 3.2). Suppose, the

true value is 10−16, but our estimator gives 10−24 (or 10−8). Then

neither the absolute nor the relative mean bias would indicate the

eight orders of magnitude difference. Hence, we measure bias and

variance using the common logarithm.

Mean Bias. Suppose, we conduct 𝑅 fuzzing campaigns. For each

campaign 𝑟 : 1 ≤ 𝑟 ≤ 𝑅 of length𝑛, let the true discovery probability

be Δ𝑟 (𝑛) and the estimated discovery probability be Δ̂𝑟 (𝑛), then

the mean bias 𝐵(𝑛, Δ̂) of estimator Δ̂ is computed as

𝐵(𝑛, Δ̂) =

𝑅∑

𝑟=1

log10 (Δ̂𝑟 (𝑛)) − log10 (Δ𝑟 (𝑛))

𝑅
(33)

where a positivemean bias of 𝐵(𝑛, Δ̂) > 0 can be interpreted as Δ̂(𝑛)

systematically over-estimating Δ(𝑛) by 𝐵(𝑛, Δ̂) orders of magnitude

(and 𝐵(𝑛, Δ̂) < 0 as under-estimating, resp.).

Variance. Suppose, we conduct 𝑅 fuzzing campaigns, for each

campaign 𝑟 : 1 ≤ 𝑟 ≤ 𝑅, when 𝑛 test inputs have been generated,

let the estimated discovery probability be Δ̂𝑟 (𝑛), then the variance

𝑉𝑎𝑟 (𝑛, Δ̂) of estimator Δ̂ is computed as

𝑉𝑎𝑟 (𝑛, Δ̂) =
1

𝑅

[
𝑅∑

𝑟=1

log10 (Δ̂𝑟 (𝑛)) −

∑𝑅
𝑠=1 log10 (Δ̂𝑠 (𝑛))

𝑅

]

which is the average difference between each individual and the

average estimate by 𝑉𝑎𝑟 (𝑛, Δ̂) orders of magnitude.

5.5 Infrastructure

All experiments were executed on a 32-core cloud instance with

Intel(R) Haswell(R) 2.3GhZ CPUs and 64bit main memory and a

120GB hard disk. To facilitate a fair workload, we run all (and only)

20 repetitions of one subject simultaneously.

6 EXPERIMENTAL RESULTS

6.1 RQ1. Performance of Classical Estimators

Figure 4.a shows the performance of the Laplace Δ̂𝐿 (𝑛) and Good-

Turing Δ̂𝐺𝑇 (𝑛) estimators. Both estimators have previously been

proposed to estimate the current discovery probability in blackbox

campaigns. However, due to the lack of ground truth, they have

never been empirically evaluated.

In our evaluation, we find that both estimators, Δ̂𝐿 (𝑛) and Δ̂𝐺𝑇 (𝑛)

underestimate the true discovery probability in greybox campaigns.

The estimate might be up to four orders of magnitude smaller than

the true discovery probability. However, except for freetype, at

some point during the campaign, the difference in magnitude usu-

ally starts decreasing again. This is consistent with our claim that

adaptive bias reduces as more test inputs are generated. A system-

atic negative bias is undesirable when estimating the residual risk

that a vulnerability could be discovered if more time was invested.

Classical estimators systematically and substantially under-

estimate the discovery probability in greybox campaigns. This

means that the estimate purports false confidence in program

correctness. Suppose the engineer stops the campaign after gen-

erating 𝑛 inputs, such that the current discovery probability

estimate Δ̂(𝑛) = Δ̄ matches her maximum allowable threshold

Δ̄. If the mean bias at 𝑛 shows a difference in magnitude of −2

(negative two), then the engineer will terminate the campaign

too early. Because of the power law relationship, she would

need to execute about two orders of magnitude more inputs to

achieve the required allowable residual risk Δ̄.

6.2 RQ2. Performance of Our Estimators

Figure 4.b shows the performance of our 𝑎-reset and mean local

estimators which address the key challenge in estimation for grey-

box fuzzing, i.e., adaptive bias. Our estimators exhibit a smaller and

positive mean bias than the previously proposed estimators.

Reset. The 1-reset estimator Δ̂𝑅 (𝑛, 1) resets the frequency counts

for each species back to zero every time a new seed is added. The

resulting estimate is not subject to adaptive bias because the fre-

quencies/samples come only from the species distribution emerging

from the current corpus. However, compared to the total campaign

length, we are clearly undersampling. This undersampling leads

to an overestimate of the true discovery probability. To reduce the

magnitude of this positive bias, we evaluated the 10-reset estimator

Δ̂𝑅 (𝑛, 10) which resets the frequency counts for each species back

to zero after every 10th newly discovered seed.

Both reset estimators, Δ̂𝑅 (𝑛, 1) and Δ̂𝑅 (𝑛, 10) exhibit a fairly high

positive mean bias. The 1-reset Δ̂𝑅 (𝑛, 1) can provide an estimate

up to three order of magnitudes higher than the true discovery

probability. For the 1-reset, the average distance from the average

estimate (i.e., the variance) could be up to about two orders of

magnitude. For the 10-reset, mean bias and variance are somewhat

lower, but it underestimates. A good 𝑎-reset estimator Δ̂𝑅 (𝑛, 𝑠) is

likely within the range 𝑎 ∈ [1, 10]. Note as 𝑎 approaches the current

number of seeds, we have Δ̂𝑅 (𝑛, |C𝑛 |) = Δ̂𝐺𝑇 (𝑛).

Mean local. Both mean local estimators have a lower mean bias

and variance than the reset estimators. The Mean Local Laplace

Δ̂𝑚𝑙.𝐿 (𝑛) exhibits the smallest mean bias. For all subjects and almost

the entire campaign Δ̂𝑚𝑙.𝐿 (𝑛) is no more than one order of mag-

nitude away from the true discovery probability. While Δ̂𝑚𝑙.𝐿 (𝑛)

often slightly underestimates at the beginning, it conservatively

overestimates when a large number of tests have been generated.

Variance is very low.

Themean local estimators perform best. TheMean Local Laplace

has the lowest bias and variance, but might slightly underes-

timate. The Mean Local Good-Turing almost never underesti-

mates but has a slightly higher bias and variance. An engineer

using our estimators is unlikely to terminate the campaign too

early. Given an allowable risk, the engineer is quite likely to

determine the correct point in time when to abort the campaign

such that the current risk is below the allowable threshold.

238

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Marcel Böhme, Danushka Liyanage, and Valentin Wüstholz

●
●

●●●●●●

●

●

●

●

●
●
●

●●

●
●

●●

●

●
●

●

●●
●

●

●

●
●

●●
●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●●●

●●

●●

●
●

●●
●
●

●
●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●
●
●●
●
●●
●

●
●

●

●

●
●●

●

●
●●
●●

●

●

●

●●
●

●

●

●
●

●●

●
●

●●

●

●

●

●
●

●
●
●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●

●
●

●
●

●●

●●

●

●

●

●
●
●
●
●

●

●●●

●

●●
●
●

●●●

●●

●

●

●
●●

●

●●

●

●

●

●

●
●
●

●●

●●

●●
●
●
●

●
●●
●

●●

●

●●●

●

●

●

●

●
●

●

●
●

●

●●
●●

●

●●
●

●

●

●

●
●
●

●
●

●

●

●
●
●
●

●●

●

●

●

●

●
●

●

●

●

●●●

●
●●
●

●

●●●

●●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●●

●
●
●
●
●●

●

●
●

●

●●

●

●

●

●

●●
●
●

●●

●

●●
●

●

●

●
●

●
●

●

●
●●

●

●

●
●

●●

●

●

●

●
●●

●

●●●
●

●
●
●

●

●

●

●

●
●●

●

●●●
●

●

●

●●
●

●
●

●

●

●●

●

●
●
●
●●
●

●

●

●●
●
●
●●

●●

●

●

●

●

●
●
●●

●

●●
●
●

●●●●

●●●

●●

●●

●●●

●

●

●
●

●

●●●

●●●

●

●

●
●
●

●

●

●●●
●

●
●
●

●

●

●

●
●●

●

●
●

●

●

●

●●

●●
●●

●

●●

●

●

●
●

●
●
●
●
●●

●

●

●

●

●

●

●

●

●

●
●●
●
●
●
●

●
●●
●

●
●

●
●

●

●

●●

●●

●

●

●●

●

●●●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●

●

●●

●
●●

●

●

●
●

●

●●

●

●●
●

●
●

●●

●
●
●
●

●●

●

●

●

●

●●●●

●

●
●●

●

●●●●

●●●

●
●

●●●●●●●●●●●●●●●●●●●●

●
●
●
●

●●●●
●

●●
●●●
●

●
●●●

●

●●●●●●●●●●●●●●●●●●●●

●
●
●●
●
●
●●

●

●
●
●
●●●
●
●●●

●

●●●●●●●●●●●●●●●●●●●●

●
●●

●

●●●●
●●●●
●

●●

●●

●

●●

●●●●

●

●

●●●●

●

●●●●●●●●●

●

●
●

●
●
●
●

●●
●

●

●
●
●

●

●
●

●

●●

●●

●

●

●●
●

●

●
●

●●

●

●

●

●

●●

●
●

●●●●●●●●●●●●●●●●●●●●

●●●
●

●
●

●

●
●

●●●●●
●

●
●

●

●
●

●●●●●●●●●●●●●●●●●●●●

●●
●●

●●

●

●
●●●
●●●
●●

●

●
●
●

●●●●●●●●●●●●
●
●●●
●
●●●

●

●

●
●
●

●

●

●

●

●

●

●●

●
●●
●

●
●

●

●
●

●

●

●

●

●

●●
●
●
●

●●

●

●

●
●
●
●

●●●●●●●●●●●●●●●●●●●●

●

●

●●
●

●

●

●

●●
●

●
●

●

●

●
●

●
●
●

●●●●●●●●●●●●●●●●●●●●

●●●
●●●
●

●●●

●
●

●●
●

●

●

●●●

●●●●●●●●●●●●●●●●●●●●

●●

●
●●

●

●

●

●●●
●●
●●

●●

●

●

●

●●●
●
●●●●
●
●●●
●
●

●

●
●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●
●●●●●●
●
●●●●●
●
●

●

●

●

●

●

●
●
●

●

●●●

●●●
●
●●●●●●

●●●●●●●

●●

●●●●●●●●●●●●

●

●●●●●●●●

●

●

●
●●
●
●
●●●●
●
●●●●●●●●●●
●
●●●●●●

●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●

●●

●

●
●
●●●●●●●●●●●●
●
●●●●●●●

●

●

●

●●

●●●●●●●
●
●●●●●●●●●●●●●●●●

●

●●●●●

●●●●●●●●
●
●
●●●●●
●●●●
●
●●

●

●●●●●

●

●

●●●●●●●●●●

●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●

●●●●●●

●

●●●

●

●●●●●●●●●●●●●

●

●

●

●●

●●●●●●●

●

●●●●●●●●●●●●●●●●
●
●●●●●

●
●●●
●●

●

●●●●●

●

●●●●●
●
●●

●

●

●●
●●
●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●
●

●

●
●
●●●●●
●
●
●
●●●●

●

●
●●
●●

●

●●

●●●●●●●●
●
●

●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●

●

●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●●●●

●

●
●●●●●●●●●●●

●●●

●
●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●

●

●●●●●●●●

●
●

●●●

●

●●●●●●●●●●●

●●●●●●●●●●

●●●●

●

●
●
●●
●

●●●●●
●●

●
●●

●●●●●●●●●●

●

●

●

●

●

●●●●●

●●
●●●●●●●●

●

●●●

●
●●●

●

●

●
●
●
●
●
●●
●
●●

●●●
●●●●●

●
●

●

●●
●●
●

●●
●●

●●●●●●●●●●

●

●

●●●

●●●

●

●

●●●●●●●●
●
●

●
●
●
●

●
●

●

●●
●

●
●
●
●
●
●
●●
●
●

●

●●

●●
●●
●●
●

●●●
●

●
●●
●
●●

●●●●●●●●

●●●●●●●

●

●

●

●●●●●●●●●●

●

●
●
●
●●●

●

●

●

●
●
●
●
●
●
●●
●
●

●

●
●●
●
●
●
●

●
●

●
●●●●●●

●
●●

●●●●

●●●
●

●

●●

●●

●
●

●

●

●●●

●

●

●

●

●●●●●
●
●●●
●
●●
●

●
●●●●
●●

●●
●
●●●●●●
●
●
●●●●●●●
●
●

●
●
●
●
●
●●●

●
●
●
●●
●

●●
●●
●●

●
●●
●●●
●●
●

●

●
●●●
●●●
●●
●

●●●●●●
●
●
●
●●●●
●●●●
●●●

●●

●●●

●●

●

●

●
●
●
●
●
●

●

●●

●

●

●●
●●●●●
●
●●●●
●
●
●●●
●●

●●●●●
●
●●●●●
●●●
●●●●●●

●●●●●
●

●
●●●●
●
●●●●●
●
●●

●
●
●●●●●
●●●●●●
●●
●●●●
●

●●
●●●
●
●
●●●●

●
●●
●●
●
●●●

●
●●
●●●●●

●

●●●●
●

●●

●

●

●

●

●●●●●●●
●●●
●
●●●●●●●●●

●●
●
●●●●
●
●
●●
●
●●
●
●●●●●

●●
●●●
●

●●

●
●●●●
●●●

●●
●
●●
●●●
●●●●●●●●●●
●●

●
●●●●●
●●
●

●
●
●
●●●

●

●
●●●

●

●

●
●●
●

●
●

●

●●●
●●●●●
●●
●

●●●●
●●●●
●●●●●●
●
●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●
●
●
●
●●●●

