
Verifying the Long-Run Behavior of Probabilistic System Models
in the Presence of Uncertainty

Yamilet R. Serrano Llerena

National University of Singapore

Singapore

Universidad de Ingenieria y

Tecnologia

Lima, Peru

yserrano@utec.edu.pe

Marcel Böhme

Monash University

Melbourne, Australia

marcel.boehme@acm.org

Marc Brünink
∗

Zurich, Switzerland

marc@u.nus.edu

Guoxin Su

University of Wollongong

Wollongong, Australia

guoxin@uow.edu.au

David S. Rosenblum

National University of Singapore

Singapore

david@comp.nus.edu.sg

ABSTRACT
Verifying that a stochastic system is in a certain state when it has

reached equilibrium has important applications. For instance, the

probabilistic veri�cation of the long-run behavior of a safety-critical

system enables assessors to check whether it accepts a human abort-
command at any time with a probability that is su�ciently high.

The stochastic system is represented as probabilistic model, a long-

run property is asserted and a probabilistic veri�er checks the model

against the property.

However, existing probabilistic veri�ers do not account for the

imprecision of the probabilistic parameters in the model. Due to

uncertainty, the probability of any state transition may be subject to

small perturbations which can have direct consequences for the ve-

racity of the veri�cation result. In reality, the safety-critical system

may accept the abort-command with an insu�cient probability.

In this paper, we introduce the �rst probabilistic veri�cation

technique that accounts for uncertainty on the veri�cation of long-

run properties of a stochastic system. We present a mathematical

framework for the asymptotic analysis of the stationary distribution

of a discrete-time Markov chain, making no assumptions about the

distribution of the perturbations. Concretely, our novel technique

computes upper and lower bounds on the long-run probability,

given a certain degree of uncertainty about the stochastic system.

CCS CONCEPTS
•Mathematics of computing→Markov networks; •Software
and its engineering→Model checking; Software veri�cation;
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1 INTRODUCTION
Probabilistic veri�cation is a powerful and mature technology

which aims to verify systems that exhibit stochastic rather than

deterministic behavior. The stochastic system is represented by a

stochastic model, such as a discrete-time Markov chain (DTMC).

A probabilistic model checker veri�es this model against a given

system property, such as the minimum (or maximum) long-run

probability or reachability of a certain state. For instance, the life-

cycle of software developed in a large company can be modeled as

a DTMC where a state represents the current development stage

of a software, and the transition probabilities can be determined

empirically from the lifecycle of software developed in the past. A

probabilistic model checker, such as PRISM [14], can then check

whether the long-run probability that a software is in the (error-

free) deployment stage exceeds some threshold.

However, probabilistic veri�cation does not account for the im-

precision of the probabilistic parameters in the model of the stochas-

tic system. Often, the speci�ed transition probabilities are accurate

only to some degree. For instance, the transition probabilities in the

DTMC model of the company’s development lifecycle are computed

as the sample mean over past instances. However, a sample mean

is subject to variance and approximates the population mean only

with some accuracy. The company may hire new developers, de-

velop di�erent software, or improve the development process. All

of these contribute to our uncertainty about the speci�c probability

to transition from one development stage to another.
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Previous work has successfully applied perturbation theory to

many aspects of probabilistic model checking, including di�erent

stochastic formalisms, di�erent kinds of properties to be veri�ed

and di�erent measures of perturbation distance, as well as appli-

cations of the ideas to self-adaptive software, QoS monitoring and

cloud computing [16, 19–22].

This paper presents results on dealing with uncertainty when

verifying long-run properties of DTMCs, where we seek to deter-

mine the probability that a system—whose stochastic behavior is

subject to perturbation—will be in a particular state of interest once

the system has reached a steady state, or equilibrium. We propose

to model a stochastic system that is subject to uncertainty as a pa-

rameterized DTMC where the speci�c probability in each transition

is subject to random perturbations. We introduce a probabilistic

veri�cation technique that provides an upper and lower bound on

the long-run probability for each state in the parameterized DTMC.

The bounds characterize the worst-case consequences of uncer-

tainty on the (long-run) probability that the system is in a certain

state at any time after it has reached equilibrium.

The veri�cation of long-run probabilities is a very useful and ver-

satile application of probabilistic model checking and can be applied

to problems in software engineering as well as other domains. As

previously mentioned, it allows us to check whether the probability

that a safety-critical system accepts an external abort-command at

an arbitrary point in time is su�ciently high. As another example,

the presented technique can also be used to check which functions

are most critical for a system because they are executed most often,

or which web-pages on a server are important because they are

visited with higher likelihood.

We introduce the pertinent concepts and evaluate our novel prob-

abilistic veri�cation technique using three case studies. In the �rst

case study, we discuss the probabilistic veri�cation of a long-run

property in the development lifecycle of a large mobile app develop-

ment company. In the second case study, we investigate the impact

of estimating the transition probabilities in the DTMC from empiri-

cal data (i.e., using maximum-likelihood estimation). Of course, a

sample is subject to some variance resulting in small perturbations

for the transition probabilities. The DTMC models web-pages on a

server, and the veri�cation task is to check the importance of those

web-pages given a sample of click-stream data. In the third case

study, we investigate the impact of changes to the program or its

workload on determining the functions that are most critical for

the program. The DTMC models the sequence of function calls in

the program, and the veri�cation task is to check the probability

that a function is exercised at any time after equilibrium, given that

the program or workload may slightly change.

