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ABSTRACT

We present counterintuitive results for the scalability of fuzzing.
Given the same non-deterministic fuzzer, finding the same bugs

linearly faster requires linearly more machines. For instance, with
twice the machines, we can find all known bugs in half the time. Yet,
finding linearly more bugs in the same time requires exponentially
more machines. For instance, for every new bug we want to find
in 24 hours, we might need twice more machines. Similarly for
coverage. With exponentially more machines, we can cover the
same code exponentially faster, but uncovered code only linearly
faster. In other words, re-discovering the same vulnerabilities is
cheap but finding new vulnerabilities is expensive. This holds even
under the simplifying assumption of no parallelization overhead.

We derive these observations from over four CPU years worth
of fuzzing campaigns involving almost three hundred open source
programs, two state-of-the-art greybox fuzzers, four measures of
code coverage, and two measures of vulnerability discovery. We
provide a probabilistic analysis and conduct simulation experiments
to explain this phenomenon.
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1 INTRODUCTION

Fuzzing has become one of the most successful vulnerability discov-
ery techniques. For instance, Google has been continuously fuzzing
its own software and open source projects on more than 25,000 ma-
chines since December 2016 and found about 16k bugs in Chrome
and 11k bugs in over 160 OSS projectsÐonly by fuzzing [25].

Those bugs that are found and reported are fixed. Hence, less new
bugs are found with the available resources. It would be reasonable
to increase the available resources to maintain a good bug finding
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Figure 1: Each vuln. discovery requires exponentially more

machines (left). Yet, exponentially more machines allow to

find the same vulnerabilities exponentially faster (right).

rate. So then, how is an increase in the amount of available resources
related to an increase in vulnerability discovery?

Suppose Google has stopped finding new bugs when fuzzing
their software systems on 25 thousand machines for one month.
So, Google decides to run their fuzzers on 100x more (2.5 million)
machines for one month, finding five (5) new critical bugs. Once
these are fixed, how many unknown critical bugs would an attacker
find in a month that was running the same fuzzer setup on 5million

machines? What if the attacker had 250 million machines? We
propose an empirical law that would suggest that the attacker with
2x more (5 million) machines finds an unknown critical bug with
∼15% likelihood or less while the attacker with 100x more (250
million!) machines only finds five (5) unknown critical bugs or less.

We conducted fuzzing experiments involving over three hundred
open source projects (incl. OSS-Fuzz [15], FTS [19]), two popular
greybox fuzzers (LibFuzzer [12] and AFL [26]), four measures of
code coverage (LibFuzzer’s feature and branch coverage as well as
AFL’s path and map/branch coverage) and two measures of vulner-
ability discovery (#known vulns. found and #crashing campaigns).
From the observations, we derive empirical laws, which are addi-
tionally supported and explained by our probabilistic analysis and
simulation experiments. An empirical law is a stated fact that is
derived based on empirical observations (e.g., Moore’s law).

We measure the cost of vulnerability discovery as the number
of łmachinesž required to discover the next vulnerability within a
given time budget. The number of machines is merely an abstraction
of the number of inputs generated per minute. Twice the machines
can generate twice the inputs per minute. Conceptually, one fuzzing
campaign remains one campaign where inputs are still generated
sequentiallyÐonly #machines times as fast. We assume absolutely
no synchronization overhead. For mutation-based fuzzers, any seed
that is added to the corpus is immediately available to all other
machines. Note that this gives us a lower bound on the cost of vul-
nerability discovery: Our analysis is optimistic. If we took synchro-
nization overhead into account, the cost of vulnerability discovery
would further increase with the number of physical machines.
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Our first empirical law suggests that a non-deterministic fuzzer
that generates exponentially more inputs per minute discovers
only linearly more vulnerabilities within a given time budget. This
means that (a) given the same time budget, the cost for each new
vulnerability is exponentially more machines (cf. Fig. 1.left) and
(b) given the same #machines, the cost of each new vulnerability
is exponentially more time. In fact, we can show this also for the
coverage of a new program statement or branch, the violation of a
new assertion, or any other discrete program property of interest.

Our second empirical law suggests that a non-deterministic
fuzzer which generates exponentially more inputs per minute dis-
covers the same number of vulnerabilities also exponentially faster
(cf. Fig. 1.right). This means if we want to find the same set of
vulnerabilities in half the time, our fuzzer instance only needs to
generate twice as many inputs per minute (e.g., on 2x #machines).

Given the same time budget and non-deterministic fuzzer, an at-
tacker with exponentially more machines discovers a given known

vulnerability exponentially faster but some unknown vulnerability
only linearly faster. Similarly, with exponentially more machines,
the same code is covered exponentially faster, but uncovered code
only linearly faster. In other words, re-discovering the same vulner-
abilities (or achieving the same coverage) is cheap but finding new
vulnerabilities (or achieving more coverage) is expensive. This is
under the simplifying assumption of no synchronization overhead.

We make an attempt at explaining our empirical observations by
probabilistically modelling the fuzzing process. Starting from this
model, we conduct simulation experiments that generate graphs
that turn out quite similar to those we observe empirically. We hope
that our probabilistic analysis sheds some light on the scalability of
fuzzing and the cost of vulnerability discovery: Why is it expensive
to cover new code but cheap to cover the same code faster?

2 EMPIRICAL SETUP

2.1 Research Questions

RQ.1 Given the same non-deterministic fuzzer and time-budget,
what is the relationship between the number of available
machines and the number of additional species discovered?

RQ.2 Given the same non-deterministic fuzzer and time-budget,
what is the relationship between the number of available
machines and the time to discover the same number of species?

RQ.3 Given the same non-deterministic fuzzer and time-budget,
what is the relationship between the number of available ma-
chines and the probability to discover a given (set of) species?

We call our dependent variables as łspeciesž (explained in Sec. 2.4).

2.2 Non-Deterministic Fuzzers

For our experiments, we use the twomost popular non-deterministic,
coverage-based greybox fuzzers, LibFuzzer and AFL. Both fuzzers
recieve different kinds of coverage-feedback and implement dif-
ferent coverage-guided heuristics. LibFuzzer is a unit-level fuzzer
while AFL is a system-level fuzzer.