●

●●●●●

●

●●

●●●●●●●●●●●●●●●●●●●●

●
●

●●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●

●

●

●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●
●
●

●

●●●●

●●

●●●●●
●
●●

●●●●●●●●●●●●●●●●●●●●

●
●

●●

●

●

●
●●

●
●●

●
●
●●
●●
●●

●●●●●●●●●●●●●●●●●●●●

●
●

●●●●●●●●

●

●●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●
●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●
●
●●

●
●

●

●

●●
●
●
●

●
●
●

●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●●●

●
●●

●●

●

●

●

●●

●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●

●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

freetype json libcap libpng libxml zlib

R
e
s
id

u
a
l R

is
k

M
e
a
n
 B

ia
s

V
a
ria

n
c
e

10
−8

10
−6

10
−4

10
−2

10
0

−4

−3

−2

−1

0

1

1e+03 1e+05 1e+07 1e+03 1e+05 1e+07 1e+09 1e+03 1e+05 1e+07 1e+09 1e+03 1e+05 1e+07 1e+09 1e+03 1e+05 1e+07 1e+03 1e+05 1e+07 1e+09

0.0

0.2

0.4

0.6

tests

E
s
ti
m

a
te

 o
f

D
e

lt
a

(n
)

E
s
ti
m

a
to

r
M

e
a

n
 B

ia
s

E
s
ti
m

a
to

r
V

a
ri

a
n

c
e

estimator Good_Turing Laplace

(a) Results for RQ1. Estimator performance for the classical estimators of discovery probability Laplace Δ̂𝐿 and Good-Turing Δ̂𝐺𝑇 .

freetype json libcap libpng libxml zlib

R
e
s
id

u
a
l R

is
k

M
e
a
n
 B

ia
s

V
a
ria

n
c
e

10
−8

10
−6

10
−4

10
−2

10
0

−1

0

1

2

3

1e+03 1e+05 1e+07 1e+03 1e+05 1e+07 1e+09 1e+03 1e+05 1e+07 1e+09 1e+03 1e+05 1e+07 1e+09 1e+03 1e+05 1e+07 1e+03 1e+05 1e+07 1e+09

0.0

0.5

1.0

1.5

tests

E
s
ti
m

a
te

 o
f

D
e

lt
a

(n
)

E
s
ti
m

a
to

r
M

e
a

n
 B

ia
s

E
s
ti
m

a
to

r
V

a
ri

a
n

c
e

estimator ML.Good_Turing ML.Laplace Reset.1 Reset.10

(b) Results for RQ2. Estimator performance for our novel estimators of discovery probability that account for adaptive bias:

1-reset Δ̂𝑅 (𝑛, 1) , 10-reset Δ̂𝑅 (𝑛, 10) , Laplace mean local Δ̂𝑚𝑙.𝐿 (𝑛) , and Good-Turing mean local estimators Δ̂𝑚𝑙.𝐺𝑇 (n).

Figure 4: Results for estimator performance (20 campaigns on 6 subjects; up to 7 days per subject in wall-clock time).

6.3 RQ3. Performance of Extrapolation

From the extended STADS model, we constructed a simulation of

thirty greybox campaigns and observed an almost linear behavior

of the discovery probability on the log-log scale (cf. Figure 2.top).

This suggested a power law relationship.

In Figure 5, our empirical results confirm our observation. For

four out of six subjects, about 𝑅2 = 97% of the variance found in

the response variable log(Δ(𝑛)) can be explained by the predictor

variable log(𝑛) subject to linear regression. For libcap, there are

several campaigns with zero values for 𝑛 ≤ 104, leading to a lower,

yet still fairly high goodness-of-fit of 𝑅2 = 87%. For libxml around

𝑛 = 4 · 106, there is a sudden and consistent increase by almost

one order of magnitude across all campaigns, where a lot of new

species were discovered due to newly added seeds (𝑅2 = 80%).

To understand the utility of extrapolation, we chose three data

points tomeasure the discovery probability andmeasuredmean bias

239

Estimating Residual Risk in Greybox Fuzzing ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

●

●
●

●
●

●●
●

●
●●●
●●

●

●
●●
●
●

●●●●

●
●

●
●

●
●
●
●●●

●
●

●
●

●
●
●●
●●
●
●

●●●●
●

●

●

●
●●●

●

●
●●
●●●

●

●
●●●

●

●

●●
●●

●

●

●
●

●
●

●

●
●●

●
●

●
●
●
●
●
●
●●

●
●●●●

●

●●
●●●●●
●
●
●
●
●

●

●

●

●●

●

●
●

●
●
●

●●

●
●

●
●
●
●●●

●

●

●
●
●●●●●●
●

●
●
●

●

●
●
●
●

●

●

●

●●

●

●
●

●
●
●
●
●●
●●

●

●

●
●
●

●
●●●
●
●

●
●●●●●●

●●

●●
●
●●●●
●
●
●
●
●
●
●
●
●
●●

●●
●

●●●●
●●●●●●
●●●
●●
●●
●

●
●
●
●●

●●●●●●●
●●
●

●
●●●●●●●●●●
●●●
●●
●
●●●●●●

●
●
●●
●●
●
●
●●●
●
●●●
●
●
●
●●●
●●●
●

●
●
●●●
●
●
●
●
●

●●
●
●●
●●●●●
●
●●
●
●●
●
●●●
●
●●
●
●
●
●
●●
●
●
●
●
●●
●●
●
●●●●
●●
●●
●
●
●●●●
●
●●
●●●●●
●