The main contributions of this work are as follows:

(1) We introduce the �rst probabilistic veri�cation technique that

accounts for uncertainty in the veri�cation of long-run prop-

erties of a stochastic system. Our technique uses perturba-

tion analysis to provide upper and lower bounds on the sys-

tem’s long-run properties which represent the worst-case con-

sequences of uncertainty.

(2) We present a mathematical framework for the asymptotic anal-

ysis of the stationary distribution of a (reducible or irreducible)

DTMC when the transition probabilities are subject to a random

perturbation. We make no assumptions about the distribution

of the perturbations, re�ecting the reality that the degree of

uncertainty for speci�c state transitions is often unknown.

(3) We present a prototype implementation of our work in Python.

We evaluate our technique on three case studies. Our experi-

ments indicate that our technique is able to provide an accurate

estimation of the worst-case consequences of uncertainty on

veri�cation of long-run properties in DTMCs.

The remainder of the paper is organized as follows. Section 2

introduces a running example about lifecycles of software devel-

opment. An introduction to basic concepts of probabilistic model

checking of DTMCs is presented in Section 3. Section 4 explains our

technical approach to analyze the worst-case consequences of the

uncertainty on probabilistic veri�cation of long-run properties in

DTMCs. Section 5 presents our experimental evaluation and results.

Section 6 discusses related work. Finally, Section 7 summarizes our

contributions and discusses future work.

2 MOTIVATION
2.1 Motivating Example: A Markov Model For

The Software Development Lifecycle of
Mobile Apps

Throughout the paper, we exemplify the pertinent concepts and

approaches based on the software development lifecycle of a large

mobile app development company. For this company, each mobile

app goes through the following stages:

• Early Stage (s0). The app is created and actively developed.

Once the app is feature-complete, it goes to incubation (s1). How-

ever, at this stage an app’s development can also be abandoned
(s3), e.g., for budget reasons.

• Incubation (s1). The app implements all the intended function-

ality but requires some improvements and �xes. If it turns out

that more features or substantial improvements are required, the

app goes back to the early stage (s0). If the project is discontin-

ued, the app is retired (s4). However, if the app reaches a certain

maturity is goes to deployment (s2). Once it is deployed, it cannot

go back to incubation (s1).

• Deployment (s2). The (updated) app is uploaded to the app store

and customers start to download and use the app. Deployment

is part of the main development lifecycle. If a user reports a bug,

the app is marked as buggy (s6).

• Abandoned (s3). The app development is discontinued at the

early stage. Once the development of an app is marked as aban-

doned, it remains abandoned.

• Retired (s4). The app development is discontinued at the incu-

bation stage. Once an app is retired, it remains retired.

• Repair (s5). A developer creates a patch for the buggy app and

submits it for peer review. If the patch is accepted, the app goes

back to deployment (s2), i.e., the �xed version is uploaded to the

app store. If the patch is rejected, the app is again marked as

buggy (s6).

• Buggy (s6). The app contains a bug that was reported and needs

to be �xed. The app is send for repair (s5).
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Figure 1: Motivating Example. DTMCModel of the Develop-
ment Lifecycle of a Mobile App.

To understand and improve the development lifecycle of their mo-

bile apps, the company records the various stages that each app

undergoes. For instance, it can empirically determine the propor-

tion of apps in the early stage (s0) that reach incubation (s1) or that

are abandoned (s3). Thus, the development lifecycle can be modeled

as a discrete-time Markov chain with each development phase as

a state, each progression from phase to phase as transition, and

the proportion of apps progressing from one phase to another as

transition probabilities. The DTMC model for the company’s de-

velopment lifecycle is shown in Figure 1. For now, we ignore the

dashed rectangles and we consider the values of xi in the transition

probabilities to be �xed at x1 = . . . = x5 = 0.

2.2 Problem Statement
In this work, we investigate the worst-case consequences of uncer-

tainty on the veri�cation of long-run properties in a discrete-time

Markov chain. In the development lifecycle of an app, the company

would like to understand the probability that an app, in the long-

run, will be in deployment (s2), i.e., graduated from incubation and

not buggy. In the second column of Table 1, we can see that this

probability πs2 = 0.033. It is about 25 times more likely that an

app is abandoned or retired before it reaches the deployment phase

(πs3 + πs4 = 0.834).

However, there are several sources of uncertainty in the mod-

eling. For instance, the recorded lifecycles are only samples that

are taken from a larger population; future development lifecycles

may not be well-represented by the recorded ones. The company

may have changed the development process since beginning of

the recordings; current lifecycles may not be well-represented by

earlier ones. Hence, the empirically determined transition proba-

bilities are accurate only to some degree. What does that mean for

computing the probability πs2 that an app, in the long run, will be

in the deployment stage (s2)?

We model the uncertainty in the transition probabilities as small

perturbations in a parameterized Markov chain, where the (sym-

bolic) perturbation vector ®x is added to the transition probabilities.

Figure 1 depicts the Markov chain for our motivating example

parameterized with the perturbation vector ®x = 〈x1,x2,x3,x4,x5〉.
We do not assume any knowledge about the (distribution of)

values for ®x . This re�ects the reality that we cannot know the

degree of uncertainty for speci�c state transitions. However, we

assume that the total perturbation distance δ =
∑
xi ∈ ®x |xi | for all

Table 1: Worst-Case Consequences of Uncertainty in the De-
velopment Lifecycle of Mobile Apps where δ ≤ 0.001.