LibFuzzer [12] is a state-of-the-art greybox fuzzer developed
at Google and is fully integrated into the FTS and OSS-Fuzz bench-
marks. LibFuzzer is a coverage-based greybox fuzzer which seeks
to cover program łfeaturesž. Generated inputs that cover a new
feature are added to the seed corpus. A feature is a combination of

the branch that is covered and how often it is covered. For instance,
two inputs (exercising the same branches) have a different feature
set if one exercises a branch more often. Hence, feature coverage
subsumes branch coverage. LibFuzzer aborts the fuzzing campaign
as soon as the first crash is found or upon expiry of a set time-
out. In our experiments, we leverage the default configuration of
LibFuzzer if not otherwise required by the benchmark.

AFL [26] is one of the most popular greybox fuzzers. In contrast
to LibFuzzer, AFL does not require a specific fuzz driver and can be
directly run on the command line interface (CLI) of a program. AFL
is a coverage-based greybox fuzzer which seeks to maximize branch
coverage. Generated inputs that exercise a new branch, or the same
branch sufficiently more often, are added to the seed corpus. In
AFL terminology, the number of explored łpathsž is actually the
number of seeds in the seed corpus.

2.3 Benchmarks and Subjects

We chose a wide range of open-source projects and real-world
benchmarks. Together, we generated more than four CPU years
worth of data by fuzzing almost three hundred different open source
programs from various domains.

OSS-Fuzz [15] (263 programs, 58.3M LoC, 6 hours, 4 repetitions)
is an open-source fuzzing platform developed by Google for the
large-scale continuous fuzzing of security-critical software. At the
time of writing OSS-Fuzz featured 1,326 executable programs in
176 open-source projects. We selected 263 programs totaling 58.3
million lines of code by choosing subjects that did not crash or reach
the saturation point in the first few minutes and that generated
more than 1,000 executions per second. Even for the chosen subjects,
we noticed that the initial seed corpora provided by the project
are often for saturation: Feature discovery has effectively stopped
shortly after the beginning of the campaign. It does not give much
room for further discovery. Hence, we removed all initial seed
corporas. We ran LibFuzzer for all programs for 6 hours and, given
the large number of subjects, repeated each experiment 4 times.

FTS [20] (25 programs, 2.0M LoC, 6 hours, 20 repetitions) is a stan-
dard set of real-world programs used by Google to evaluate fuzzer
performance. The subjects are widely-used implementations of file
parsers, protocols, and data bases (e.g., libpng, openssl, and sqlite),
amongst others. Each subject contains at least one known vulnera-
bility (CVE), some of which require weeks to be found. The Fuzzer
Test Suite (FTS) allows to compare the coverage achieved as well as
the time to find the first crash on the provided subjects. When re-
porting coverage results, we removed those programs where more
than 15% of runs crash (leaving 13 programs with 1.2M LoC). As
LibFuzzer aborts when the first crash is found, the coverage re-
sults for those subjects would be unreliable. We set a 8GB memory
limit and ran LibFuzzer for 6 hours. To gain statistical power, we
repeated each experiment 20 times.

Open-Source (6 programs, 6.1M LoC, 96 hours, 10 repetitions)
is a set of open-source programs from a wide range of domains,
including a network sniffer (wireshark) and a video and audio codec
library (ffmpeg). We ran the default configuration of AFL on all
programs for 96 hours, except for libxml2, where we ran AFL for
90 days, i.e., 2160 hours. We repeated each experiment 10 times.

750



Fuzzing: On the Exponential Cost of Vulnerability Discovery ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

2.4 Variables and Measures

We explore several definitions of species as listed below. We collect
this information from the standard output of LibFuzzer and the
plot_data file of AFL. We vary one indepent variable (#machines)
and measure six dependent variables.

#Machines (#cores, #hyperthreads) is an abstraction of the num-
ber of inputs the fuzzer can generate per minute. Twice the ma-
chines can generate twice the inputs per minute. Conceptually, this
is still a single fuzzing campaign where inputs are still generated
sequentially. We assume absolutely no synchronization overhead
and that any discovered seed, added to the corpus, is immediately

available to all other machines. Note that this gives us a lower bound
on the cost of vulnerability discovery: Our analysis is optimistic.
If we took synchronization overhead into account, the cost of vul-
nerability discovery would further increase with the number of
physical machines.

Data scaling. In order to vary the number of available machines,
we scale our existing data. For OSS-Fuzz and FTS, we measured
our dependent variables in over 3,000 fuzzing campaigns of 6 hours.
For Open-Source, we measured our dependent variables in 50 cam-
paigns of 7 days and 10 campaigns of 3 months. Again, we assume
that for each fuzzing campaign twice the machines can generate
twice the inputs per minute with zero synchronization overhead.
Hence, we employ a simple scaling strategy: We first make sure
that time starts from zero at the beginning of the fuzzing campaign.
Then, given a scaling factor 2x , we divide each time stamp by 2x .
We make no other modifications.Wemake data and scripts available

here: https://doi.org/10.6084/m9.figshare.11911287.
#Vulnerabilities (FTS). FTS consists of 25 programs, each con-

taining a known vulnerability. For each run of LibFuzzer on each
program, we measure the time needed and number of test cases
generated to discover the corresponding vulnerability, i.e., when
the first crash is reported. From this information, we can compute
the average number of vulnerabilities found at any given time.

#Crashing campaigns (LibFuzzer). When the program crashes
during fuzzing, i.e., a bug is found, then the entire fuzzing campaign
crashes. This is the default behavior of LibFuzzer. From the time
stamp of the crash, we can compute the total number of campaigns
that have crashed at any give time.

#Features (LibFuzzer). The classic coverage-feedback for Lib-
Fuzzer is the feature (reported as ft:). The LLVM documentation
explains: LibFuzzer łuses different signals to evaluate the code
coverage: edge coverage, edge counters, value profiles, indirect
caller/callee pairs, etc. These signals combined are called featuresž.

#Edges (LibFuzzer). In addition to the number of features, Lib-
Fuzzer also reports the number of edges covered (reported as cov:).
The proportion of covered edges versus the total number of edges
gives the classic branch coverage.