●●●

●

●●
●
●●
●
●
●●
●
●●●
●●●●●●
●●●
●●●●●●
●
●

●
●●●●●●
●
●●
●
●●
●
●
●●●●●
●
●
●
●

●
●●

●

●
●
●

●

●

●
●

●

●
●●●●
●
●

●●●

●

●

●

●

●
●●
●
●●
●
●

●

●
●

●

●●
●
●●●

●

●
●

●

●●

●

●●●

●

●

●
●
●●●
●

●

●●●●
●●
●

●
●

●
●●
●

●

●
●●●●
●●●●
●

●

●
●
●●●●
●
●
●
●

●

●

●

●●●●●
●●
●

●
●
●●

●

●●
●

●●

●●●●●
●●
●
●●●●●

●

●
●●●●●●●
●●●

●

●

●
●

●
●

●●●●●●●
●
●
●●●
●●
●
●●●

●

●●●●●●
●
●
●●●

●

●
●
●
●

●

●●●●●●

●

●
●●●
●●
●

●

●●●
●●●

●

●
●●
●●

●
●

●
●●●●
●

●
●

●
●
●●●●
●
●●●
●●●●
●

●

●

●
●

●

●●
●
●●
●●●●●
●

●

●●
●
●
●●
●
●●●●

●

●

●●
●

●●
●●●
●
●

●●●

●●
●
●
●●●
●

●
●
●
●●●

●

●

●

●
●
●

●

●●●
●●

●
●
●

●●●●●

●
●
●●

●●

●
●
●
●
●●●●
●
●●
●
●
●

●

●

●

●
●

●
●
●

●

●
●
●
●

●

●●
●
●

●

●●●
●
●
●●

●

●●●
●
●●●
●

●

●

●

●
●●
●
●●
●
●
●●●
●

●●●
●●●

●

●●

●

●

●

●
●

●

●●●
●●●●

●
●
●
●

●
●●

●
●●
●

●●

●

●●
●

●●
●●●
●●●
●
●●
●
●●●●●●

●
●●●

●●●●

●
●●
●

●
●

●●

●
●●●
●
●●

●

●●
●
●
●
●
●●

●●

●
●
●
●

●
●●
●●●●
●

●

●●
●
●●●●●
●
●
●
●
●●

●

●●●
●
●

●
●●
●
●
●●●

●

●

●

●

●

●
●

●●
●●
●

●

●
●

●
●

●●●
●
●
●●

●●
●

●
●●●
●
●

●

●

●
●●
●●
●

●●●●
●

●
●
●
●●

●
●
●

●●

●
●

●

●
●●
●
●●
●
●

●

●
●
●
●

●
●

●
●
●
●●

●

●

●

●
●●●●
●

●

●

●

●
●●
●●
●

●●●●

●

●
●

●●●●●
●

●●●
●●
●

●●

●
●

●
●●●
●

●

●
●●

●

●●●
●
●

●

●●
●

●
●
●

●
●
●●

●
●

●
●●●
●

●

●●●
●

●
●●
●
●●●●
●
●

●

●

●
●●●●
●
●●
●
●●●
●●●
●
●●
●●●
●

●

●
●●
●●

●
●
●

●
●●
●
●
●●●●
●
●
●
●●●●
●●●●●
●●●

●
●●
●●●
●

●
●
●●●●●
●●●
●
●

●
●●●●
●

●

●●●●●●
●●●●
●●

●●
●●●
●

●●●
●●
●●●●●
●
●●●●

●
●●●●●
●
●
●

●
●●●●
●
●●
●
●●
●

●●●

●

●●
●

●●
●●
●●●●●●
●

●

●

●
●●●●●
●●●●
●●●
●
●●
●
●●
●

●
●●
●●
●●
●

●
●●●
●
●●●

●●

●
●●●●
●●
●●
●
●●

●
●●●

●●
●●

●
●
●
●
●

●

●

●

●

●●●

●
●

●

●

●
●
●
●●
●
●

●

●

●

●

●
●
●●
●●
●
●
●

●
●●●●
●

●

●

●
●
●

●

●
●

●●●
●

●

●●

●
●
●
●●

●

●

●●
●

●●

●
●

●
●

●●●●●
●

●●
●
●
●

●
●
●●

●
●
●●

●

●
●

●

●●●

●

●
●●
●●

●

●

●
●

●

●
●●
●●
●●
●●●
●
●

●

●●
●

●

●

●
●●●

●
●●
●

●●

●
●
●

●●

●
●
●●

●
●

●●●●

●●

●

●
●

●

●

●

●

●
●●
●●

●
●
●

●●

●
●●

●

●
●
●

●
●

●
●

●
●●●
●

●●●

●
●

●
●●
●●
●
●
●●●●
●

●

●
●●
●

●
●
●
●●
●●●
●

●
●

●

●
●

●
●

●
●
●
●
●

●

●

●
●●●
●
●
●●
●●

●

●
●

●

●
●●

●

●●
●●
●●●●

●
●
●●●
●
●

●

●

●●

●

●
●●

●
●

●

●

●●●
●●●
●
●
●
●●
●●
●
●●
●
●
●
●●

●
●
●
●
●
●

●
●●●
●●●●
●
●
●

●
●
●

●

●

●
●

●
●●
●
●
●

●

●●●
●●

●

●●
●

●●●●
●

●●●●●●●
●

●●

●●
●

●●

●●●

●
●

●
●●
●
●●●●
●
●
●●

●
●
●

●

●
●
●
●●●●●
●●●

●

●●

●

●
●

●

●

●
●
●●●●

●
●
●●

●

●

●

●●●

●

●●●●
●●●●●●●●●
●
●

●

●●●●

●

●●
●
●●
●●
●
●●●●●●
●●●●●●
●

●
●

●

●
●●●
●●●●
●●
●●

●
●
●
●

●

●●●●●●
●●
●
●●
●
●●
●
●
●●●●
●●
●
●●●

●

●

●

●
●
●●●●●
●●●●●●●●●●
●●●
●●
●●●●●●
●●●●●●●●●
●
●
●
●●●●●

●

●●●●
●●●
●
●●
●
●●●

●

●●●●●
●

●
●●
●
●●●●
●
●
●●●●
●
●●●●●●●●
●

●

●●●

●

●●●●
●
●●●
●●●
●
●●●●
●
●
●●●●
●

●

●

●
●

●

●●●
●

●
●●●●●
●
●
●

●●
●
●

●

●●●

●●●
●
●
●●●●●

●

●
●●●●
●

●

●●
●

●●
●
●
●
●●
●
●●

●

●

●●

●
●
●●●●
●●
●

●

●
●

●
●
●
●
●
●

●

●●●
●

●
●●

●

●
●●
●
●

●
●
●

●

●●●
●
●

●

●
●
●
●●●
●●●●
●●

●

●
●
●●
●●

●
●

●

●
●

●

●
●●●●
●●●●
●
●
●●●●
●
●

●

●
●●
●●

●

●

●

●
●
●●●●

●
●●●●
●●
●
●

●

●●
●●
●●●

●●
●
●
●

●
●

●
●●●
●●
●
●
●

●

●●

●
●
●●●●

●
●●
●
●
●
●
●

●
●
●
●

●●

●
●●

●

●●
●

●
●

●●●

●

●
●●
●

●
●
●
●●

●
●●
●

●
●●
●
●
●
●●●●●
●
●

●
●

●

●

●

●
●●

●

●●●

●

●●
●●●

●●

●●

●

●
●●●●●●
●

●

●●●●●

●
●●
●
●
●●

●

●●
●

●

●
●●
●●

●
●●●

●

●
●●

●

●

●●
●

●

●
●

●●●
●
●

●

●
●
●●
●●●
●
●
●

●

●●●●●

●

●

●●
●

●●

●

●
●●
●
●

●

●
●

●●●
●
●

●

●
●
●

●
●
●
●

●

●●●

●
●

●
●●
●
●●●
●●

●

●
●

●
●
●
●●●●
●
●●
●

●
●●

●

●

●●
●
●

●●●●●

●

●
●●
●●
●●●
●
●●●●●●●

●
●●●●●

●
●

●

●●

●

●●
●●
●
●
●●●●
●●●
●

●●
●●
●
●
●
●

●
●●●●
●

●

●
●
●
●

●
●
●

●●●●●●
●●
●
●

●

●●
●

●
●●
●●
●●
●
●
●
●●●
●●
●
●●
●●●

●

●
●●●●●
●●
●●

●
●●●
●
●
●●
●●

●●●
●
●●●●
●●●
●

●●
●
●
●●
●

●
●●

●
●
●●
●
●
●

●
●●
●

●

●●
●
●●
●
●
●
●
●●●●●
●●●
●●
●●

●

●
●

●●●
●
●●
●●●●●

●
●●●
●
●

●
●●
●

●

●
●●●●

●●●●●

●
●●●●●●
●
●

●

●

●

●

●

●
●
●
●●

●
●●●●
●
●
●
●●●

●●●
●●
●●●●●●

●●●

●●
●●
●

●

●

●

●

●

●

●
●●●
●
●
●
●●●
●
●

●

●●●

●●
●
●
●
●
●

●
●
●●

●

●

●
●●●●

●

●
●●
●●
●

●

●●

●
●●
●

●

●
●
●

●

●

●

●
●
●
●●●●●
●
●●●●●●

●

●●
●●●●
●
●
●●●

●

●

●
●
●

●●
●
●
●
●

●
●
●●

●

●●●●
●
●●
●
●

●

●●●

●●

●

●
●
●●
●

●●
●

●●
●

●

●●
●●

●

●
●

●
●
●
●●●
●

●●●●

●

●
●
●
●●

●
●●●●

●
●

●
●
●●●
●●

●
●●●
●●
●●
●●
●

●●

●
●●
●●●
●
●

●●●●
●
●
●

●
●●
●●
●
●●

●

●

●●
●
●

●
●
●
●●●
●●●●●
●●●
●●
●
●
●●
●

●

●
●

●
●●

●

●
●●●
●
●
●

●

●●

●

●
●●
●●

●
●●●
●

●
●

●

●
●●
●●
●
●

●

●
●●●●

●

●
●●
●●
●

●
●●
●
●

●

●●
●●

●

●

●

●

●
●
●

●●
●

●●●●●●
●

●

●

●

●●
●●●
●●

●

●●
●●●●

●●
●
●

●
●●
●
●

●●●●
●

●
●
●●●

●

●
●

●
●
●
●

●
●
●●

●

●
●
●

●●
●
●

●●

●

●
●

●●
●●●●●●●●●●●●
●
●
●
●
●
●●●●
●

●
●●
●
●

●

●
●
●●●
●●●●●
●●●●
●

●

●

●
●
●
●●●
●
●
●
●●●●●●●●●
●
●●
●
●●●
●●
●
●
●
●●●
●

●
●
●●●●●
●
●
●
●
●●●
●
●●
●

●●
●●●●
●●●
●

●
●

●

●
●●●
●●●●●●●●●
●●●●
●

●
●●
●
●●●
●●●●
●●
●●●●●●●
●●●●●●●
●●●
●●●●●●●
●
●

●
●●
●
●
●
●●
●
●●
●●●●●●●
●●
●
●●
●●●●
●●●
●
●●●●
●
●●
●
●
●

●●●●

●●●●●
●●
●

●
●

●

●

●
●

●●●

●●●

●

●

●●
●
●
●

●●●●●

●
●

●●
●

●
●
●
●
●

●
●

●

●

●●

●
●

●
●
●
●

●●

●●

●●●●●
●
●

●
●

●
●
●
●●
●●

●●

●
●

●
●

●●

●

●

●

●
●
●
●
●
●
●●●
●

●

●
●●

●

●

●

●
●
●
●
●●●●
●●●
●●
●
●●

●

●

●●

●
●●

●

●
●
●
●
●

●
●●
●
●

●

●
●●●

●
●
●●

●
●

●

●●

●

●
●
●●

●

●

●●●

●
●●

●

●●●
●
●●

●
●

●●●

●

●

●

●●
●

●●●●●●●
●

●●●
●●●●
●
●●
●
●

●

●
●

●

●●●●●

●

●●●

●

●
●
●●
●

●●●●

●

●●

●
●●

●
●●

●

●●●●
●●●●●●●

●●●

●
●

●

●
●●●
●●●●●

●

●
●●
●

●

●●

●

●

●●●●
●

●
●●●●
●

●

●
●
●●●
●

●

●
●
●
●

●●

●●●●●●

●

●
●
●

●●●

●●

●
●
●●
●

●

●
●
●

●●

●
●

●

●●●●
●

●
●●●●●●●
●

●

●●

●●●

●
●●●●●●●●●
●

●

●●●●
●

●●●●
●
●

●
●●
●●●●
●●●
●
●
●●
●●

●
●●●●●
●

●

●

●
●

●
●
●●
●

●

●
●●
●●

●
●●●

●
●
●●
●
●●
●

●

●●●●

●

●

●
●●
●

●

●

●

●●●●●●●
●

●●
●
●

●

●
●
●●
●
●

●●
●●
●

●●●

●●
●

●
●
●
●
●●
●
●●
●●
●●●
●●
●●
●●
●
●
●●●
●

●●
●●●
●
●●
●

●●

●

●
●
●
●
●●
●
●
●●●●
●●
●●
●

●

●●●●
●
●
●

●●
●
●
●
●

●
●●●
●

●●●●●
●●

●

●●
●
●●
●

●●

●●●
●

●●●

●
●

●
●●●●
●

●

●

●●●●
●
●
●●●

●
●
●
●●

●

●
●●
●●●
●●●●
●●
●

●

●
●
●●
●●●

●

●
●●●
●●●
●
●
●
●●●

●

●●
●
●
●

●

●●●●
●
●

●
●
●
●

●

●●●●
●●●

●

●

●
●●
●

●●

●

●
●
●●●
●●●●●●●
●

●
●
●
●●●
●●
●
●

●

●

●●●●

●
●
●
●

●

●

●●●
●
●
●
●●
●●
●●●●●
●
●●
●
●●●
●●●
●

●
●

●

●
●
●

●

●●
●
●

●
●●
●

●●
●●
●●
●●

●
●●
●●
●●●
●
●
●●
●
●
●
●●

●

●
●
●
●
●●
●
●
●●

●●●
●
●
●

●

●

●●

●●
●●
●●●
●●●●●●

●●
●

●
●
●
●
●
●●●●
●
●●
●
●
●●
●
●

●

●●
●
●●●●
●●
●●●
●●
●
●●

●

●

●
●

●

●●
●●●●●
●●●
●
●
●
●●●
●
●●●●●
●●
●
●
●

●
●
●●
●
●●●●●
●
●
●
●

●
●
●●
●
●●
●●●●
●●●●
●
●

●

●●●
●
●●●
●
●●
●
●●
●
●
●●●
●●
●●
●

●

●
●
●●●●
●●
●●
●●
●
●●●●●
●●●
●
●
●
●
●●
●

●
●
●
●●
●

●

●
●
●
●
●●
●
●●●●
●●●●

●

●
●
●●●●●●●

●●●
●●
●
●●
●●
●

●●●●
●
●●
●

●
●
●
●

R² = 97.86%

●

●●●●

●

●●

●

●●●

●

●●●

●

●●●●

●

●●●●●

●●

●

●

●

●

●●●●●●●●●

●

●●●●●

●

●●●

●

●●●

●

●

●●

●●●

●

●●●●●

●

●●●●●●●●

●

●●●

●●
●

●

●

●●

●

●●●●●

●
●

●

●●●●

●

●●●●●

●

●●●●

●

●

●

●●

●

●●●●

●

●●●

●

●

●

●●

●

●●●●●●●●●●

●

●

●

●●

●
●

●

●

●

●●●

●

●●●●

●

●●●

●

●●●

●

●●●●

●

●●●●

●

●●●

●

●●●●

●

●●●

●

●

●●

●

●●

●

●●●

●

●●●●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●●
●
●

●

●
●

●

●

●

●

●●
●

●●
●
●

●

●

●

●●●
●
●
●
●

●
●

●

●

●
●

●●
●

●●
●●●

●

●

●●

●

●

●

●
●

●
●●

●

●

●

●●

●●

●
●●
●●
●

●

●

●
●

●

●

●●

●●

●
●

●

●
●●●
●

●

●

●

●

●
●

●

●
●

●

●

●
●
●
●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●●
●●
●

●●
●
●

●

●

●●
●

●

●

●

●●●

●
●

●
●

●●●

●

●

●●
●

●

●

●
●
●
●●●

●●●●
●
●

●
●
●

●●●

●
●
●
●●

●

●

●

●

●●
●

●

●
●●
●
●

●

●●

●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●

●●

●
●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●
●●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●●
●●
●●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●
●