Stages

π si κsi
Linear Bounds

(δ = 0) π si − κsi δ π si + κsi δ

s0 0.000 0.000 0.0000 0.0000

s1 0.000 0.000 0.0000 0.0000

s2 0.033 0.067 0.0329 0.0331

s3 0.667 0.222 0.6667 0.6672

s4 0.167 0.333 0.1667 0.1673

s5 0.067 0.133 0.0668 0.0671

s6 0.067 0.133 0.0668 0.0671

parameterized state transitions can be provided (as an upper bound

on the total uncertainty in the stochastic process).

Due to uncertainty, the veri�cation of long-run properties in a

Markov chain is (1) correct only within certain accuracy bounds,

and (2) sensitive to uncertainty in certain states more than in others.

Our approach quanti�es the accuracy of the computed probability

that an app, in the long run, will be in the deployment stage (s2) in

the form of asymptotic bounds, called linear perturbation bounds.
Our approach also quanti�es the sensitivity of the computed prob-

ability to uncertainty in each transition in the form of condition
numbers.

For our motivating example, the company is interested in the

worst-case consequences of uncertainty in the modeling of the

development lifecycle if the total uncertainty was at least δ = 0.001,

i.e, |x1 |+ |x2 |+ |x3 |+ |x4 |+ |x5 | ≤ 0.001. For this purpose, in the third

column of Table 1, we compute a condition numberκsi that captures

the e�ect of perturbation vector ®x in the computation of πsi such

that 0 ≤ i ≤ 6. As can be seen from Table 1, the greatest condition

number in the model of the development lifecycle of a mobile app

corresponds to the probability that an app, in the long run, will

be retired (s4). In other words, the long run probability of being

in s4 is the most sensitive to the perturbation vector ®x . Based on

the condition number κsi and δ = 0.001, the last column of Table 1

provides an estimate of the worst-case consequences of uncertainty

in the modeling of the development lifecycle calculated as ±κsi δ
and named as linear perturbation bounds. For instance, the linear

perturbation bounds that estimate the worst-case consequences of

uncertainty on veri�cation that an app, in the long run, will be in

deployment stage (s2) are calculated as πs2 ±κs2δ = [0.0329, 0.0331].
We note that the perturbation distance δ is not needed to quantify

sensitivity to perturbation κsi . Instead, δ is used only to compute

the linear perturbation bounds (which approximate the worst-case

e�ect of perturbation). Our method also allows to specify multi-

ple perturbation distances, each of which is associated with the

transition probabilities from the same state, such that the resulting

bounds are tighter. However, the ability to specify a single pertur-

bation distance makes our method the only one available to provide

asymptotic bounds whenever specifying the individual probability

perturbations is impossible or impractical (e.g., in the presence of

unpredictable environmental factors such as failures, disasters and

workload).
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3 BACKGROUND
3.1 Discrete-Time Markov Chains
A discrete-time Markov chain (DTMC) represents the stochastic

behavior of a probabilistic system. Speci�cally, a DTMC is a tran-

sition system with probability distributions for the successors of

each state. Formally, a DTMC is de�ned as follows:

Definition 1. Discrete-Time Markov Chain (DTMC). A DTMC
is a tuple D = (S, P, Sinit,AP ,L) where S is a �nite set of states,
P : S × S → [0, 1] is a probabilistic transition function such that
∀s ∈ S,

∑
t ∈S P(s, t) = 1, Sinit ⊆ S is a set of initial states, AP is a

�nite set of atomic propositions, and L : S → 2
AP a labeling function.

In addition, we de�ne ιinit : S → [0, 1] as the initial state distri-

bution, such that

∑
s ∈S ιinit(s) = 1 and ∀t < Sinit , ιinit(t) = 0. For

instance, in Figure 1 we have S = {si | 0 ≤ i ≤ 6}, Sinit = {s0},AP =
{early stage, incubation, deployment, abandoned, retired, repair,

buggy}, and for instance L(s0) = early stage and P(s0, s1) = 0.5.

Furthermore, ιinit(s0) = 1 and ιinit(si ) = 0 for i > 0.

Definition 2. Sub-DTMC. LetD = (S, P, Sinit ,AP ,L) be a DTMC.
A sub-DTMC of D is a tuple (S ′, P′) such that ∅ , S ′ ⊆ S , and
P′ : S ′ → [0, 1] where for all s, s ′ ∈ S ′, P′(s, s ′) = P(s, s ′) and∑
s ′∈S ′ P′(s, s ′) = 1.

The digraph of D, denoted as G(S,E), is induced as there is one

node for each state s ∈ S and a direct edge (s, t) ∈ E if only if

P(s, t) > 0. An in�nite path in a DTMCD is a sequence of the form

π = s0s1s2 . . . where si ∈ S and P(si , si+1) > 0 for all i ≥ 0. A �nite

path ϖ is a pre�x of an in�nite path π ending in a particular state

where ϖ = s0s1 . . . sn such that n = |ϖ |. In this context, we say a

state sn is reachable from s0 if there is a �nite path ϖ .

A set of states S ′ ⊆ S induces a strongly connected subgraph

(SCS) of a DTMC D if only if for all s, t ∈ S ′ there is a path from s
to t visiting only states from S ′. A strongly connected component

(SCC) of D is a maximal (w.r.t. ⊆) SCS of S . A bottom strongly

connected component (BSCC) of D is an SCC S ′ from which no

state outside S ′ is reachable. We denote BSCC(D) as the set of all

BSCCs of the underlying digraph of D.