#Seeds (AFL). The classic measure of progress for AFL is the
number of seeds added to the corpus (reported as paths_total). It
is often reported as the measure of fuzzer effectiveness [5]. How-
ever, it has been argued that the number of seeds added is strictly
dependent on the order in which the seeds are added [11]. Hence,
we also provide the number of branches covered (#branches) as
another measure of fuzzer effectiveness.

R^2=98.83% R^2 (F)=99.87%

R^2 (E)=99.60%
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Figure 2: (#Crashes, #Features, #Edges@OSS-Fuzz). Average

number of additional species discovered when fuzzing all

263 programs in OSS-Fuzz simultaneously with LibFuzzer

for 45 minutes as a function of available machines (4 reps).

%Map Coverage (AFL). Another measure of progress for the
AFL greybox fuzzer is map coverage (reported as map_size). AFL
receives coverage feedback via a shared memory map. For each
branch that is exercised, the coverage instrumentation writes to an
index in this map. The percentage indices that are set in this map
gives the map coverage.

2.5 Setup and Infrastructure

All experiments for FTS were conducted on a machine with Intel(R)
Xeon(R) Platinum 8170 2.10GHz CPUs with 104 cores and 126GB
of main memory. All experiments for OSS-Fuzz were conducted on
a machine with Intel(R) Xeon(R) CPU E5-2699 v4 2.20GHz with a
total of 88 cores and 504GB of main memory. All experiments for
Open Source were conducted on Intel(R) Xeon(R) CPU E5-2600 2.6
GHz with a total of 40 cores and 64GB of main memory. To ensure a
fair comparison, we always ran all schedules simultaneously (same
workload), each schedule was bound to one (hyperthread) core, and
20% of cores were left unused to avoid interference.

3 EMPIRICAL RESULTS

RQ1. Number of Additional Species Discovered

Given the same non-deterministic fuzzer and time-budget, we inves-
tigate the relationship between the number of available machines
(i.e., the number of inputs generated per minute) and the number
of additional species discovered.

Presentation. For each benchmark and species, we show line
plots (geom_line) of the additional number of species discovered
(linear y-axis) as the number of available machines increases (ex-
ponential x-axis). With each line plot, we show the R2 standard
measure of goodness-of-fit for a linear regression (lm). An R2 of
100% would mean that the linear regression explains all of the vari-
ation, and that all observations fall exactly on the regression line.
We also show the standard error of a linear regression (grey band).

OSS-Fuzz. The results for running LibFuzzer on the almost
three hundred programs in OSS-Fuzz are shown in Figure 2. We can
clearly observe linear increase in the number of additional species
discovered as exponentially more machines become available. In
fact, fitting a linear regression model to the logarithm of the number
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Figure 3: #Vulns, #Features, #Edges @ FTS benchmark.

of machines and the difference in species discovered, we observe a
very high goodness-of-fit of R-squared (R2) greater than 98%.

On the left of Figure 2, we can see that the cost of making one
more fuzzing campaign crash because an error has been found is
exponential. On the right of Figure 2, we can see that the cost of
covering one more feature or one more edge is also exponential. It
is interesting to observe that the slopes of the increase differ. This is
because the number of features is larger than the number of edges.

FTS. The results for running LibFuzzer on the 25 programs in
OSS-Fuzz are shown in Figure 3. Again, we can clearly observe
linear increase in the number of additional species discovered as ex-
ponentially more machines are available. Fitting a linear regression
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(b) #Seeds and %Map Coverage @ Open Source. Average number of additional seeds
added (top two rows) and average percentage map covered (bottom two rows) when
fuzzing all six programs in the Open Source benchmark with AFL for 45 minutes as

the number of available machines increases (10 repetitions).

Figure 4: #Seeds, %Map Coverage @ Open Source.

model to the logarithm of the number of machines and the differ-
ence in species discovered, we observe a very high goodness-of-fit
of R-squared (R2) greater than 97% (except for vorbis).

In terms of the additional number of features covered, for the
average program in the FTS benchmark the R2 measure is 98.1%. In
terms of the additional number of edges covered, for the average
program in the FTS benchmark the R2 measure is 96.9%. Only for
vorbis, the R2-measure is below 95%.

FTS is the only benchmark where we can count the number of
vulnerabilities exposed in a fuzzing campaign of the entire bench-
mark (Figure 3.a). It is interesting to observe how the number of
machines must increase in order to find the next vulnerability. Each
new vulnerability found comes at an exponential cost.
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Open Source. The results for running AFL on the six programs
in the Open Source benchmark are shown in Figure 4. In terms of
additional seeds added (Figure 4.b, top rows), we observe a linear
increase as exponentially more machines are available for three
out of six programs (R2 > 97%). For the remaining three programs,
an exponential increase in the number of machines cannot even
achieve a linear increase in the number of additional seeds added,
making it even more expensive. In terms of additionalmap coverage

(Figure 4.b, bottom rows), we mostly observe a sub-linear behavior
where adding exponentially more machines cannot even achieve a
linear increase in the number of additional seeds added. For wire-
shark, there is no difference between the map coverage achieved
by eight machines in 45 minutes and the map coverage achieved by
64 machines in the same time. However, for LibXML2 we observe
an unexpected increase.

We investigated the sudden increase in the additional map cov-
erage achieved in LibXML2 by continuing the fuzzing campaigns
for three months, which corresponds to running the fuzzer on 2880
machines for 45 minutes (Figure 4.a). In terms of both, additional
seeds added and additional map coverage, we identified two linear
phases. In each phase, the goodness-of-fit of a linear regression
model is R2 > 99%.

⋆ First empirical law. Our results from over four CPU years

worth of fuzzing involving almost three hundred open source pro-

grams, two state-of-the-art greybox fuzzers, four measures of code

coverage, and two measures of vulnerability discovery suggest that

a non-deterministic fuzzer that generates exponentially more inputs

per minute discovers only linearly more new species or less.

RQ2. Time to Discover the Same #Species

Given the same non-deterministic fuzzer and time-budget, we inves-
tigate the relationship between the number of available machines
(i.e., the number of inputs generated per minute) and the time to
discover the same number of species.