●●

●

●
●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●
●
●●●
●
●
●●

●
●
●●

●

●

●

●●
●
●

●

●

●

●
●●●

●

●

●

●

●

●

●
●

●

●●●

●
●

●

●●
●●●
●●

●●

●

●

●

●

●
●
●●
●
●●
●

●

●
●

●

●●

●
●

●
●

●
●
●●
●
●
●
●

●

●●

●●
●●
●●
●

●●

●●

●

●●

●

●
●

●
●
●

●
●●
●
●

●

●

●

●
●●

●
●

●

●
●
●●

●

●

●
●●
●

●

●
●

●

●

●●
●●●●●
●

●
●

●
●
●

●●
●
●
●

●

●

●
●●

●

●
●

●

●

●

●

●
●
●

●

●●●●

●

●

●

●
●
●

●
●

●
●

●●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●●

●

●

●●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●●

●

●●

●●
●

●

●

●●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●
●

●

●

●

●

●●●

●

●●

●●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●

●●●

●

●●

●
●

●
●

●●●
●

●●●●

●
●

●

●
●
●●

●

●
●
●
●
●●

●

●

●

●●

●

●

●
●
●
●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●●

●

●

●
●

●

●●
●
●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●
●

●●
●●

●

●
●
●

●

●

●

●

●

●

●●

●

●
●

●

●●●

●

●
●●●

●●

●
●

●

●

●

●●
●

●
●
●●
●

●●

●

●

●●●

●

●
●

●●
●
●●●
●●
●
●

●●●
●

●
●

●

●●●

●

●
●

●
●
●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●
●
●

●●

●

●●

●●

●

●

●

●

●

●●●●●

●●

●●●●●●●●●●

●

●●

●
●

●●

●

●●

●

●

●●●●

●

●●

●

●●●

●

●●●

●

●

●

●●●●●

●

●

●

●●●●

●
●

●

●

●●●●●●●●

●

●

●●●●●●

●

●

●

●●●●●

●

●

●

●●●

●

●●●●●●

●●

●

●

●

●

●●●●

●

●

●●

●

●

●

●●●

●

●●●●●●●

●

●

●●

●

●●●●●

●

●●●

●

●

●

●●

●

●

●

●●●●●●●

●

●●

●●●●

●

●

●

●●●●●●

●

●

●●●●●

●

●●●

●

●●●●●●●

●
●

●●●

●

●

●

●

●

●

●

●

●
●

●●●
●
●

●

●

●

●●●●
●●●
●●●

●

●

●●

●
●

●●
●
●

●

●●

●●
●
●

●●
●
●
●
●●

●

●

●●

●

●
●
●

●

●

●

●
●

●●

●●●●
●

●

●
●
●

●

●●
●
●●
●
●

●

●

●

●

●
●

●
●
●●
●

●

●

●●●●
●

●
●

●

●
●

●●●●
●
●
●●
●

●

●

●

●

●●

●
●

●●
●●

●

●

●

●
●
●

●

●●

●

●●

●

●●

●

●

●

●
●

●
●●
●

●

●
●
●

●●

●
●

●
●

●

●●●●

●

●●●
●

●
●

●

●

●

●●●●

●

●

●

●●●●

●

●
●●

●

●

●
●●●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●●
●
●
●●●
●●●●
●
●

●

●
●
●●●●
●

●●●
●●
●
●●
●●

●
●

●

●●●●●●●
●
●
●
●
●
●●●●●
●
●●

●

●●
●
●●

●

●●
●
●●
●
●●
●

●

●

●

●●

●
●

●

●●

●

●

●

●●

●

●

●
●

●
●●

●

●●

●●

●

●●

●

●

●

●
●
●

●

●●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●●

●
●

●●

●

●

●

●●

●

●

●●●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●
●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●
●

●●●

●

●

●
●

●

●

●

●●
●●

●

●●

●

●

●

●●
●

●
●
●●●●
●
●●●

●

●

●

●
●
●

●

●
●
●

●

●
●●●●●

●
●

●

●

●
●

●
●

●
●
●

●
●

●
●●
●●
●●
●

●●

●

●●●

●

●

●

●
●●
●
●
●
●
●

●

●
●
●●
●●●
●●●●●
●
●●

●●●
●●

●

●

●●

●●

●

●

●
●●
●●●
●●●●

●
●
●

●

●

●
●●
●

●
●●

●

●
●

●
●
●●●

●

●
●●

●

●
●●●
●
●

●
●
●
●
●

●

●

●

●●
●
●
●

●
●●
●●
●
●
●●

●
●

●●
●●

●

●
●●●
●

●

●
●
●●
●
●
●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●
●●●
●

●●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●●

●

●

●●●●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●
●

●

●●

●

●●

●

●●

●
●

●●

●●

●●

●
●

●

●

●●

●

●

●
●

●●

●

●

●

●●

●

●●●

●

●●

●●

●

●

●●

●●●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●●

●
●
●

●●●

●

●●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●●●

●

●

●

●●

●●●

●

●

●
●●●●

●

●

●●

●

●

●●
●
●●

●
●

●●

●
●

●

●●
●●●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●

●●

●
●

●●●●

●

●

●●
●

●

●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●●●

●

●
●
●

●
●
●
●

●

●

●●
●●

●●
●

●

●

●

●

●

●

●●
●
●
●

●●●

●

●

●●

●●

●

●

●

●

●
●

●

●●
●

●
●
●●
●●●
●

●

●

●●

●

●

●
●
●

●

●

●
●

●

●
●●

●

●●
●

●

●●
●

●

●
●
●●

●

●●●

●
●

●

●

●

●●●●●●●●

●

●●

●●

●●●

●

●●●

●

●

●

●●

●

●

●●●●●●

●

●●

●●

●

●

●

●

●●●●●●

●

●

●●

●●

●

●●●●●●●

●

●

●

●

●●

●

●

●●●●●

●

●●●●●

●

●●

●

●

●●

●

●

●

●

●

●●●●●

●

●●

●

●●●●

●

●●

●

●●●

●

●

●

●●

●

●●

●●●●●●●●●●●●

●

●

●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●●●

●

●●●

●

●●●●●

●

●

●●

●

●●

●

●

●●●●

●

●●

●

●

●●●

●

●●●●

●

●●●

●

●

●
●
●
●

●

●
●
●
●
●

●
●
●
●
●

●

●

●

●

●

●

●
●
●●
●
●

●

●●
●

●
●●

●

●

●

●

●●

●

●●●
●●●
●●
●
●●
●●

●

●

●

●
●●

●

●

●

●●

●

●
●
●
●
●
●

●

●
●●

●

●
●

●

●
●●●
●

●

●

●
●
●
●
●
●

●

●●●
●

●

●

●

●
●●
●
●●

●

●
●
●
●
●
●

●

●

●

●●
●●●●●●

●
●

●
●●
●●

●●

●

●
●

●

●

●

●
●
●●●
●●●

●

●●●
●●●●
●
●

●

●

●

●
●
●
●
●●

●

●●
●

●

●
●
●
●●

●

●

●

●
●●
●

●

●●
●
●

●
●

●●●
●
●
●

●

●
●
●
●
●●●

●
●
●
●

●

●
●●

●

●

●●

●
●
●

●

●

●

●

●
●
●
●

●

●
●

●

●
●

●

●
●●

●

●

●

●
●
●

●
●

●

●

●
●
●

●

●

●

●

●

●
●●●●●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●
●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●●

●

●●

●
●

●●

●●●

●●●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●
●

●

●

●●

●

●
●
●
●

●
●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●●

●

●●●
●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●●

●

●
●
●
●
●●

●

●

●
●
●●●
●
●

●

●●●

●●●

●●
●
●

●

●
●

●●

●

●●
●
●●
●

●

●●
●
●

●

●

●
●
●●

●●●●

●
●
●●
●

●

●
●●
●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●
●

●

●
●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●●
●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●●●
●●

●

●

●
●

●
●●●
●●●●

●

●

●
●

●
●
●

●
●●●

●

●
●
●

●

●

●
●●
●

●

●
●

●
●●●
●

●●

●●
●

●
●
●●●

●

●●

●
●
●
●●

●

●

●
●

●
●

●

●

●●
●
●●●

●

●
●
●
●●
●
●
●

●

●

●
●●●●●

●●●
●
●

●

●●

●●

●

●

●
●

●

●
●●
●●
●●

●

●

●

●●●

●

●
●
●●

●

●

●
●●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●●●
●

●

●

●

●
●
●●
●●
●●
●●●
●●
●

●

●
●

●●

●
●●●●

●

●●

●

●●●

●●

●●

●

●
●●
●●

●

●

●

●●

●

●●

●

●●●●●●●

●

●

●

●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●

●

●

●

●●

●

●

●●●●

●

●●●●●●

●

●●●●●●●●

●
●

●●

●

●●●●

●●

●●●●●●●●●

●

●●●●●●●●●

●

●●

●

●●●●

●
●
●●

●●●●●●●●●●●●●●●

●

●●●●●

●

●●●

●

●

●

●●●

●

●●●●●●●

●

●●●●●●

●

●●●●

●●

●●●

●

●●●

●

●●

●

●●●●●●●●●●

●

●●●●●●

●

●●

●
●

●●

●

●

●

●
●
●●

●
●

●

●
●
●

●
●●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●●●●

●
●●
●●
●●●
●

●

●

●

●
●
●

●

●

●●

●

●
●

●●

●

●
●
●●●

●
●
●●●●
●●●

●

●●

●●

●

●●

●

●
●

●

●●●
●

●

●
●●

●

●

●
●●●●

●●
●●●

●

●●

●

●

●

●

●●

●
●
●●
●

●

●
●
●
●

●

●●●

●

●

●●●●

●

●

●
●

●

●
●

●

●●●●

●
●
●●
●
●●
●

●

●

●

●●
●
●●
●●●

●

●●

●●

●●

●

●

●●

●
●
●●

●
●●

●
●
●

●
●

●
●

●●

●

●
●

●●

●

●●

●

●

●

●●●●●

●
●

●

●

●

●

●

●
●
●●●

●

●
●

●●●
●
●

●

●

●

●

●●
●
●

●

●

●
●●

●

●●●●●

●
●
●

●

●
●●●●
●
●

●

●

●

●

●●

●●

●
●●●
●
●

●

R² = 87.01%

●
●
●

●

●

●

●

●●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●
●
●

●●

●

●
●

●

●

●

●
●

●
●

●
●
●●

●

●

●

●
●
●

●●

●

●
●

●
●

●
●

●
●

●●

●

●
●

●

●●

●

●

●
●

●
●
●
●

●

●
●

●●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●
●●
●
●
●
●

●
●

●

●
●
●●
●
●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●

●

●●●●
●
●
●

●

●●
●
●●

●
●●
●●●
●●
●

●
●
●

●

●

●●
●

●

●

●
●●

●

●

●●

●

●
●●
●

●
●
●

●
●●
●
●
●
●●

●

●●●

●

●

●

●●

●

●●●
●
●
●

●
●

●

●●●
●
●
●

●●
●
●

●
●

●
●

●

●

●

●

●
●
●●

●

●

●●

●

●●●
●
●
●●
●

●

●

●
●●●●
●●
●
●
●●
●

●

●

●

●
●●●●

●

●●

●

●●
●●
●
●
●●

●

●

●
●

●

●●●
●●

●●

●

●
●
●●

●

●
●●●●

●

●●
●
●●●●

●

●●
●
●●
●●●

●

●
●
●●●●

●

●

●

●
●
●●●
●

●

●●●

●

●●

●

●●
●

●

●●●
●
●●
●●●●

●

●

●

●
●●●
●

●

●●●●
●●●
●

●
●●
●
●●
●●●●
●

●
●
●
●
●
●●●
●●●
●
●●
●●
●●
●●
●●●●
●

●●
●●
●
●●
●

●●
●●●●●●
●
●
●
●●●
●

●●
●●
●●
●●●●●
●
●●●●
●●
●

●
●
●

●
●●●●●
●
●●●
●
●●●●
●●

●●●●●
●●●●●●●●●
●
●●
●
●●
●
●●●
●●
●

●
●●
●
●
●●
●●●
●●
●
●●

●●
●●
●
●●●
●
●●
●●

●

●
●

●
●
●

●
●
●

●●●
●
●
●

●

●
●

●
●●●●●

●
●
●
●●
●●●
●

●

●
●●
●
●
●
●

●

●
●●●
●

●

●●●●

●

●
●
●●●●●
●●
●●

●●●●
●●

●

●

●●
●●

●
●
●
●
●
●●
●●●
●●●●●●
●●
●
●
●●

●
●●●●●
●●
●

●●
●

●
●

●●
●●
●

●
●●●●
●●●●
●

●●●●●

●
●
●●●●●
●●●●●●●●●●
●●
●
●●●●●●
●
●
●●●●●
●
●●
●●●●●●●
●●
●
●●●●●●●
●

●
●●●
●
●●
●●●●●●●
●
●●●●
●●●●●●●
●●●●●●
●●●●
●
●●●●
●●●●●●●●●
●
●●●●●
●
●●●●●
●●●●
●●