A DTMC D is said irreducible if all its states belong to a single

BSCC. Irreducibility of a DTMC is important for convergence to

equilibrium as n → ∞, because the convergence should be inde-

pendent of any start state. In case, a DTMC is not irreducible, we

say that is reducible. For instance, the DTMC in our motivating

example is reducible, as the states belong to three BSCCs shown as

dashed boxes in Figure 1.

Given a DTMC D, the period of state s is de�ned as d(s) =
gcd{n ∈ N+ : Pn (s, s) > 0}. State s is aperiodic if d(s) = 1 and

periodic if d(s) > 1. In this context, a DTMC D is said to be

aperiodic if all its states are aperiodic. Correspondingly, if all states

of D are periodic then D is periodic.

3.2 Parametric Discrete-Time Markov Chains
Inspired by previous studies [8, 15, 21, 22], we use a parametric

model to integrate the uncertainty which is expressed as small

perturbations to transition probabilities in the DTMC.

Definition 3. Parametric discrete-time Markov chain (PDTMC).
Let D = (S, P, Sinit ,AP ,L) be a DTMC and ®x = 〈x1, . . . ,xm〉 be a

perturbation vector. A PDTMC is a tupleD[®x] = (S, P[®x], Sinit ,AP ,L)
where P[®x] is a parametric transition function based on P, and S , Sinit ,
AP and L are de�ned as De�nition 1.

Figure 1 depicts a parameterized DTMC where ®x = 〈x1,x2,x3,x4,x5〉.

3.3 Long-Run Properties in DTMCs
In probabilistic model checking of DTMCs, long-run, also named

as steady-state, properties are used to analyze the reliability of

probabilistic systems and to obtain performance parameters such

as throughput, delay, loss probability, etc.

Formally, given a DTMC D, the long-run properties study the

limit behavior of the probability vector πD (t) = [πDs (t)]s ∈S when

time tends to in�nity (limt→∞ πD (t)) [5]. This limit when exists

is called steady-state probability vector, and it is written as πD =
[πDs ]s ∈S . Intuitively, we can interpret πDs as the long-run mean

fraction of time the DTMC D is in state s .
In this paper we are interested in the computation of the long-

run probability of being in a particular state s having started in

initial states of a given DTMC D. We denote this probability as

πDs . For convenience, we simply mention πs instead of πDs when

D is clear in the context.

To compute long-run probabilities in DTMCs, previous stud-

ies [5, 18] have demonstrated that the steady-state probability vec-

tor exists if the DTMC is irreducible and aperiodic. Unfortunately,

it is not that case in all probabilistic models. Thus, to avoid with

periodic considerations, we use the long-run average probability

for computing the steady-state probability vector πD of a DTMC

D. Consequently, the procedure for computing the long-run prob-

ability πDs is based on the following conditions:

3.3.1 DTMC D is Irreducible. Let D = (S, P, Sinit ,AP ,L) be an

irreducible DTMC and given a particular state s ∈ S , we compute

the long-run probability πDs as follows:

πDs =
∑
s′∈S

{
lim

n→∞
1

n

n∑
k=1

Pk (s′, s)
}
, (1)

where Pk (s ′, s) denotes the probability of DTMC D being in state

s after exactly k transitions when starting in state s ′.

3.3.2 DTMC D is Reducible. Let D = (S, P, Sinit ,AP ,L) be a

reducible DTMC and given a particular state s ∈ S . To compute

the long-run probability πDs , we �rst identify the set of all BSCCs

of the underlying digraph of D, denoted as BSCC(D). Then, we

evaluate whether state s belongs to any BSCC K ∈ BSCC(D). In

the a�rmative case, the probability πDs is the combination of i)

the probability of reaching the BSCC K having started in the initial

states of the model, denoted as PrD (^K), and ii) the long-run

probability of state s in a sub-DTMCD(K) = (K , PK ) ofD, induced

by BSCC K , where PK = (P(s, t))s,t ∈K . In short, πDs = PrD (^K) ·
πD(K )s . Since every BSCC is irreducible, we follow Equation 1 for

computing the probability πD(K )s . Otherwise, πDs = 0.

4 PERTURBATION APPROACH
In this section, we present our technical approach for estimating

the worst-case consequences of uncertainty on the computation of

long-run probabilities in DTMCs based on perturbation analysis.
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We �rst use a parameterized DTMC to model the presence of un-

certainty, which is expressed as small perturbations to transition

probabilities. Then, we de�ne a variation function that presents a

mathematical characterization of the perturbation in the veri�ca-

tion of long-run properties. This function captures the di�erence

between the veri�cation of a long-run property against a perturbed

DTMC and its associated unperturbed DTMC. Lastly, we look for

the linear fragment of the variation function that provides a useful

approximate solution of this function. Based on this linear fragment

and using the concept of condition numbers, we compute linear
perturbation bounds that reveal the worst-case consequences of

perturbations on the veri�cation of long-run properties in DTMCs.

4.1 Dealing with Uncertainty
Let D = (S, P, Sinit,AP ,L) be the unperturbed DTMC. We �rst iden-

tify the probabilistic transitions that are vulnerable to perturbations.