Presentation. Suppose, when running the fuzzer for six hours
on a single machine, the fuzzer discovers S1 many species. We show
line plots (geom_line) of the reduction in time for that fuzzer to
discover the same number of species S1 (exponential y-axis) as the
number of available machines increases, i.e., the number of inputs
that can be generated per minute increases (exponential x-axis).
Figure 5 only shows the plots for some benchmarks. The other plots
look very similar and provide no extra information.

Results. The results for running LibFuzzer on the almost three
hundred programs in OSS-Fuzz and the six programs in FTS are
shown in Figure 5. We can see that running LibFuzzer on 512
machines instead of one machine reduces the time to make 166
fuzzing campaigns crash from five hours and fifty five minutes
(5h55m) to under one minute (<00h01m; Fig. 5.a-left). Similarly,
running LibFuzzer on 512machines instead of onemachine reduces
the average time to expose the same vulnerabilities in FTS from five
hours and fourty minutes (5h40m) to under one minute (<00h01m;
Fig. 5.a-right). Together, 512 machines are also sufficient to achieve
the same coverage in under one minute as one machine achieves in
six hours (Fig. 5.b). This is reasonable: If LibFuzzer can generate
512 times more inputs per minute, then LibFuzzer can make the
same progress in 1/512-th of the time.
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(a) Time to expose the same number of vulnerabilities in OSS-Fuzz (left) and the same
number of crashing campaigns in FTS (right) as a single machine in six hours if

exponentially more machines were available.
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(b) Time to achieve the same coverage as running the fuzzer on a single machine for
six hours if the fuzzer would run on exponentially more machines.

Figure 5: #Vulns, #Features@FTS and #Crashes@OSS-Fuzz.

⋆ Second empirical law. Our results suggest that a non-deter-

ministic fuzzer that generates exponentially more inputs per minute

discovers the same number of species also exponentially faster.

RQ3. Probability to Discover Given Species

Given the same non-deterministic fuzzer and time-budget, we inves-
tigate the relationship between the number of available machines
(i.e., the number of inputs generated per minute) and the probability
to discover a given (set of) species.

Presentation. We estimate the probability of an event to occur
in a given time budget and for a given number of machines as the
proportion of runs where the event occurs in the given time budget
for the given number of machines. For instance, if 75% of runs have
discovered a given vulnerability in the given time budget using
sixteen machines, then the probability to discover the vulnerability
within the time budget using sixteen machines is 75%. We show
line plots (geom_line) of the probability that the fuzzer discovers
a given (set of) species (linear y-axis) as the number of available
machines increases, i.e., the number of inputs that can be generated
per minute increases (exponential x-axis).

Results. The results for the probability to discover a vulnera-
bility in the FTS benchmark by running LibFuzzer for up to six
hours are shown in Figure 6. Our first observation is that the plots
have a very similar shape to that in Figure 8.left which shows the
result of our probabilistic analysis of the third empirical law for
non-deterministic blackbox fuzzers. For the bottom three rows, the
probability remains close to zero at the beginning, increases at an
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Figure 6: Probability that the vulnerability has been discov-

ered in twenty seconds given the available number of ma-

chines (solid line). Average number of machines required to

find the vulnerability in twenty seconds (dashed line).

ever faster rate until it reaches the dashed line (i.e., the average
#machines where the vulnerability is discovered), slows down again
until it reaches almost one, and then remains close to one for the
remainder. In fact, the discovery probability curve appears to be
very similar to a sigmoid curve.

Our second observation is that for different vulnerabilities of-
ten a different average number of machines are required to expect
vulnerability discovery (dashed line). The harfbuzz and lcms vul-
nerabilities are never discovered while the c-ares vulnerability has
been discovered in all twenty runs in under twenty seconds already
on a single machine (top row). We confirmed that adding up the
individual discovery probabilities yields a linear increase in the
number of vulnerabilities discovered with an exponential increase
in the number of available machines (cf. Figure 3.a & Figure 10).

The results for the probability to cover at least a given number
of features S ′ in the FTS benchmark by running LibFuzzer for up
to six hours are shown in Figure 7. We fixed S ′ arbitrarily as half
the number of features that LibFuzzer covers on one machine in
six hours. This value of S ′ allows us to actually observe a transi-
tion from probability zero to one for most of the subjects. Again,
we make the same observations. Most importantly, the plots look
similar to the sigmoid shape that we have seen for our simulation
results in Figure 8.left.

⋆ Third empirical law. Our results suggest that for a non-

deterministic fuzzer that generates exponentially more inputs per

minute the probability of discovering a given (set of) species seems to

increase exponentially until discovery is expected, whence the rate of

increase slows down and the curve approaches probability one.
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Figure 7: Probability that at least S ′ features are covered

in twenty seconds given the available number of machines

(solid line), where S ′ is half the number of features that Lib-

Fuzzer can cover in six hours on one machine, on average.

We also show the average number of machines needed to

discover at least S ′ features in twenty seconds (dashed line).

4 PROBABILISTIC ANALYSIS

4.1 Probabilistic Model of Fuzzing

We make an attempt at explaining our empirical observations by
probabilistically modelling the fuzzing process. Starting from this
model, we conduct simulation experiments that generate graphs
that turn out quite similar to those we observe empirically. Since
the underlying probabilistic model is straightforward for blackbox
fuzzers, we focus only on the blackbox fuzzing process. Nevertheless,
we hope that our probabilistic analysis sheds some light on our
empirical observations for greybox fuzzing and on the scalability of
non-deterministic fuzzing in general: Why is it expensive to cover
new code but cheap to cover the same code faster?

We borrow the STADS probabilisticmodel of fuzzing fromBöhme
[2]. A non-deterministic fuzzer generates program inputs by sam-
pling with replacement from the program’s input space. Let P be
the program that we wish to fuzz. We call as P’s input spaceDDD the
set of all inputs that P can take. Fuzzing P is a stochastic process

F = {Xn | Xn ∈ DDD}Nn=1 (1)

of sampling N inputs with replacement from the program’s input
space. We call F as fuzzing campaign and a tool that performs F
as non-deterministic blackbox fuzzer. Suppose, we can subdivide the
input spaceDDD into S individual subdomains {Di }

S
i=1 called species.
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Figure 8: Probability Qexp(x) = S(2xn) to discover a given

species within a given time budget as the number of ma-

chines increases exponentially (solid line).We also show the

inflection point x0 ofQexp(x) (grey lines) and an exponential

curve (dashed line) that intersectsQexp(x) at x = 0 and x = x0
and that starts out with the same slope asQexp(x) at x = 0 but
grows slower than Qexp(x) in the interval x ∈ [0,x0]. We let

the probability q that the species has not been discovered on

one machine (x = 0) within the time budget be q = 1 − 10−6,
and the exponential be abx + c where a = 1.03722 × 10−6,
b = 1.95092, and c = −3.722 × 10−8.