●
●●●●●●●●●
●
●●

●

●
●

●
●●
●

●

●●

●
●

●

●

●●

●

●
●
●

●

●

●●●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●●

●●

●
●
●

●

●
●●

●

●

●

●
●

●
●

●

●

●●
●●●

●

●

●
●●

●

●

●

●●

●●

●

●

●●

●

●

●

●
●

●
●
●

●

●

●●
●●●●

●

●
●

●

●

●●
●

●
●

●

●

●●●

●

●

●●

●

●

●

●●
●
●●

●

●

●●

●

●

●●

●

●

●
●
●
●
●●
●
●●

●●

●●
●

●

●
●●●●
●●
●

●●

●●●
●
●●

●

●●

●

●●
●
●
●●●●
●
●●

●
●●

●
●
●

●

●
●

●●●
●●

●●●

●●

●●

●

●●●

●●
●
●
●●●
●

●
●

●

●●

●●●●

●●●
●
●●●●
●
●●

●●
●●●
●●
●
●●

●

●
●●●
●

●
●●
●

●

●●

●●●●
●●
●
●●

●
●

●
●●
●●
●

●
●●

●

●●

●

●●
●
●
●
●
●

●

●
●●●
●●

●

●
●●●

●

●●●●

●

●
●●
●●
●●

●●
●●

●

●

●●●
●
●●●
●
●
●
●●
●
●

●
●●

●

●●●
●

●
●●●

●

●
●
●
●
●●
●

●

●●●
●
●

●●●●
●
●●

●
●●

●

●●
●
●●●
●

●

●
●●
●
●
●
●

●●

●●●●●
●

●

●
●
●●●●●●
●●

●●

●
●

●●
●
●●
●
●
●

●

●

●
●
●●

●

●

●●

●●

●

●
●
●●

●
●
●●●
●●
●
●●●

●●●
●

●

●

●
●●●
●●
●
●
●

●

●●●

●
●
●●

●●●
●●
●
●
●
●●●

●●●●
●

●
●●
●
●

●●
●
●
●●
●●
●●●●

●
●
●●
●
●

●●
●●●
●●
●●●
●
●

●

●●
●●

●
●

●

●

●●
●
●●

●
●
●

●
●

●
●
●

●●

●

●●
●
●●

●●●●
●
●
●●●●●●
●●●●●●
●
●●●●●●●●
●●●●●●●●
●
●●
●●
●●●●
●●●●●●●●
●●
●●●●
●
●
●
●●●●●●●●●
●●
●
●
●●●●●●●
●●●
●●●●●●●●●●●
●●
●●
●
●●●●●●●●
●

●
●●●●
●●●●●●●●●●
●●●
●
●●●●●
●●●●●●●

●●
●●●●●●
●●●●●●
●●●●●●●●
●●●●●●
●●●●●
●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●
●
●
●
●
●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●
●

●
●●
●

●

●

●
●

●●
●
●
●●●

●

●●
●●
●

●

●

●
●

●

●●●

●●
●

●

●
●●
●
●●●●●
●

●

●

●

●
●

●
●●

●
●
●
●●
●

●

●
●

●

●

●●●●

●●●
●●●
●
●
●●
●
●●●
●

●

●

●

●

●●

●

●
●
●
●●
●

●●

●●

●●●
●

●●

●
●

●●
●

●

●

●

●●●●
●●●●

●
●

●

●

●●
●●
●

●
●

●
●
●
●●

●

●

●
●

●●
●

●

●●●

●

●
●
●

●●
●●●

●
●
●
●
●●
●
●

●
●●●
●

●
●

●
●●
●●

●

●
●
●
●
●

●

●
●●●

●

●●

●

●
●●
●
●●
●

●
●

●

●

●
●●●●●

●

●
●●
●●●●

●
●●
●

●●
●●●●
●

●

●

●
●
●
●

●

●●
●●●●●

●

●

●●
●
●
●

●

●●

●

●
●●
●
●

●
●
●

●

●
●●●●
●
●
●●●

●

●

●

●
●●

●●●●
●●●●
●
●●
●●
●
●
●●●●
●
●

●

●●●
●

●
●
●●●●
●
●
●
●
●●●●●
●
●
●
●●●●●●●

●

●
●
●●●●●●●

●
●

●

●
●●●
●
●●●●●●●
●●●
●

●
●●
●

●●●●
●●
●●●
●

●●●●
●●
●
●●
●
●●

●

●●
●●●
●●
●
●●●●●●

●●
●●●●●●
●
●●
●●●●●●●

●

●●●●●

●

●●
●

●●

●●●●●
●
●●●

●

●●

●

●
●
●
●
●●●
●
●●

●

●

●●

●
●
●
●
●●●
●●●●●
●
●
●
●

●
●
●

●●

●

●

●

●

●
●
●●
●
●

●

●●

●

●●

●

●

●●●
●

●
●●●●●
●
●
●
●

●

●

●

●●●●
●●
●●
●
●●
●

●●

●

●

●●

●
●
●●

●

●●
●
●
●
●
●●●●
●●●●
●●
●●●
●●●●
●

●
●●●●●●
●●●
●●
●
●●●
●
●●●
●●

●

●

●
●●
●
●●
●●
●
●
●
●●●

●

●
●
●

●●
●●
●
●●●
●●
●
●
●●
●
●
●●●
●

●

●
●●●
●
●
●
●
●
●

●

●
●

●●
●
●●
●●
●
●
●●
●●●●
●
●

●
●●
●
●●●
●●
●
●
●●●
●
●
●●

●
●

●
●
●●
●
●
●
●

●

●

●●●●●
●●●●
●●
●

●
●●●
●●●●

●●

●
●

●
●●

●

●●
●
●
●

●
●●
●
●
●
●
●
●

●●●
●
●●●●

●
●
●
●●●●
●●
●

●
●●●
●
●●
●
●
●●●●
●
●
●●●
●
●

●

●
●
●

●

●●
●●●●●
●
●

●
●
●●●

●

●

●●
●●●●
●●●●
●

●
●
●
●●●
●

●

●
●
●
●

●

●●
●

●
●
●●●
●
●
●●●
●●

●
●●
●
●
●

●

●●●
●
●
●●
●

●
●

●
●●

●●
●●
●

●
●●●●●●●●●
●●
●●
●
●●

●

●
●●●
●

●

●●●●●
●
●
●
●
●●
●
●●
●●

●

●
●
●
●●●

●
●
●●
●●
●●●
●●●●●
●
●
●
●
●

●
●
●●●

●

●●●●●
●
●●
●●●
●
●●●

●
●
●
●●
●●●●●
●●
●
●

●●

●
●●●
●●
●
●●●
●●●●●
●●●●●●
●
●●●●
●●
●
●
●●

●

●
●●●●
●●
●●
●
●●●
●●●
●
●●●●●
●
●
●●●●●●●
●
●
●
●●●●●
●
●●
●
●
●●
●
●●●
●
●
●●●
●
●
●●
●●
●●●●
●●
●●●
●
●
●
●●●
●
●
●●●
●

●●●●
●
●
●●
●●
●●●●
●
●●●●

●

●
●
●●
●

R² = 79.70%

●●

●●●●

●

●●
●
●
●
●●●●●●●

●
●●
●●●●●●●●

●
●●
●
●●●

●
●
●●
●
●●●
●
●
●

●
●●
●

●●●●●
●●
●●●●

●

●●●●●●●●●●●●
●
●
●
●
●●
●●●●

●

●
●
●●
●
●●●●
●●●●●
●
●●●●
●

●
●●
●

●●●●●
●

●●
●●●
●●●
●
●●●●
●
●
●●●
●
●●●●
●
●

●●●●
●

●

●

●●
●

●●●●●●

●●●
●
●●●
●
●●
●●●●
●●●●●●●●

●

●
●
●

●
●
●●●
●●●●●●
●●
●●

●

●●
●●●
●
●
●●●
●●●●

●

●

●
●
●●
●
●
●
●
●●●●●●●
●●●●
●●
●
●
●
●

●

●●

●

●
●
●
●

●

●
●●
●●●
●●●
●
●●
●●●●●●

●

●
●

●
●●
●
●

●
●
●●
●●

●●●
●
●●●
●
●
●
●●●●
●●●●●●
●●●●●
●●
●●●●
●●●●
●
●
●●
●●
●●
●●
●

●

●
●●●●●●●●
●●
●●
●●●
●
●●●●
●
●●
●
●●●
●

●●

●
●●●
●
●●●●●●●
●●
●●●●●●●

●
●●●●
●●
●
●
●●
●
●●●
●●●●●
●●●●
●
●●●●●●●●
●●

●●●●●
●

●
●
●

●

●
●

●

●●
●●

●

●●●●●●●

●

●

●

●
●●

●

●
●

●

●●
●●
●
●●●
●●

●

●
●
●
●●
●●
●●
●
●
●
●
●●

●

●
●
●
●
●

●
●

●●
●●●
●●
●
●
●

●

●

●
●
●●●

●

●

●●

●
●●●●●
●
●
●
●
●
●

●

●●●
●
●●●
●
●

●

●●
●●

●
●
●●
●●●●

●

●

●
●
●

●
●
●
●

●

●

●
●
●●●●●●●●

●
●
●●
●●●
●

●
●
●
●
●●●●
●●●●
●
●
●●●●●
●●●●●
●
●●●●

●
●
●●●●
●●
●●●
●●●
●●●●
●
●
●
●●●●●
●●●
●
●●
●●
●
●●●●●●●

●
●●●
●●
●●●●●●●
●●●●
●
●●●●●●●●
●
●●
●●
●
●
●●
●●●●
●
●●●
●
●

●
●●●●●●
●
●●
●●●●●●

●
●
●

●●
●

●
●●●
●

●

●

●
●●
●
●●●●
●
●
●●●
●
●
●●
●●
●
●
●
●
●●
●
●
●
●●
●●
●●●●
●●
●

●

●

●●
●●●●
●

●
●●
●
●●●
●

●

●
●
●

●●●●●●
●●
●
●●●
●●●●
●●●
●

●●
●●
●●●●
●
●●●●
●
●
●●●
●●●
●
●
●●
●
●●
●
●●●
●
●

●

●

●
●●

●
●●
●
●●●●

●●
●●

●
●●●
●

●●●
●
●●●
●●●
●●
●
●●●●
●
●●●●●●
●
●
●
●
●
●
●●
●
●●●●
●●●
●
●●
●
●
●

●
●
●
●●
●

●
●
●
●●
●
●●
●
●●
●
●
●
●●
●●●
●
●●●
●●
●●●●●●
●
●●●●
●
●●●●
●●●
●●●
●
●●●
●
●●
●
●
●●●●
●
●
●
●
●●●
●●
●●●●●
●●●●●

●●●●●●●●●●●●
●
●●●●
●
●●●
●●●●●●●●●
●
●●
●●●●●●●●●●●●
●●●●●●●
●●●●
●
●●●●●●●●●●●
●
●●●●
●●●●●●
●●●●●●●●
●
●
●
●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●
●
●●●●●●
●●●●●
●
●●
●●●●●●

●
●

●
●
●

●●●●
●
●●●●

●●
●●

●●

●●●●●
●
●●●

●

●●●●
●
●
●●

●

●
●

●●
●
●
●

●
●●

●
●
●
●●●

●●
●
●

●

●

●
●

●

●●
●●●
●
●
●●

●

●

●

●
●●
●●●●

●
●
●
●
●

●

●

●

●●
●
●●
●●●
●●●●●

●

●●●

●●
●
●●
●
●
●
●●
●●

●
●
●●●
●
●

●●●●
●
●●
●

●

●●●●

●
●
●●●●●●●●
●●
●

●

●●
●●
●
●
●
●
●●
●●●●●
●●
●
●●
●●●●●●
●●●
●
●
●
●
●●●●●●

●
●●●●

●

●
●●●●

●

●●●
●●●●
●●●
●

●
●
●
●●●●●●●●●●
●●●
●●
●

●
●●
●

●●
●●
●

●●
●
●●●●●●
●●●
●
●
●●●
●
●●●

●

●●
●●●
●●●

●

●
●●●●

●●●

●

●●
●
●
●

●
●

●●●●●
●●

●
●●

●

●●
●
●

●
●

●●
●●
●
●
●●

●
●
●
●
●●
●
●

●●
●
●●
●
●●

●
●●●

●●

●
●

●●●
●●
●

●

●
●●

●●

●

●

●
●●●●
●

●●●●
●
●●●●

●

●

●●
●

●

●●●●

●
●●●●
●
●
●
●●

●

●●

●
●
●●

●●
●
●
●
●
●
●

●

●●●●●●
●

●

●

●
●

●●●
●

●●
●
●●●●
●
●●●●
●●●●
●●●●●
●●●●●●
●●●●●●●●●
●
●
●
●●●●●●●●
●●●●
●●●●●●●●●
●
●●●●●●●●
●●●
●●●●●●
●
●
●
●●
●●●●
●●●●
●●●●●●●●●●
●
●●●●●
●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●●●
●●●●●