Then, we capture the presence of these perturbations by using a

perturbation vector ®x = 〈x1, . . . ,xm〉 wherem is the total number

of perturbation variables in ®x . Based on the unperturbed transi-

tion function P, we incorporate the perturbation vector ®x into the

parametric probabilistic transition P[®x], which is de�ned as follows:

Definition 4. Parametric Probabilistic Transition Function. Given
a perturbation vector ®x = 〈x1, . . . ,xm〉 and a non-parametric prob-
abilistic transition P, P[®x] is the parametric probabilistic transition
function such that

∑
s,t ∈S P[®x](s, t) = 1 and each entry P[®x](s, t) of

P[®x] is de�ned as follows:

P[®x](s, t) =


P(s, t) if P(s, t) = 0 or P(s, t) = 1

P(s, t) + xi if ∃xi ∈ ®x such that vuln(s, t ,xi )
P(s, t) otherwise

where vuln(s, t ,xi ) is true if the transition from state s to state t is
vulnerable to perturbation and xi ∈ ®x represents the perturbation for
the transition from s to t .

Proposition 1. Given a vector ®x = 〈x1, . . . ,xm〉, let I be a par-
tition on {1, . . . ,m}. A sub-vector ®y = 〈x j , . . . ,xk 〉 is an independent
perturbed sub-vector in the partition I such that 1 ≤ j < k ≤ m. For
all ®y ∈ I ,

∑
t ∈S P[®x](s, t) =

∑
t ∈S P(s, t)+

∑
xi ∈ ®y xi for some s ∈ S .

Proposition 1 states that each element of ®x falls into an inde-
pendent perturbed sub-vector ®y and all variables of a sub-vector

®y are used. On the other hand, it is always assumed that the vec-

tor ®x = 〈x1, . . . ,xm〉 is within the set U .
.= {®x ∈ Rm | ∀®y ∈

I ,
∑
xi ∈ ®y xi = 0, P[®x] ≡ P}. We refer the parametric DTMC D[®x]

(De�nition 3) as the perturbed version of DTMC D.

To illustrate the de�nitions above, consider again the DTMC

model of the development lifecycle of a mobile app presented in

Figure 1. In the following, we denote this DTMC as Dlc
. As we

introduced in Section 2, there are several sources of uncertainty in

the modeling of Dlc
, which are expressed as small perturbation

in the probabilistic transitions of the model. As Figure 1 shows,

the uncertainty in the model is depicted by the perturbation vector

®x = 〈x1,x2,x3,x4,x5〉. Note that we only incorporated variables

into transitions between 0 and 1. The presence of ®x in Dlc
has

as a consequence the de�nition of PMC Dlc [®x] where the only

di�erence between both models is the parametric function P[®x].

Based on Proposition 1, each perturbation variable xi ∈ ®x falls

into two independent perturbed sub-vectors: ®y1 = 〈x1,x2,x3〉 and

®y2 = 〈x4,x5〉. As a result, we have I = { ®y1, ®y2}. Note that each

sub-vector is associated to the outgoing transitions of a perturbed

state. For example, sub-vectors ®y1 and ®y2 are associated to states s1
and s2, respectively.

4.2 Variation Function for Long-Run
Properties in DTMCs

This section presents a mathematical characterization of the pertur-

bation on veri�cation of long-run properties in DTMCs. Recall that

a variation function captures the di�erence between the computa-

tion of a long-run probability in a perturbed and unperturbed model.

Following the computation of long-run probabilities described in

Section 3.3, we present two variation functions: i) for irreducible

DTMCs, and ii) for reducible DTMCs.

Definition 5. Variation Function - Irreducible Case. Let D =
(S, P, Sinit,AP ,L) and D[®x] = (S, P[®x], Sinit,AP ,L) be an irreducible
DTMC and its parametric irreducible variant, respectively. A variation
function ofD[®x] against the long-run probability of a particular state
s ∈ S is σ : (S,U) → [0, 1] de�ned as follows:

σ (s, ®x ) = πD[ ®x ]s − πDs . (2)

Before presenting the variation function for reducible DTMCs,

let us recall that given an unperturbed reducible DTMC D, the

computation of πDs , 0 if and only if s ∈ K ,K ∈ BSCC(D). The

value of πDs depends on two components:

(1) The reachability probability from initial states to BSCC K ,

denoted as PrD (^K).
(2) The long-run probability of state s in sub-DTMC D(K),

denoted as πD(K )s , if and only if s ∈ BSCC K .

Under those circumstances, we de�ne the variation function for

reducible DTMCs as follows:

Definition 6. Variation Function - Reducible Case. Let D =
(S, P, Sinit,AP ,L) and D[®x] = (S, P[®x], Sinit,AP ,L) be a reducible
DTMC and its parametric reducible variant, respectively. Let K ⊂ S
be a BSCC. A variation function of reducible D[®x] with respect to the
long-run probability of a particular state s ∈ K is τ : (S,U) → [0, 1]
de�ned as follows:

τ (s, ®x ) = PrD[ ®x ](^K ) · πD(K )[ ®x ]s − PrD (^K ) · πD(K )s , (3)

where D(K)[®x] and D(K) represent the perturbed and unperturbed
sub-DTMC of D[®x] and D, respectively.

4.3 Linear Perturbation Bounds
The key idea behind perturbation theory is to reduce a hard problem

into an in�nite sequence of relatively simple ones. We compute

the linear perturbation bounds that capture the veri�cation e�ect

of uncertainty in the form of condition numbers. These bounds

provide a useful approximate solution to the variation function.