An input Xn ∈ F is said to discover species Di if Xn ∈ Di and
there does not exist a previously sampled input Xm ∈ F such that
m < n and Xm ∈ Di (i.e., Di is sampled for the first time). An
input’s species is defined based on the dynamic program properties
that are used as the evaluation criteria of the fuzzer. For instance,
each branch that is exercised by input Xn ∈ DDD can be identified
as a species. The discovery of the new species, i.e., branch, then
corresponds to an increase in branch coverage.

We let pi = P[Xn ∈ Di ] be the probability that Xn belongs to
Di for i : 1 ≤ i ≤ S and t : 1 ≤ n ≤ N . The expected number of
species S(n) discovered by a non-deterministic blackbox fuzzer is

S(n) =

S
∑

i=1

[

1 − (1 − pi )
n
]

= S −

S
∑

i=1

(1 − pi )
n
. (2)

Intuitively, we can understand a non-deterministic blackbox
fuzzer as sampling with replacement from an urn with colored
balls, where each ball can have one or more of S colors. The species
discovery curve S(n) represents the number of colors that we expect
to discover when sampling n balls. Here, a ball is an input while a
ball’s colors are the input’s species.

Fuzzing approaches. We can distinguish a generation-based
and a mutation-based approach [14]. A generation-based fuzzer

generates random inputs from scratch. A mutation-based fuzzer

generates random inputs by modifying existing inputs in a given
seed corpus. A mutation-based fuzzer is non-deterministic, as it
chooses the seed to fuzz, the location in the chosen seed to mutate,
and the mutation operators to apply at the chosen locations all at
random. A greybox fuzzer is a mutation-based fuzzer that adds to the
corpus generated inputs that increase coverage. A grammar-guided

generation-based fuzzer can generate program inputs that are valid
w.r.t. a given grammar by random sampling from that grammar
[10]. A grammar-guided mutation-based fuzzer can generate valid
inputs by parsing a seed as parse tree, randomly mutating the parse
tree, and re-constituting the modified tree [17].

Machines and time budget. We explore two related problems
and show that, under simplifying assumptions, they represent the
same case. Firstly, we explore how the number of species discovered

within a fixed time budget increases as the number of machines

increases. From Equation (2), we know that the number of species
S(n)we expect a non-deterministic blackbox fuzzer to discover after
generating n inputs is the total number of species minus the sum
for each species i of the expected probability that i has not been
discovered after generating n inputs. With 2x times more machines,
we can generate 2x times more inputs per minute, i.e.,

S −

S
∑

i=1

(

(1 − pi )
2x
)n
= S −

S
∑

i=1

(1 − pi )
2xn (3)

= S(2xn) (4)

So, given a time budget, such that the fuzzer running on one ma-
chine can generate exactly n test inputs, if 2x times more machines
were available, S(2xn) − S(n) more species would be discovered.

Secondly, we explore how the number of species discovered on a

single machine increases as the available time budget increases. If
the non-deterministic fuzzer generated 2x more test inputs on the
same machine, S(2xn) − S(n) more species would be discovered.

4.2 Probability to Discover a Given Species

Our first empirical observation is that a non-deterministic fuzzer
that generates exponentially more inputs per minute discovers
only linearly more new species (or less). Let us begin with an in-
vestigation of the special case where we assume that only a single

(interesting) species exists, S = 1. How does the probability to dis-
cover this species increase within a given time budget as the number
of machines (i.e., #inputs per minute) increases? We investigated
this question empirically in Section 3.RQ3 and our observations for
this special case are counterintuitive.

⋆We suggest that a non-deterministic fuzzer that generates ex-

ponentially more inputs per minute also discovers a specific species

with a probability that is exponentially higherÐup to some limit.

In other words, the probability to find a specific species within
a given time increases approximately linearly with the number of
machines (up to some limit). We conduct a probabilistic analysis for
the special case where the fuzzer is blackbox, i.e., for each species,
throughout the campaign the fuzzer has the same probability to
generate an input that belongs to that species. We also identify
exactly where this łlimitž is.

In Figure 8, we see an example of the relationship between the
probability to discover the species and an exponential increase in
the number of available machines (solid line). We also show the
inflection point x0 where the growth starts to decelerate (grey lines),
and an exponential function that intersects the discover probability
curve at x ∈ {0,x0}, starts with the same rate of growth (slope) at
x = 0, and lower-bounds the species discovery curve within the
interval x ∈ [0,x0] (dashed line).

Given a specific species, let p be the probability that the fuzzer
generates an input that discovers the species. We compute the
expected probabilityQ(n) that the fuzzer has discovered the species
as the complement of the probability that the species has not been
discovered using n generated test inputs, Q(n) = 1 − (1 − p)n .

755



ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Marcel Böhme and Brandon Falk

Slower growing exponential: T (x ) = abx + c
q a b c

0.5 1.62488 × 100 1.15933 −1.12488 × 100

1 − 10−1 1.32149 × 10−1 1.64439 −3.21490 × 10−2

1 − 10−2 1.13899 × 10−2 1.83219 −1.38990 × 10−3

1 − 10−4 1.05930 × 10−4 1.92379 −5.93000 × 10−6

1 − 10−6 1.03722 × 10−6 1.95092 −3.72200 × 10−8

1 − 10−8 1.02711 × 10−8 1.96380 −2.71100 × 10−10

Figure 9: Examples of exponential functions T (x) = abx + c

that grow slower in the interval x ∈ [0,x0] than the proba-

bilityQexp(x) of discovering a specific species within a given

time budget if 2x more machines were available where T (x)

intersects Qexp(x) at x ∈ {0,x0} and starts with the same

slope at the beginning of the interval.