●

●
●●●●

●●

●●
●
●
●
●●●
●
●

●

●●
●●

●

●●●
●
●

●

●

●

●●●●

●

●●
●●●●●
●
●●

●
●●

●●

●
●●●●●

●

●●●●●
●●
●

●

●
●

●

●
●
●●●

●

●

●
●●

●

●

●

●
●●●

●
●●

●
●
●●●
●●

●

●●
●

●

●●●●

●

●

●

●●
●
●
●
●

●

●
●
●

●

●
●

●

●
●●

●

●●●●●●

●

●
●●●●

●●
●●
●●
●●●●●●
●
●

●●●●
●

●●
●

●●
●●
●●●
●●
●●
●
●●
●●

●
●●
●
●●●●●
●●●●●

●
●●
●●
●

●
●●
●●●●

●●
●
●
●

●●●
●
●
●
●
●●●
●
●
●
●●●●

●

●
●●●●●●●
●
●

●
●●●
●
●
●●●
●●●
●
●●
●●●
●

●

●

●●
●
●●
●

●●
●●●
●
●●●
●●

●
●●
●

●●●●●●●●●●●
●●●●●●●
●
●●●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●●●
●●●●●
●
●●●●●●●
●●●●●●●●●●
●
●●●●●●●●●●●●
●●●●●
●●●
●●●

●
●
●
●●

●

●●
●
●
●
●●●
●

●

●●
●●●●●●
●
●

●●
●●●
●●●●
●
●

●

●

●

●●
●●●
●

●

●●

●
●

●

●●●
●
●
●●
●
●●
●

●
●●

●
●
●
●
●●●●●

●
●●

●

●●●
●
●●●●
●
●

●

●●●
●●●

●

●
●

●
●
●
●●●●
●

●

●
●

●●●●●

●

●
●
●●
●●
●
●
●
●
●
●
●
●

●
●●
●●●●●●

●

●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●
●
●●●●●●●●●●
●
●●
●●●●●●●●●●●●
●●●●●●●●
●
●
●●●●●●●●●●●
●

●
●

●●●●●●●
●
●●
●

●●

●

●
●

●●
●
●●●

●

●
●

●

●

●

●●●●

●

●
●

●●
●●
●
●●●●
●
●

●
●●
●

●●●
●●
●
●
●●
●
●●
●

●●

●●
●●●●●
●
●●
●

●

●●●●
●
●●

●●

●

●
●

●
●●●●
●
●
●●

●

●
●●●
●
●
●

●●●●
●
●

●●

●

●●●●

●

●●●
●
●
●
●●●
●
●
●
●
●●
●

●

●

●●●●●●●●●●●●●●●
●●●●●●●●
●●●
●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●
●
●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●
●●●●●●●●
●●●●●●●●●●●●
●

●
●●
●

●●

●

●

●
●

●●
●●

●

●●●
●●●●

●

●

●

●
●●●
●
●
●●
●
●●

●

●
●●●
●
●
●
●

●
●

●●

●
●

●
●●
●●●●
●●
●●
●
●●

●

●
●

●●●
●●
●
●
●
●●

●
●
●
●

●●

●●●●

●

●●

●

●
●
●
●●
●●
●

●
●
●
●●
●
●
●

●

●●

●

●
●
●●●●
●
●
●
●●

●

●●
●

●

●●

●
●

●●
●
●
●
●
●●

●●●●●●
●●
●●
●
●
●●●
●●●●●●●
●●

●●●●
●●
●●●
●
●●●
●●●●
●●●
●
●
●
●●
●●
●
●●
●●●●●●●●●
●
●●
●●●●
●
●●●●●●
●
●●
●●●
●
●●●●●

●●
●
●●
●●●
●●●●●●●
●●●
●●●
●
●
●
●

●●●●
●
●●●●●
●●●
●

●
●
●●
●●●●
●●●●

●●●●
●
●●●
●●
●
●
●●●●●●
●●●●●●
●
●●
●
●
●●●●●●
●
●
●●
●
●●
●
●●
●
●●●
●
●●●●
●●●●●●●
●
●●●●
●
●●●●●
●●●●●●●●
●●●●
●●
●●●●●●
●●●●●●
●●
●●●●
●
●
●
●
●
●●●
●
●●
●●●●●●●●●
●●●●
●●●
●●
●●●●
●
●●

●
●

●

●●

●●

●

●●
●●

●

●
●
●

●
●

●

●

●
●
●
●
●●

●

●

●

●

●

●●
●

●

●●

●

●●●

●

●

●
●●

●

●
●
●●

●
●

●

●

●
●
●
●

●●

●

●●●

●
●

●

●

●

●
●

●

●
●●●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●
●●

●

●

●
●●
●
●
●

●
●

●

●
●●

●

●
●

●

●

●

●●
●
●

●
●
●

●

●

R² = 96.83%

●
●●●

●

●●
●●
●●●●

●

●●●
●●●
●●

●

●●●
●●
●
●

●

●
●●
●●
●●●●●

●

●
●●
●
●●
●
●●
●

●

●
●●●●●
●
●●●

●

●●●●●●

●
●

●

●●
●●

●
●
●

●

●●●●●
●●
●

●
●●●
●

●

●
●
●●●
●
●
●

●

●
●

●
●●
●

●

●
●●●
●
●●
●●

●

●
●
●
●
●●●
●

●

●

●●●
●●●●
●

●

●

●
●●●
●●
●
●
●

●

●
●
●
●
●●
●

●
●●●
●●●
●
●

●
●

●

●

●
●●●
●●
●●
●

●
●
●●●
●
●

●
●●●●●
●

●

●●●●
●●
●

●
●

●

●●
●●●

●

●

●●
●
●●●
●
●
●

●
●●●●●●
●●
●
●
●●
●●●●
●●
●
●

●

●●
●●●●●●
●
●
●
●

●●●●
●●●
●
●
●●
●

●●●●●
●●●●
●

●●
●

●●●
●
●
●●
●●
●●
●●
●●●
●

●●

●●

●
●●●●●
●●●
●
●
●
●●●●
●
●
●

●●●●
●
●●
●●
●

●
●●
●●●●
●

●●●
●
●●
●

●
●
●
●●

●
●

●●●●
●
●
●
●
●

●
●●●●●
●
●
●
●
●
●●
●●
●
●●●●●
●

●●
●
●
●
●
●
●
●●●
●●
●
●
●●
●●●●●
●
●
●
●●

●●
●●●
●
●
●●
●

●●●●●●●

●●

●●
●
●●
●●
●

●●
●●●
●●
●●
●●

●
●
●
●●●

●●

●
●●
●
●●
●
●
●
●
●●

●

●
●●●

●

●
●
●●
●

●
●●●●●●
●
●

●
●

●
●
●●●
●
●●●
●●
●
●
●
●
●
●●
●●●●●
●●●●●●
●●●●
●
●●
●●
●

●
●●●
●
●●
●
●
●●
●●●●
●●
●
●

●
●●
●
●●
●
●
●●
●●

●●
●●
●

●
●
●●●●

●
●●
●
●
●●●●●●●
●●●

●
●
●
●●
●●
●
●●

●
●
●
●
●

●
●●●
●
●
●●
●
●●
●●
●●●
●

●●●●●
●●

●

●
●●
●

●
●
●
●
●
●●●

●
●
●

●
●
●

●
●
●●
●●
●
●
●

●

●
●●●

●
●
●●
●
●

●

●
●●
●
●
●●
●
●●

●
●●
●
●●●
●
●
●
●●
●
●

●

●

●
●
●

●●
●●●
●

●
●
●●●
●
●
●●●
●
●

●●
●●
●●●●●
●
●●●
●●●
●●●●
●
●
●●
●
●●
●
●●●●

●●●●●
●
●●●
●●
●

●
●
●●
●●
●
●
●
●

●●●●

●
●
●●●●●
●●
●
●●●
●●●
●
●●
●●
●●●●
●

●●
●
●●
●
●●●●
●●
●
●●●●
●
●●
●
●●
●●●
●
●
●●
●●
●
●●●
●
●●●●
●
●
●

●●
●
●
●●
●
●

●

●
●
●
●

●
●●●

●

●●●●●

●

●
●●

●

●●●
●●
●

●

●
●
●●●●●
●
●
●●
●●

●

●●
●
●

●

●
●
●
●
●●●
●●●●
●
●

●
●●

●●
●●●●
●
●

●●●
●●
●●●●●

●
●●
●
●
●
●●

●

●●
●
●
●●
●●

●
●
●●●●●
●●●
●

●●●●●
●
●●●
●●●●

●

●●●●●
●●●●
●

●●●●
●●●●
●

●●●
●●
●●
●
●●
●●●
●●
●●
●●●
●
●
●●●
●●●
●●
●
●
●
●
●
●
●
●●

●
●
●●
●
●

●
●
●●
●●
●●●
●●●●
●

●
●

●

●
●●
●

●
●●
●
●
●
●
●
●
●

●

●

●
●

●

●●●
●●●
●
●

●●

●

●

●
●
●
●●

●

●●
●
●

●
●
●
●
●

●
●

●
●

●

●●
●

●
●
●●
●●●

●
●

●
●
●●

●

●

●
●

●
●●
●

●●

●

●
●
●
●
●

●
●●●
●●

●●●
●●●
●●●
●
●●●
●●
●

●●●
●
●
●
●●
●
●
●
●●

●
●
●

●
●
●
●

●●●
●●

●
●
●●●●●
●
●
●
●
●
●

●
●
●
●
●●●
●

●

●
●

●

●
●
●

●

●
●

●

●●●
●
●
●
●●●
●
●
●
●

●●
●●
●

●

●●●
●
●
●

●

●
●
●
●

●
●●

●
●●
●

●●
●
●
●

●
●
●
●

●●●●
●

●

●
●●
●
●
●●
●●●

●
●●

●
●●●●
●

●

●
●

●●
●
●
●●●

●

●●
●
●●
●●
●
●

●

●

●

●
●

●●●
●
●●
●

●
●●●●●
●
●
●●●●
●●●●●●●
●●●●
●●●
●
●●
●●●●●
●
●
●●●●●●
●●
●●
●●●●●
●●●●●●●●●
●●●●●●●
●●
●