We de�ne the linear perturbation bounds i) for irreducible DTMCs,

and ii) for reducible DTMCs. For each case, we �rst de�ne the lin-

ear fragment of its corresponding variation function. Then, we

de�ne the condition number based on the linear fragment. Last,

we compute the linear perturbation bounds based on the condition

number and the total perturbation distance δ > 0 of the model.
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4.3.1 Irreducible Case. Let σ (s, ®x) be the variation function for

irreducible DTMCs with respect to the long-run probability of a

particular state s (De�nition 5). The linear fragment of the variation

function σ (s, ®x) is de�ned as follows:

Theorem 4.1. Linear Fragment of σ (s, ®x) - Irreducible Case. Let
σ (s, ®x) be the variation function for irreducible DTMCs. For any
®x ∈ U, the linear fragment σ1 of σ is formulated as follows:

σ1(s, ®x ) =
∑
s′∈S

{
lim

n→∞
1

n

n∑
k=1

∑
i+j=k−1

(PjP?Pi )(s′, s)
}
, (4)

where P? = P[®x] − P.

Proof. Let us start by analyzing the variation function σ (s, ®x) =
πD[®x ]s − πDs (Equation 2). Using the solution of the unperturbed

πDs as an approximation to the solution of the perturbed πD[®x ]s ,

we can express the variation function σ (s, ®x) as follows:

σ (s, ®x ) =
∑
s′∈S

lim

n→∞
1

n
P̂(s′, s), where P̂ =

n∑
k=1

P[ ®x ]k −
n∑
k=1

Pk . (5)

Let P? = P[®x] − P and δ =
∑
xi ∈ ®x |xi | be the total perturbation

distance. By expanding the term P̂ of Equation 5, we have:

n∑
k=1

P[ ®x ]k −
n∑
k=1

Pk =
n∑
k=1

(P? + P)k −
n∑
k=1

Pk (6)

As we look for the linear fragment of σ (s, ®x), we ignore any term

of more one copy of P? in Equation 6. As a result, we have:

n∑
k=1

P[ ®x ]k −
n∑
k=1

Pk =
n∑
k=1

∑
i+j=k−1

(PjP?Pi ) +O (δ 2). (7)

where xi ∼ O(δ ). Based on previous equation, we conclude linear

fragment σ1 as Equation 4. �

Based on the linear fragment σ1, we de�ne the condition number

and linear perturbation bounds for irreducible DTMCs as follows:

Definition 7. Condition Number - Irreducible Case. Let ®hT denote
the transpose of vector ®h. Let ®x ∈ U be a perturbation vector. We can
write σ1(s, ®x) in the form σ1(s, ®x) = ®x · ®hT for some constant vector
®h. Thus, we can de�ne the condition number κir rs for an irreducible
DTMC as follows:

κ ir rs =
1

2

max

xi ,xj ∈ ®y, ®y∈I
( ®hi − ®hj ). (8)

Definition 8. Linear Perturbation Bound - Irreducible Case. Let
δ =

∑
xi ∈ ®x |xi | be the total perturbation distance. Let πDs and κir rs

be the unperturbed long-run probability and the condition number of
a particular state s in an irreducible DTMC D, respectively. A pair of
upper and lower linear perturbation bounds for the variation function
σ (s, ®x) are de�ned as follows:

f +ir r = πDs + κ
ir r
s δ, and f −ir r = πDs − κ ir rs δ . (9)

As an illustration, consider again PDTMC Dlc [®x] shown in Fig-

ure 1. As the �gure shows, the dashed rectangles represent the set

of BSCCs of the model: K1 = {s2, s5, s6}, K2 = {s3} and K3 = {s4}.
Suppose we are interested to estimate the worst-case e�ect of per-

turbed sub-vector ®y2 = 〈x4,x5〉 on the veri�cation of the probabil-

ity that an app, in the long run, will be in deployment (s2). Since

s2 ∈ K1, we only focus on BSCC K1 that induces a sub-PDTMC

D[ ®y2](K1) = (K1, P[ ®y2]K1
) where P[ ®y2]K1

= (P[®x](s, t))s,t ∈K1
and

®y2 ⊂ ®x . It is important to notice that the sub-PDTMC D[ ®y2](K1) is

irreducible.

Under those circumstances, we follow the computation of linear

perturbation bounds for irreducible DTMCs. First, we de�ne the

variation function σ (s2, ®y2) = π
D[ ®y2](K1)
s2 − πD(K1)

s2 (De�nition 5).

Then, by Theorem 4.1, we calculate σ1(s2, ®y2) = 1.166x4 + 0.166x5
as the linear fragment of σ . Next, we compute κir rs2 = (1.166 −
0.166)/2 = 0.5 (De�nition 7). Since the company is interested in the

worst-case e�ect of uncertainty in the modeling of the development

lifecycle if the total uncertainty was at least δ = 0.001, we compute

the upper bound f +ir r = 0.199+ (0.5)(0.001) = 0.1995, and the lower

bound f −ir r = 0.199 − (0.5)(0.001) = 0.1985. Note that we consider

|x4 | + |x5 | ≤ 0.001.