Before we show that the discovery probability increases expo-
nentially up to a certain limit as the number of machines increases
exponentially, we will first identify more formally where this łlimitž
is. Clearly, the discovery probability cannot be larger than one. So,
there must be an inflection point. An inflection point is a point of
the curve where the curvature changes its sign. For brevity, we
define two quantities Qexp(x) and q as follows

q = (1 − p)n since p and n are constants (5)

Qexp(x) = 1 − q2
x

(6)

where q is the probability that running the fuzzer on one machine
within a time budget that allows to generate n test inputs has not
discovered the species, and whereQexp(x) gives the probability that
running the fuzzer on 2x machines within the same time budget
has discovered the species.

Inflection point. To find the inflection point, we set the second
derivative of Qexp(x) to 0 and solve for x to find x0.

x0 = log2

(

−
1

log(q)

)

where x0 > 0 if e−1 < q < 1. (7)

Note that the expected probability that the species has been discov-
ered at this inflection point is Qexp(x0) = 1 − e−1.

We can demonstrate that Qexp(x) grows exponentially in the

interval x ∈ [0,x0] by showing that for all q : e−1 < q < 1 and
x : 0 ≤ x ≤ x0, there exists a, b, and c , such that the exponential
functionT (x) = abx + c intersects with Qexp(x) at x ∈ {0,x0}, that

the slopes of T (x) and Qexp(x) are equal at x = 0, i.e., ∂
∂x

(T (x) −

Qexp(x)) = 0 at x = 0, and that Qexp(x) −T (x) ≥ 0 for 0 < x < x0
(i.e., there is no third intersection in the interval).

Figure 9 shows the values for a, b, and c that satisfy these con-
straints for some interesting probabilities q that the species has not
been discovered within the given time budget on one machine.

⋆ Given the probability q that a non-deterministic blackbox fuzzer

has not discovered a given species within a given time budget, an

attacker that runs the same fuzzer in the same time budget on 2x times

more machines, such that x ∈ [0, log2(−1/log(q))], has a probability

Qexp(x) of discovering the species where Qexp(x) grows faster than

an exponential which intersects Qexp(x) at the beginning and end

of the interval and starts with the same slope.

For non-deterministic blackbox fuzzers, an example is shown in
Figure 8. Recall that q = 1 − (1 − p)n , where p is the probability
that the non-deterministic fuzzer generates an input that belongs
to that species and n is the number of test inputs that can be gen-
erated within the given time budget on one machine. While the
probabalistic results are derived from a model for blackbox fuzzing,
they explain the empirical evidence for the two greybox fuzzers in
Section 3.RQ3. The graphs generated from our probabilistic analysis
in Figure 8.left and as a result of our empirical analysis in Figure 6
and 7 are almost identical.

Intuition & consequences. Intuitively, if you buy two, four, or
eight lottery ticketsÐinstead of oneśalso increases your chance of
drawing a winning ticket by a factor of two, four, or eight. Rolling
six dice simultaneously instead of one increases the chance to roll
at least one six by a factor of four. So what does that mean for
our empirical observation that the cost of discovering the next
unknown vulnerability increases exponentially?

(1) For a non-deterministic blackbox fuzzer, the probability of
exposing a specific known vulnerability, reaching a specific
program statement, violating a specific program assertion,
or observing a specific event of interest (i.e,. species) within
a given time budget increases approximately linearly with
the number of available machinesÐup to a certain limit.

(2) The same observation holds even if our objective is to dis-
cover all species in a given set of species. On the average,
the most difficult species to discover is that which has the
highest probability qmax not to be discovered after generat-
ing n test inputs. By setting q = qmax, we can reduce the
problem of discovering all species in a given set to expos-
ing a specific species. From the second law, we also know
that the time spent finding the same number of species is
inversely proportional to the number of available machines.

(3) The same observation holds even for the discovery of the
next unknown vulnerability if we assume that there exists
only a single unknown vulnerability, or if we assume that all
unknown vulnerabilities have exactly the same probability

qi = 1/S not to be discovered within the given time budget
on one machine, i.e., qi = qi+1 = 1/S for i : 1 ≤ i < S .

4.3 Explaining the First Empirical Law

Given the insights from the previous section, why do our empirical
observations suggest an exponential cost for the discovery of the
next unknown vulnerability (our first law)? From the exponential
behavior of of the discovery probability curveQi

exp(x) for a species
i , we can derive that discovery probability is either approximately
zero (0) or approximately one (1) with an łalmostž linear transi-
tion at around x = log2(1/(1 − qi ))Ðwhen discovery is expected.
Figure 8.left illustrates this behavior nicely.

The number of species S(2xn) discovered if 2x more machines
were available is the sum of the individual discovery probabilities,
S(2xn) =

∑S
i=1Q

i
exp(x). Without making any additional assump-

tions about the total number S of species or the probabilities {qi }Si=1,
we mostly observe the effects of the almost-linear transitions of
the individual discovery probabilities Qi

exp(x) as they contribute
to the total number of discovered species S(2xn). This additive
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Figure 10: Number of additional species discovered S(2xn) − S(n) as the number of available machines increases exponentially

(S ∈ {1, 10, 100, 1000}, 5 random samples of {qi }
S
i=1 each). We recognize the exponential increase for a single species on the left

and the linear increase for 1000 species on the right.

acummulation of the individual curves for each species explains
our empirical observation of a linear increase in the number of new
species discovered within the same time budget and as 2x more
machines are available.1

Simulation. We explore this explanation in several simulation
experiments. We vary the the total number of species S and assume
a power-law distribution2 over the probabilities {qi }Si=1. Specifically,
for each species i we sample a random floating point value Xi
uniformly from the interval [0, 32] and set the probability qi that
i has not been discovered after generating n inputs (i.e., x = 0) as
qi = 1 − 2−Xi . In other words, the most abundant species is about
twice as likely to be discovered as the next most abundant species,
and so on. We let the total number of species S ∈ {1, 10, 100, 1000}
and for each value of S repeat the sampling of {qi }Si=1 five times.
The simulation should by no means be considered a proof of our
first empirical law, but rather as an exploration or as an explanation.
For the reader to try out other distributions, we make our scripts
available here: https://doi.org/10.6084/m9.figshare.11911287.