●●

●

●
●
●●●
●●

●

●●●
●●●●●
●●●●●

●

●
●
●●●
●
●●

●

●
●●●
●●

●

●
●●●●
●●●●

●

●
●
●●●●●●●

●

●●●
●●●
●●
●

●
●

●
●
●
●●●●●

●

●
●
●
●
●
●
●●●●●●
●
●
●●●
●
●
●
●
●

●
●●●●
●
●●

●
●●
●●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●
●●●

●
●
●

●
●●
●
●●

●

●
●●

●
●●
●
●●
●
●

●
●

●
●

●

●●
●●●●
●
●●●
●

●●
●●
●●

●●
●

●●

●
●●
●●
●

●

●●

●
●●●

●●
●●
●●
●
●●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●●

●

●

●●

●

●●

●●

●

R² = 97.12%

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●
●●
●
●●●
●
●●●●
●●●
●

●
●
●
●
●
●
●
●
●●
●●
●
●●

●

●●●●
●●
●

●
●
●●
●
●●●

●●●

●

●
●●
●
●
●

●●●
●
●
●
●
●

●
●

●
●
●
●
●●●
●
●●
●●
●

●
●●

●●●●
●
●
●
●
●

●●
●●●
●●

●
●●
●
●●●
●
●

●

●
●
●
●
●

●●
●●
●
●
●●

●

●

●

●
●●●

●●
●●●●
●
●

●●
●
●
●

●

●
●
●
●

●
●●●

●
●

●

●
●

●●
●●●●●

●

●●

●

●

●
●●
●

●

●●

●●●●●
●
●

●
●

●

●

●

●●

●

●
●
●

●●

●
●●
●
●●
●

●

●

●

●

●

●

●●
●
●
●

●
●
●●

●●●

●

●●●●
●

●

●●

●

●●●

●●

●

●

●

●
●●●●●
●
●
●●

●

●●●

●●
●●
●

●

●●

●

●●

●
●
●●●

●

●●
●
●●

●
●●

●

●

●

●
●
●

●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●●●

●

●
●
●
●

●

●

●●●

●

●
●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●
●
●●
●
●●

●
●
●

●

●
●
●
●
●●
●

●

●

●

●

●

●
●●
●

●

●●●
●●
●

●

●

●

●●●
●

●●●●
●

●
●

●
●

●

●●
●
●
●

●

●●●●●

●

●
●●●
●

●●

●

●●
●
●●
●●●
●●

●

●

●

●●
●
●
●

●

●●
●●

●

●●
●
●

●
●
●

●
●
●●
●

●

●●
●●●

●

●

●

●●
●
●
●●

●

●
●●
●
●●

●●

●

●
●

●
●

●
●
●●
●
●
●
●

●●
●

●●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●

●●
●

●

●

●●●

●

●

●●

●

●

●

●

●●●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●●●●

●●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●●

●
●
●

●

●

●●●●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●
●
●●●

●

●

●
●●●
●
●
●
●●
●
●●
●
●
●●
●
●●

●

●

●

●
●
●●●

●●
●●●●

●
●●
●
●●●
●●

●●
●●

●

●
●●●●
●

●
●
●
●
●●●
●
●

●●
●

●●●
●
●
●●
●

●
●
●

●
●

●
●

●●●
●
●
●

●
●
●
●●●●
●
●●
●●

●
●●
●●●
●
●

●
●
●●●
●

●
●

●
●●●●
●

●

●

●
●●

●

●
●
●
●
●
●
●

●

●

●

●

●

●●

●
●●●

●
●
●

●

●
●
●
●●

●
●

●

●

●

●●●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●●

●
●

●

●

●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●

●

●●

●
●
●
●
●●●●●●●
●
●●

●●●
●
●●●●●●●
●●●●
●●●
●●
●
●●
●
●
●
●

●●●●●
●

●

●●
●●●●●
●●●
●●●●
●●
●●
●
●●●●●●
●●●●
●●●●●

●

●●
●●●●●●
●●
●●●
●●●
●●
●●
●
●●●●
●●
●

●●
●●
●
●
●
●
●●●
●●
●●●
●●
●
●●
●

●●
●●●
●●

●
●●
●●

●

●●

●

●●

●
●●●

●

●●

●

●
●●●
●●●

●

●

●
●●

●

●●

●

●●
●●●●
●

●
●

●
●●
●
●

●

●
●

●●

●

●

●
●●
●
●

●
●
●●●
●

●

●

●

●
●●
●

●

●

●

●●
●
●

●

●

●

●

●
●●
●

●
●

●

●●
●

●

●●●
●●●
●
●
●

●

●●

●●
●

●

●●●
●
●

●

●

●
●
●

●

●
●

●

●
●
●●

●

●

●

●●●
●●

●

●

●

●

●
●
●

●
●

●

●
●●●

●

●●●
●
●
●●

●

●●●

●
●
●●
●

●●
●

●

●
●
●●
●

●●●●
●
●●●
●●

●
●●●

●

●

●

●

●●
●
●●
●●
●

●
●●●
●
●●
●●

●●

●
●●●
●●●
●
●
●
●
●

●

●
●

●
●

●
●
●●●

●

●●●
●●

●

●

●

●
●●
●

●

●●●●
●
●●

●
●
●
●
●
●●●
●
●
●
●●

●

●●
●●
●●●
●

●

●

●

●

●●●
●●●
●
●●
●

●
●

●
●●●

●

●●●●●
●
●
●
●●
●●●

●●

●
●
●

●●
●
●

●

●

●

●

●
●●

●
●●
●
●

●
●
●
●

●●●
●●

●

●

●

●●
●●
●

●●●

●
●

●
●
●●
●
●
●
●●
●

●

●

●
●●
●

●

●
●●●
●

●

●●
●●
●
●

●

●

●
●●●
●
●●●
●

●
●
●

●

●
●●●
●
●
●
●
●

●

●●●
●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●
●

●●

●

●

●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●●
●
●

●

●●●●●●
●

●

●
●
●●

●

●

●
●●
●●

●●●●
●

●●
●

●

●
●
●
●

●

●
●

●
●
●
●
●

●

●

●●●●
●
●
●●
●●

●
●
●●

●
●
●

●

●●
●

●
●
●●
●●
●
●

●
●

●
●●
●
●
●
●

●
●●

●
●

●

●●●●●

●

●●
●

●
●●
●
●

●

●●
●
●
●●
●
●
●●
●●

●

●
●

●●

●●
●
●●

●

●●●●●

●●●

●

●

●

●●●●●●●●●●●●●

●

●

●

●●●●●●

●●

●●●●●●●●●●●●

●
●

●●●●

●

●●●●●●●●●●●●●●

●

●●

●
●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●●●●●●●●●●

●

●●●●

●
●

●●●●●

●
●

●●●
●●●
●●●●●●●
●●●
●●
●
●●
●

●

●
●
●●●●●
●●

●
●●●●
●●●
●
●
●●

●

●
●●
●
●●●●●
●
●
●

●

●●●●●
●●
●●
●●
●
●●●

●

●
●
●
●

●●
●●

●
●●

●

●●●
●
●●●●
●●●
●
●
●●●●●

●

●●
●
●

●
●
●

●

●●●●●●●●●
●●

●

●
●●●

●

●
●
●●
●●
●●

●●

●
●

●

●●●
●

●●
●
●

●

●

●

●

●

●

●
●
●
●●●
●
●●
●
●

●●

●

●

●

●

●

●

●

●

●●●●

●
●●

●

●
●●
●
●●●

●

●●
●

●
●
●●
●●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●
●
●
●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●●
●●
●

●●

●

●

●

●
●

●
●

●●
●
●

●

●●

●
●●

●

●

●

●
●
●

●

●

●

●●
●●

●
●●●●●
●

●●●●
●●●●
●●●
●●
●●●
●
●
●●
●●●
●●

●●●

●

●●
●
●
●●●
●●●●●●●
●●●
●●

●

●●●●
●
●●
●
●●
●
●●
●●●
●●
●
●
●●●●
●

●●●●●
●
●
●●
●●
●
●
●●
●
●●●●
●
●
●●●

●
●●●
●
●●
●
●

●●●

●
●
●●
●●
●
●●
●●●
●
●
●
●
●
●

●
●

●

●

●

●

●
●
●●

●
●
●

●●

●
●

●●

●

●
●●
●
●

●●●
●

●
●

●
●●

●

●

●
●
●
●
●
●●●

●

●

●

●

●●●

●

●

●

●

●
●
●●●
●●●

●

●

●●

●

●
●●

●

●
●

●

●

●●
●●●

●

●

●●

●

●

●

●

●●
●●

●
●
●●
●●
●●
●
●

●
●
●
●●

●●

●

●

●
●
●

●●
●

●●●
●●

●

●

●

●●●

●●

●●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●●

●

●
●
●

●
●●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●●●

●●

●

●

●

●●
●
●●
●
●●

●

●

●

●

●
●●●

●

●●

●

●
●
●

●

●

●

●
●●

●

●

●
●●●●●

●

●

●

●●

●

●

●●
●

●

●●

●

●
●

●

●

●●●●
●
●

●

●

●

●

●

●

●
●●
●●●●●●
●●
●●
●
●
●
●

●●

●

●
●●●●
●

●
●
●●●
●
●●
●
●
●●●
●

●

●

●
●●
●●●●●
●
●

●
●
●●●
●
●●

●

●●
●
●
●●●●
●

●

●
●
●

●●
●●

●●
●●

●

●
●●●
●●

●

●●
●
●
●
●
●
●
●
●
●

●

●●
●

●
●●
●
●
●

●
●●●●●
●
●

●
●
●
●
●

●
●

●

●
●●
●●
●
●
●

●●●●●

●

●●●●●

●

●

●

●

●●●●

●

●

●

●●●●●●

●

●●●●

●

●

●

●

●●●●

●
●

●●●●●

●

●●●●●

●

●

●

●●●●●●

●●

●

●

●●●●●

●

●●●

●

●●●●●●●●●●●●

●●
●

●●●

●

●●

●

●●●●●

●

●

●

●

●●●●●●●●

●

●

●

●●

●

●●●●●●

●

●●●●

●

●●

●

●●

●

●

●
●
●
●●●●
●
●
●

●

●●●●●
●●●●●●
●

●
●●
●●
●
●
●●
●

●
●●
●
●
●
●●●
●
●●
●
●●●
●●●
●
●
●
●
●●

●
●●
●
●●●●
●●
●●●
●

●
●
●

●
●●

●
●●
●
●

●

●
●

●

●
●●●●
●
●
●●●
●
●●●
●●
●
●
●
●
●
●●
●
●
●

●

●
●
●●●●●●●●●
●
●
●●
●

●●
●
●
●

●
●●
●

●

●

●
●

●●
●●
●●
●
●

●

●

●

●
●

●

●●●

●

●●●

●●
●
●
●
●
●
●●●

●

●●

●

●

●

●
●●
●●
●

●

●●

●

●

●

●

●●
●
●
●●●●

●

●●
●

●

●
●
●●

●

●
●
●
●
●

●
●

●

●
●

●

●

●

●●●

●

●●

●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●
●●

●
●

●

●
●
●

●
●
●●
●
●
●
●

●
●

●

●
●
●

●

●

●

●

●

●
●

●●

●
●

R² = 97.55%

libxml zlib

libcap libpng

freetype json

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
4

10
6

10
8

10
2

10
4

10
6

10
8

10
2

10
4

10
6

10
8

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
2

10
4

10
6

10
8

10
−8

10
−6

10
−4

10
−2

10
0

10
−8

10
−6

10
−4

10
−2

10
0

10
−8

10
−6

10
−4

10
−2

10
0

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−4

10
−2

10
0

10
−4

10
−3

10
−2

10
−1

10
0

Number of generated test inputs n

D
is

c
o
ve

ry
 P

ro
b
a
b
ili

ty
 D

e
lt
a
(n

)

Figure 5: Linear regression of [log(𝑛) ∼ log(Δ(𝑛))] and 𝑅2

goodness-of-fit. Grey dots and black stars show individual

and average values, resp., of discovery probability Δ(𝑛).

and variance when using linear regression to extrapolate effectively

by several orders of magnitude. At the cost of about one million

additional test inputs,9 an extrapolation by two orders of magnitude

to one hundred million test inputs, gives a discovery probability that

is only about one order of magnitude higher than the true discovery

probability, for the average subject. However, we observed for other

data and extrapolation points, that extrapolation underestimates

which is undesirable. Cost, mean bias, and variance are much higher

than for our mean local estimators.

Our empirical results confirm a power law relationship. This

power law relationship suggests that an engineer can extra-

polate discovery probability by orders of magnitude with high

accuracy. It also suggests that anywhere throughout the fuzzing

campaign, if the engineer wants to reduce the residual risk by a

factor of 1/𝑥 , she just needs the fuzzer to generate 𝑐 · 𝑥 more

test cases, where 𝑐 is a constant.

7 THREATS TO VALIDITY

As for any empirical study, there are various threats to the validity

of our results and conclusions. One concern is external validity,

i.e., the degree to which our findings can be generalized to and

across other subjects and tools. To mitigate this concern, we de-

fined selection criteria and chose subjects from a well-known fuzzer

benchmark according to these criteria (Sec. 4.2). Another concern is

internal validity, i.e., the degree to which our study minimizes sys-

tematic error. Firstly, to mitigate spurious observations due to the

randomness of the fuzzers and to gain statistical power, we repeated

each experiment 20 times and report average values. Secondly, our

evaluation scripts may contain errors. To facilitate scrutiny and

reproducibility, we make our scripts and data available.

9The additional test inputs must be generated in a blackbox manner to measure
discovery probability; cf. Section 5.3.