4.3.2 Reducible Case. Following the same strategy as for the

irreducible case, we start by de�ning the linear fragment of the

variation function τ (s, ®x) for reducible DTMCs as follows:

Theorem 4.2. Linear Fragment of τ (s, ®x) - Reducible Case. Let
s ∈ BSCC K . Let τ (s, ®x) be the variation function for reducible DTMCs
with respect to long-run property of a particular state s . For any
®x ∈ U, the linear fragment of τ (s, ®x) is de�ned as follows:

τ1(s, ®x) = PrD (^K) · σ1(s, ®x) + ρ1(®x) · πD(K )s , where: (10)

• PrD (^K) is the reachability probability from initial states to K ,
• σ1(s, ®x) is the linear fragment of variation function for irreducible

DTMCs w.r.t. long-run probability of s , presented in Theorem 4.1,
• ρ1(®x) = ιinitA?(A′[®x]A?b + b′[®x]) is the linear fragment of a

variation function ρi (®x) for reachability properties in DTMCs, and
• πD(K )s is the long-run probability of state s in sub-DTMC D(K)

induced by K .
Proof. Let us analyze the variation function τ (s, ®x) presented

in Equation 3. The �rst term of PrD[®x ](^K) was studied by Su et
al. [20]. The authors presented the following expansion:

PrD[®x ](^K) = PrD (^K) + ρi (®x), (11)

where ρi (®x) = A?A′[®x] . . .A?A′[®x]︸                      ︷︷                      ︸
i-1 copies of A?A′[ ®x ]

(A?A′[®x]A?b + A?b′[®x]) for

each i ≥ 1, such that A? = (I − A)−1, b = (P(s ′,K))s ′∈(S\K ),
b[®x] = (P[®x](s ′,K))s ′∈(S\K ), b′[®x] = b[®x]−b, A = (P(s ′, t))s ′,t ∈S\K ,

A[®x] = (P[®x](s ′, t))s ′,t ∈S\K and A′[®x] = A[®x] − A.

By substituting the above expansion into Equation 3 , we can

rewrite the variation function τ (s, ®x) as follows:

τ (s, ®x) = PrD (^K)[πD(K )[ ®x ]s − πD(K )s ] + ρi (®x) · πD(K )[ ®x ]s (12)

It is important to note that the term πD(K )[ ®x ]s − πD(K )s in Equa-

tion 12 is the de�nition of variation function for irreducible DTMCs,

denoted as σ (s, ®x) (De�nition 5). Thus, by substituting σ (s, ®x) into

Equation 12, we have:

τ (s, ®x ) = PrD (^K ) · σ (s, ®x ) + ρi ( ®x ) · πD(K )[ ®x ]s , (13)

where the termπD(K )[ ®x ]s =
∑
s ′∈S

{
limn→∞ 1

n
∑n
k=1 PK [®x]

k (s ′, s)
}
.
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Let P?K = PK [®x] − PK and δ =
∑
xi ∈ ®x |xi | be the total perturba-

tion distance. Expanding the term

∑n
k=1 PK [®x]

k
, we have:

n∑
k=1

PK [ ®x ]k =
n∑
k=1

(P?K + PK )
k

(14)

=

n∑
k=1

PkK +
n∑
k=1

∑
i, j≥0

i+j=k−1

(PjP?KPi ) +O (δ 2), (15)

where xi ∼ O(δ ). It is important for calculating the linear fragment

of τ1(s, ®x) to ignore any term of more one copy of P?K in Equation 14.

Combining the above equations and Equation 13, we conclude as

linear fragment of τ (s, ®x) as Equation 10. �

Based on linear fragmentτ1(s, ®x), we de�ne the condition number

and the linear perturbation bound for reducible DTMCs as follows:

Definition 9. Condition Number - Reducible Case. Let ®hT denote
the transpose of vector ®h. Let ®x ∈ U be a perturbation vector. We
write τ1(s, ®x) in the form τ1(s, ®x) = ®x · ®hT for some constant vector ®h.
Thus, we de�ne the condition number κr eds for a reducible DTMC as
follows:

κr eds =
1

2

max

xi ,x j ∈ ®y, ®y∈I
(®hi − ®hj ). (16)

Definition 10. Linear Perturbation Bound - Reducible Case. Let
δ =

∑
xi ∈ ®x |xi | be the total perturbation distance. Let πDs and κr eds

be the unperturbed long-run probability and the condition number of
a particular state s in a reducible DTMC D, respectively. A pair of
upper and lower linear perturbation bounds for the variation function
τ (s, ®x) are de�ned as follows:

f +r ed = πDs + κ
r ed
s δ , and f −r ed = πDs − κr eds δ . (17)

To exemplify the computation of linear perturbation bounds

in reducible DTMCs, consider again the reducible PDTMC Dlc [®x]
with perturbation vector ®x = 〈x1,x2,x3,x4,x5〉 in Figure 1. Sup-

pose again we are interested to estimate the worst-case e�ect of ®x
on veri�cation of the long-run probability that an app will be in

deployment (s2) in the PDTMC Dlc [®x]. Recall the set of BSCCs are

K1 = {s2, s5, s6}, K2 = {s3} and K3 = {s4}.
By De�nition 6 and given that s2 ∈ BSCC K1, we �rst de�ne

τ (s2, ®x) = PrD
lc [ ®x ](^K1) · σ (s2, ®x) + ρi (®x) · πD(K1)[ ®x ]

s2 as the vari-

ation function, where πD(K1)[ ®x ]
s2 denotes the long-run probability

that an app will be in deployment (s2) in the sub-PDTMC D(K1)[®x]
induced by BSCC K1.