Results. The simulation results for a non-deterministic black-
box fuzzer are shown in Figure 10. It depicts the additional number
of species found as 2x times more machines are available to an
exponentially more powerful attacker, i.e., the attacker can gen-
erate 2x more inputs per minute. On the left, we can recognize
the exponential species discovery curve Qexp(x) from the third
empirical law (cf. Fig. 8). If we assume that only a single species
exists, exponentially more machines will discover this species also
exponentially faster. On the right, we can see the linear discovery
curve which is the subject of our first law. If we assume that a
thousand species exist, exponentially more machines will increase
the number of additional species discovered only linearly. The two
charts in between for S ∈ {10, 100} illustrate how the exponential
curves from the individual species additively accumulate to form
an approximately linear curve for the additional species discovered.
For two non-deterministic greybox fuzzers, we provide empirical
evidence in favor of the first empirical law in Section 3.RQ1.

If we assume that there is just one undiscovered species, a non-
deterministic fuzzer that generates exponentially more inputs per

1We presented our empirical observations in Section 3.
2We also explored the unrealistic assumption of a uniform distribution over {qi }

S

i=1 ,
i.e., to sample qi uniformly from the interval [0, 1]. It is unrealistic, because we
would otherwise expect discovery of most species with only 10x more machines. We
conducted simulation experiments and observed a sub-linear increase in the number of
more species discovered as the number of available machines increases exponentially.

minute also discovers a specific species with a probability that is
exponentially higherÐup to some limit (Section 4.2). However, we
cannot assume to know the total number of species in advance. We
cannot assume there is only one species left undiscovered.

⋆Without making assumptions on the number of species, if species

probabilities are distributed according to the power law, we suggest

that a non-deterministic fuzzer that generates exponentially more

inputs per minute discovers only linearly more new species (or less).

We call this observation an empirical law because it is contingent
on the fact that species are distributed roughly according to the
power law. In the special casesÐwhere (a) all species are equally
likely (pi = 1/S for all i : 1 ≤ i ≤ S) or (b) there exists just
one species (S = 1)Ðthis law does not hold. However, from our
empirical observations in Section 3.RQ1, we can derive that the
species measured in our dependent variables (e.g., vulnerabilities)
are indeed distributed according to the power law. The plots for
our empirical observations (Figure 2Ð4) look very simular to our
plots for our simulation results (Figure 10.right).

A power law distribution gives a very high probability to a small
number of events and a very low probability to a very large number
of events. The 80/20 Pareto principle is an example. For us, there
are very few extremely abundant species but a large number of
extremely rare species. In our simulation, the secondmost abundant
species is only half as likely as the most abundant, and so on.

Intuition. When collecting baseball cards, the first couple of
cards are always easy to find, but adding a new card to your col-
lection will get progressively more difficultÐeven if all baseball
cards were equally likely. This is related to the coupon collector’s

problem. Similarly, our first law suggests that covering one more
branch or discovering one more bug will get progressively more
difficultÐso difficult, in fact, that each new branch covered and
each new vulnerability exposed comes at an exponential cost.

4.4 Explaining the Second Empirical Law

While our first empirical law implies that it is expensive to cover
new code, the second law implies that it is cheap to cover the same

code. Similarly, it is expensive to find an unknown vulnerability,
but cheap to find the same, known vulnerabilities. Suppose for a
non-deterministic blackbox fuzzer, in the original setup one input is
generated per minute while in the exponential setup 2x inputs are
generated per minute. Given the original time n, we need to find the

757

https://doi.org/10.6084/m9.figshare.11911287


ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Marcel Böhme and Brandon Falk

1 sec

1 min

1 hr

1 day

1 week
1 mth

1 year

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

2
20

2
22

2
24

2
26

#machines

T
im

e
 t
o
 a

c
h
ie

ve
 s

a
m

e
 c

o
ve

ra
g
e

Figure 11: Second law. We observe an exponential decrease

in the time spent to discover the same number of species

with an exponential increase in available machines (i.e., in

the number of test cases that can be generated per minute).

timem, such that the number of species found in the exponential
setup in m units of time is equivalent to the number of species
found in the original setup in n units of time,

S −

S
∑

i=1

(

1 − pi )
1
)n
= S −

S
∑

i=1

(

1 − pi )
2x
)m

(8)

which is true when we have that

m =
n

2x
(9)

For a non-deterministic blackbox fuzzer, Figure 11 illustrates the
third empirical law where the original setup spends one year. For
two non-deterministic greybox fuzzers, we provided empirical evi-
dence in favor of the second empirical law in Section 3.RQ2.

⋆We suggest that a non-deterministic fuzzer that generates ex-

ponentially more inputs per minute discovers the same number of

species also exponentially faster. More specifically, we suggest that

the time to find the same number of species is inversely proportional

to the number of machines.

5 RELATED WORK

Fuzzing is a fast-growing research topic with most recent advances
in coverage-guided fuzzing, which seeks to maximize coverage of
the code. The insight is that a seed corpus that does not exercise a
program element e will also not be able to discover a vulnerability
observable in e . Coverage-guided greybox fuzzers [4, 5, 11, 12, 18, 21,
26] use lightweight instrumentation to collect coverage-information
during runtime. For a comprehensive overview, we refer to a recent
survey [14]. Coverage-guided whitebox fuzzers [6ś9] use symbolic-
execution to increase coverage. For instance, Klee [6] has a search
strategy to priotize paths which are closer to uncovered basic blocks.
The combination and integration of both approaches have been
explored as well [16, 22]. In this paper, we focus only on non-
deterministic fuzzers.

Non-deterministic fuzzers generate program inputs in random
fashion without ever exhausting the set of inputs that can be gen-
erated. In contrast to deterministic fuzzers, there is no enumeration

of finite, determined set of inputs (or of program properties like
paths). A non-deterministic generation-based fuzzer generates new
inputs by sampling from a random distribution over the program’s
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Figure 12: Each new branch covered requires exponentially

more machines (left). Yet, exponentially more machines al-

low to cover the same branches exponentially faster (right).

input space.3 For instance, a random input file can be generated
by sampling a random number n of UTF-8 characters, ⟨c1, . . . , cn⟩
where ci ∈ [0, 255]. A non-deterministic mutation-based fuzzer gen-
erates inputs by random modifications of a seed input. The fuzzer
chooses a random set of mutation operators to apply at random
locations in the seed input. In this paper, we conduct an empirical
analysis for two non-deterministic greybox fuzzers and provide
a probabilistic analysis for non-deterministic blackbox fuzzing in
order to shed some light on our observations.