8 RELATED WORK

Interest in assessing the confidence that a testing technique inspires

in the correctness of a tested program dates all the way back to

the 1980’s [4, 7, 12, 27, 28]. In this stream of works, authors com-

pared, both probabilistically and experimentally, the confidence

inspired by a whitebox testing approach (called partition testing)

and blackbox testing approach (called random testing). However,

they were mostly interested in theoretical properties, such as effec-

tiveness [28] or efficiency [4], rather than practical ways to measure

confidence or its complement: residual risk.

Techniques to measure residual risk were proposed more re-

cently for whitebox and blackbox fuzzing.Whitebox fuzzing uses

symbolic execution to systematically enumerate the paths of a pro-

gram. To quantify residual risk in whitebox fuzzing campaigns, it

was proposed to apply model counting to the path conditions of

the explored paths [8ś10]. To quantify residual risk in blackbox

campaigns, it was proposed to employ statistical estimators, such

as Good-Turing or Laplace [1, 15, 17, 20, 31]. However, in our eval-

uation for greybox campaigns, we find that those estimators are

negatively biased when directly applied to greybox campaigns. In

contrast to earlier works, we analyze the adaptive bias and propose

two classes of estimators that overcome adaptive bias.

We are concerned with the residual risk that a bug still exists

in a program implementation given an ongoing greybox campaign.

In parallel, there exists a large body of work on quantifying the

general reliability of a software system [16]. However, as Filieri et

al. [8] recently noted, the proposed approaches are defined on the

design- and architectural level rather than on the program itself.

9 DISCUSSION

The decision when to stop fuzzing has always been guesswork. How

do we know if the next generated input would not suddenly expose

an error? We are excited that we can provide the first answers

for greybox fuzzing. This question is highly practical. For instance,

Fuzzbuzz,10 a company which offers fuzzing as a service, reached

out and provided feedback on earlier versions of this draft. Fuzzbuzz

is currently developing an estimation feature for their product

which takes inspiration from our residual risk estimation research.

The key idea of residual risk estimation is to model software test-

ing as a sampling process and use statistical methods to estimate

the probability that a bug exists that has not yet been found. Once

the risk falls below a certain threshold, it becomes impractical to

continue the campaign. At this point, you can stop the campaign

and change your setup, e.g., by adding a new harness. Our estima-

tors can also be used to manage a resource budget in large-scale

continuous fuzzing platforms by automatically terminating cam-

paigns whose residual risk dropped below the given threshold. For

the first time, we have a handle on adaptive bias in greybox fuzzing

which provides several avenues for future work.

ACKNOWLEDGMENT

We are thank Andrei Serban of Fuzzbuzz for his valuable feedback

on an earlier version of this draft. This work was partly funded by

the Australian Research Council (DE190100046). This research was

supported by use of the Nectar Research Cloud.

10https://fuzzbuzz.io

240

https://fuzzbuzz.io

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Marcel Böhme, Danushka Liyanage, and Valentin Wüstholz

REFERENCES
[1] Marcel Böhme. 2018. STADS: Software Testing as Species Discovery. ACM

Transactions on Software Engineering and Methodology 27, 2, Article 7 (June 2018),
52 pages. https://doi.org/10.1145/3210309

[2] Marcel Böhme and Brandon Falk. 2020. Fuzzing: On the exponential cost of
vulnerability discovery. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 713ś724. https://doi.org/10.1145/3368089.3409729

[3] Marcel Böhme, Valentin Manès, and Sang Kil Cha. 2020. Boosting Fuzzer Effi-
ciency: An Information Theoretic Perspective. In Proceedings of the 14th Joint
meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE). 678ś689.
https://doi.org/10.1145/3368089.3409748

[4] Marcel Böhme and Soumya Paul. 2016. A Probabilistic Analysis of the Efficiency
of Automated Software Testing. IEEE Transactions on Software Engineering 42, 4
(April 2016), 345ś360. https://doi.org/10.1109/TSE.2015.2487274

[5] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2017. Coverage-
based Greybox Fuzzing as Markov Chain. IEEE Transactions on Software Engi-
neering (2017), 489ś506. https://doi.org/10.1109/TSE.2017.2785841

[6] Anne Chao and Robert K. Colwell. 2017. Thirty years of progeny from Chao’s
inequality: Estimating and comparing richness with incidence data and incom-
plete sampling. Statistics and Operations Research Transactions 41, 1 (2017), 3ś54.
https://doi.org/10.2436/20.8080.02.33

[7] Joe W. Duran and Simeon C. Ntafos. 1984. An Evaluation of Random Testing.
IEEE Transactions of Software Engineering 10, 4 (July 1984), 438ś444. https:
//doi.org/10.1109/TSE.1984.5010257

[8] Antonio Filieri, Corina S. Păsăreanu, andWillem Visser. 2013. Reliability Analysis
in Symbolic Pathfinder. In Proceedings of the 2013 International Conference on Soft-
ware Engineering (ICSE ’13). 622ś631. https://doi.org/10.5555/2486788.2486870

[9] Antonio Filieri, Corina S. Păsăreanu, Willem Visser, and Jaco Geldenhuys. 2014.
Statistical Symbolic Execution with Informed Sampling. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE 2014). Association for Computing Machinery, New York, NY, USA, 437ś448.
https://doi.org/10.1145/2635868.2635899

[10] Jaco Geldenhuys, Matthew B. Dwyer, and Willem Visser. 2012. Probabilistic
Symbolic Execution. In Proceedings of the 2012 International Symposium on Soft-
ware Testing and Analysis (ISSTA 2012). 166ś176. https://doi.org/10.1145/2338965.
2336773

[11] I. J. Good. 1953. The Population Frequencies of species and the estimation of
population parameters. Biometrika 40 (1953), 16ś264.

[12] Richard G. Hamlet and Ross Taylor. 1990. Partition Testing Does Not Inspire
Confidence. TSE 16, 12 (1990), 1402ś1411. https://doi.org/10.1109/32.62448

[13] Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency.
The annals of mathematical statistics 22, 1 (1951), 79ś86.

[14] LibFuzzer. 2019. LibFuzzer: A library for coverage-guided fuzz testing. http:
//llvm.org/docs/LibFuzzer.html. Accessed: 2020-08-26.

[15] Bev Littlewood and David Wright. 1997. Some Conservative Stopping Rules for
the Operational Testing of Safety-Critical Software. TSE 23, 11 (1997), 673ś683.
https://doi.org/10.1109/32.637384

[16] Michael R Lyu et al. 1996. Handbook of software reliability engineering. Vol. 222.
IEEE computer society press CA.

[17] Keith W. Miller, Larry J. Morell, Robert E. Noonan, Stephen K. Park, David M.
Nicol, Branson W. Murrill, and Jeffrey M. Voas. 1992. Estimating the Probability
of Failure When Testing Reveals No Failures. TSE 18, 1 (1992), 33ś43. https:
//doi.org/10.1109/32.120314

[18] Alon Orlitsky and Ananda Theertha Suresh. 2015. Competitive Distribution Esti-
mation: Why is Good-Turing Good. In Advances in Neural Information Processing
Systems 28. 2143ś2151. https://doi.org/10.5555/2969442.2969479

[19] Herbert E. Robbins. 1968. Estimating the Total Probability of the Unobserved
Outcomes of an Experiment. Annals of Mathematical Statistics 39, 1 (02 1968),
256ś257. https://doi.org/10.1214/aoms/1177698526

[20] M. Stoelinga andM. Timmer. 2009. Interpreting a Successful Testing Process: Risk
and Actual Coverage. In 2009 Third IEEE International Symposium on Theoretical
Aspects of Software Engineering. 251ś258. https://doi.org/10.1109/TASE.2009.26

[21] A. B. Wagner, P. Viswanath, and S. R. Kulkarni. 2006. Strong Consistency of the
Good-Turing Estimator. In 2006 IEEE International Symposium on Information
Theory. 2526ś2530. https://doi.org/10.1109/ISIT.2006.262066

[22] Website. 2020. FuzzBench: A fuzzer benchmarking platform. https://github.com/
google/fuzzbench. Accessed: 2020-08-26.

[23] Website. 2021. aflplusplus/aflplusplus: Version ++3.00c (release). https://github.
com/AFLplusplus/AFLplusplus/releases/tag/3.0c. (Accessed on 02/24/2021).

[24] Website. 2021. google/clusterfuzz: Scalable fuzzing infrastructure. https://github.
com/google/clusterfuzz. (Accessed on 02/24/2021).

[25] Website. 2021. google/oss-fuzz: OSS-Fuzz - continuous fuzzing for open source
software. https://github.com/google/oss-fuzz. (Accessed on 02/24/2021).

[26] Website. 2021. microsoft/onefuzz: A self-hosted Fuzzing-As-A-Service platform.
https://github.com/microsoft/onefuzz. (Accessed on 02/24/2021).

[27] E. J. Weyuker and B. Jeng. 1991. Analyzing partition testing strategies. IEEE
Transactions on Software Engineering 17, 7 (July 1991), 703ś711. https://doi.org/
10.1109/32.83906

[28] E. J. Weyuker and T. J. Ostrand. 1980. Theories of Program Testing and the
Application of Revealing Subdomains. IEEE Transactions of Software Engineering
6, 3 (May 1980), 236ś246. https://doi.org/10.1109/TSE.1980.234485

[29] Michal Zalewski. 2019. AFL: American Fuzzy Lop Fuzzer. http://lcamtuf.
coredump.cx/afl/technical_details.txt. Accessed: 2019-02-20.

[30] Cun-Hui Zhang and Zhiyi Zhang. 2009. Asymptotic normality of a nonparametric
estimator of sample coverage. Annals of Statistics 37, 5A (10 2009), 2582ś2595.
https://doi.org/10.1214/08-AOS658

[31] X. Zhao, B. Littlewood, A. Povyakalo, and D. Wright. 2015. Conservative claims
about the probability of perfection of software-based systems. In 2015 IEEE 26th
International Symposium on Software Reliability Engineering (ISSRE). 130ś140.
https://doi.org/10.1109/ISSRE.2015.7381807

241

https://doi.org/10.1145/3210309
https://doi.org/10.1145/3368089.3409729
https://doi.org/10.1145/3368089.3409748
https://doi.org/10.1109/TSE.2015.2487274
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.2436/20.8080.02.33
https://doi.org/10.1109/TSE.1984.5010257
https://doi.org/10.1109/TSE.1984.5010257
https://doi.org/10.5555/2486788.2486870
https://doi.org/10.1145/2635868.2635899
https://doi.org/10.1145/2338965.2336773
https://doi.org/10.1145/2338965.2336773
https://doi.org/10.1109/32.62448
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1109/32.637384
https://doi.org/10.1109/32.120314
https://doi.org/10.1109/32.120314
https://doi.org/10.5555/2969442.2969479
https://doi.org/10.1214/aoms/1177698526
https://doi.org/10.1109/TASE.2009.26
https://doi.org/10.1109/ISIT.2006.262066
https://github.com/google/fuzzbench
https://github.com/google/fuzzbench
https://github.com/AFLplusplus/AFLplusplus/releases/tag/3.0c
https://github.com/AFLplusplus/AFLplusplus/releases/tag/3.0c
https://github.com/google/clusterfuzz
https://github.com/google/clusterfuzz
https://github.com/google/oss-fuzz
https://github.com/microsoft/onefuzz
https://doi.org/10.1109/32.83906
https://doi.org/10.1109/32.83906
https://doi.org/10.1109/TSE.1980.234485
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://doi.org/10.1214/08-AOS658
https://doi.org/10.1109/ISSRE.2015.7381807

	Abstract
	1 Introduction
	2 Motivating Example
	3 Probabilistic Analysis
	3.1 Background
	3.2 Residual Risk and Discovery Probability
	3.3 Adaptive Bias

	4 Our Estimators of Discovery Probability
	4.1 Laplace Estimator
	4.2 Good-Turing Estimator
	4.3 Reset Estimators
	4.4 Mean Local Estimators

	5 Experimental Setup
	5.1 Research Questions
	5.2 Fuzzer, Species, and Subject Programs
	5.3 Experiment Methodology
	5.4 Measures of Estimator Performance
	5.5 Infrastructure

	6 Experimental Results
	6.1 RQ1. Performance of Classical Estimators
	6.2 RQ2. Performance of Our Estimators
	6.3 RQ3. Performance of Extrapolation

	7 Threats to Validity
	8 Related Work
	9 Discussion
	References