Deterministic fuzzers enumerate a finite number of objects and
then terminate. For instance, a symbolic execution-based whitebox
fuzzer [6, 7] enumerates (interesting) paths. It might not enumerate
all paths, but ideally, it would never generate a second input exercis-
ing the same path. A deterministic mutation-based fuzzer [23, 24]
enumerates a determined set of mutation operators and applies
them to a determined set of locations in the seed input. Greybox
fuzzers such as AFL may first fuzz each seed determinstically before
switching to a non-deterministic phase. In the limit, such łhybridž
greybox fuzzers are still primarily non-deterministic.

Probabilistic analysis. Arcuri et al. [1] analyzed the scalability of
search-based software testing and show that random testing scales
better in the number of targets than a directed testing technique
that focuses on one target until it is łcoveredž before proceeding
to the next. Böhme and Paul [3] argue that even the most effective
technique is less efficient than blackbox fuzzing if the time spent
generating a test case takes relatively too long and provide proba-
bilistic bounds. Majumdar and Niksic [13] discuss the efficiency of
random testing for distributed and concurrent systems. To the best
of our knowledge, ours is the first work to investigate the scalability
of fuzzing across machines and the cost of vulnerability discovery.

6 DISCUSSION

Our first empirical law suggests that using a non-deterministic
fuzzer (a) given the same time budget, each new vulnerability re-
quires exponentially more machines and (b) given the same number
of machines, each new vulnerability requires exponentially more
time. Intuitively, when collecting baseball cards, the first couple
of cards are easy to find, but collecting the next new card gets
progressively more difficult.

3It is possible, of course, that there is zero probability weight over some inputs.
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Our second empirical law suggests that a non-deterministic
fuzzer which generates exponentially more machines discovers
the same vulnerabilities also exponentially faster. This means that
finding the same vulnerabilities in half the time requires only twice
as many machines. Intuitively, if each day you would bought twice
as many packs of baseball cards, you could have collected the same
cards that you have now in half the time.

In our empirical analysis, we make the simplifying assumption
that there is no synchronization overhead. Twice the machines can
generate twice the inputs per minute. Conceptually, this is still a
single fuzzing campaign where inputs are still generated sequen-

tially. Any discovered seed, added to the corpus, is immediately

available to all other machines. Our analysis is optimistic.
Open science and reproducibility. We derive our empirical

laws from the data that has been available to us and call upon the
community to test them for other fuzzing tools, other definitions
of species (e.g., mutants killed), other programming languages, and
so on. To facilitate this extended investigation, we provide all data
and scripts to reproduce our empirical evaluation, our simulation,
and all figures in this paper at:

• https://doi.org/10.6084/m9.figshare.11911287.v1
• https://www.kaggle.com/marcelbhme/fuzzing-on-the-exponential-
cost-of-vuln-disc

6.1 Impact of Synchronization Overhead

We conducted preliminary experiments to investigate the impact of
this simplifying assumption. We ran X fuzzing campaigns simulta-
neously on X machines in the following three settings: (a) blackbox
fuzzers, (b) greybox fuzzers each with a local seed corpus, and
(c) greybox fuzzers all sharing a global seed corpus. The last setting
corresponds to our simplifying assumption. For each setting, we
measured the increase in coverage over all simultaneous campaigns.

Figure 12 shows the tremendous impact of sharing a global queue
among greybox fuzzers and making seeds found immediately avail-
able to all other fuzzing campaigns. Running 32 greybox fuzzers in
parallel without sharing a global queue does not scale much bet-
ter than running 32 blackbox fuzzers in parallel. Without efficient
sharing of information across machines, the cost of covering each
new branch is still linear but the slope of the line is much smaller.

6.2 Implications in Practice

We reached out to security researchers and practitioners on Twitter
to understand the practical implications of our findings. In the
following, we summarize the discussion.

łCool paper! A somewhat related thought that comes to mind: to

find new bugs ’faster’ one would need to make a better fuzzer

instead of trying to scale up existing ones.ž

ÐAndrey Konovalov (@andreyknvl)

łI think there is something else though: the difficulty of individual

bugs/coverage are not fixed. Better mutators and feedback can

reduce the cost by orders of magnitude (think: a grammar fuzzer

finds more coverage with a fraction of the compute).ž

ÐCornelius Aschermann (@is_eqv)

łThe results show that only throwing more CPU power at fuzzing

is not the way to go. In a similar vein to what @is_eqv said, we’ll

be better off optimizing the process: seed selection policy, structure-

aware mutations, new feedback signals, and combining it with

other techniques.ž ÐKhaled Yakdan (@khaledyakdan)

Fuzzing smarter. We cannot simply throw more machines at
vulnerability discovery when we stop finding vulnerabilities. In-
stead, we need to develop smarter andmore efficient fuzzers. Similar
to compound interest (i.e., exponential growth), even the smallest
increase in discovery probability provides tremendous performance
gains in the long run. Even small performance gains on onemachine
has tremendous benefits when scaling to multiple machines.

łThis probably also means that just ’fuzzing everything a little’ is

pretty lucrative to find the low hanging fruit.ž

ÐHenk Poley (@henkpoley)

Fuzzing in CI/CD. Fuzzing everything for just a little bit, we
can already cover a lot of ground. In an unfuzzed target, themajority
of vulnerabilities is found with relatively few resources.

łLove the last paragraph! ‘Our results suggest to compare fuzzers

in terms of time to discover the same bug(s), or the time to achieve

the same coverage.ž’ ÐChengyu Song (@laosong)

Fuzzing evaluation. Our results suggest to compare fuzzers in
terms of the time to discover the same bug(s), or the time to achieve
the same coverage. Reporting the increase in coverage within the
same time budget may be misleading since even a small increase
comes at an exponential cost in terms of time or machines.
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