Following Theorem 4.2, the linear fragment of τ (s2, ®x) is de-

�ned as τ1(s2, ®x) = PrD
lc (^K1) · σ1(s2, ®x) + ρ1(®x) · πD(K1)

s2 where

PrD
lc (^K1) = 0.166, σ1(s2, ®x) = 1.166x4 + 0.166x5 (irreducible

case), ρ1(®x) = 0.111x1 + 0.666x2 and πD(K1)
s2 = 0.199. Thus, we

have τ1(s2, ®x) = 0.0221x1 + 0.133x2 + 0.0648x4 + 0.0092x5. Conse-

quently, based on De�nition 9, the condition number κr eds2 = 0.067

(shown in Table 1). And, since we are interested in the worst-case

e�ect of ®x when the total perturbation distance δ = 0.001, we com-

pute the upper bound f +r ed = 0.033 + (0.067)(0.001) = 0.0331, and

the lower bound f −r ed = 0.033 − (0.067)(0.001) = 0.0329.

Theorem 4.3. The time complexity for computing the linear per-
turbation bounds is O(|D|3).

Proof. Let D be a DTMC and |D| be the sum of the numbers

of vertices and edges in the digraph of D. The computation of

linear perturbation bounds for irreducible and reducible DTMCs

are based on the calculation of linear fragments σ1 (Theorem 4.1)

and τ1 (Theorem 4.2), respectively. Note that τ1 is de�ned in terms

on σ1. By analyzing Theorem 4.1, we observe that each term of the

sum can be computed in time O(|D|3). And, the computation of σ1
and τ1 is dominated by this complexity bound. �

5 EXPERIMENTAL EVALUATION
In this section, we evaluate the applicability of our approach in

two case studies. Our purpose is to demonstrate that the computed

asymptotic bounds provide an accurate estimation of the worst-case

consequences of uncertainty on veri�cation of long-run behavior

in systems modeled as DTMCs.

For this purpose, we have developed a prototype implementation

in Python. For each case study, we �rst build the system model as

a DTMC D. Second, based on the designer expertise, we identify

transitions vulnerable to perturbations. A perturbation variable is

attached to each probabilistic transition. As a result, we obtain the

perturbation vector ®x . Third, we formulate the long-run probability

of being in a particular state s to be analyzed, denoted as πs . These

aforementioned components are the input of our prototype. By

following our perturbation approach described in Section 4, our

prototype computes a condition number κs that captures the e�ect

of uncertainty in the veri�cation of πs . Lastly, our prototype calcu-

lates linear perturbation bounds based on the computed condition

number and a given perturbation distance δ > 0. The prototype can

be found in https://github.com/mboehme/mboehme.github.io/raw/

master/paper/FSE18.zip. For our experiments, we used a machine

with 3.06 GHz Intel Core Duo processors and 8GB RAM.

5.1 Clickstream Data
Model. As a �rst case study, we model the stochastic process of

users clicking through the web-pages on a server as an irreducible
DTMC [2, 17]. Speci�cally, we use public clickstream data collected

for a popular news site msnbc.com [10]. The data spans the entire

day of September 28, 1999 and it contains 989818 logs. Each log

represents a clickstream. A clickstream is a sequence of web page

categories visited by a given user. The categories are listed in

Table 2. The DTMC Dcl = (S, P, Sinit,AP ,L) consists of 17 states

S = {s1, . . . , s17} which represent the categories of the news site.

The set of initial states Sinit is composed by the front-page (s1).

The transitions in Dcl
represent the sequences of clicks from one

category page to another. P(si , sj ) is calculated by counting all

instances of state si that precede state sj across all clickstreams.

The model contains 17 states and 289 transitions.

We investigate the impact of estimating the DTMC’s transition

probabilities from empirical data using maximum-likelihood estima-

tion. The clickstream sample is subject to some variance resulting

in small perturbations to the estimated transition probabilities. We

are interested in the probability that a user is visiting a certain web-

page in the long run. Thus, we calculate the long-run probabilities

πD
cl

si of all states si with 1 ≤ i ≤ 17. In the following, we simply

refer to πD
cl

si as πsi .

https://github.com/mboehme/mboehme.github.io/raw/master/paper/FSE18.zip
https://github.com/mboehme/mboehme.github.io/raw/master/paper/FSE18.zip
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Table 2: Experimental Results for Clickstream Data

Categories π si κsi
Time Categories π si κsi

Time

si Name (δ = 0) (min) si Name (δ = 0) (min)

s1 Front-page 0.1579 4.053 12.0 s3 Tech 0.0401 3.437 12.8

s14 BBS 0.1099 6.926 12.9 s13 Summary 0.0377 5.565 12.9

s2 News 0.1019 4.304 11.6 s10 Living 0.0343 3.808 14.3

s8 Weather 0.0979 12.14 12.2 s9 Health 0.0315 3.354 13.2

s4 Local 0.0966 5.521 13.7 s11 Business 0.0217 2.525 13.6

s7 Misc 0.0783 4.395 14.3 s15 Travel 0.0135 2.045 11.6

s6 On-air 0.0608 3.327 13.4 s16 Msn-news 0.0084 13.89 11.5

s12 Sports 0.0549 4.272 12.0 s17 Msn-sports 0.0042 2.042 11.5

s5 Opinion 0.0504 8.774 12.7

s17s15
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Figure 2: Relationship Between the Long-Run Probability
and Condition Number of a Web-Page

Uncertainty. The DTMC Dcl
that we created from the ob-

served clickstream data is subject to sampling error on each state

transition; the sampling error will compound and threaten the va-

lidity of any veri�cation results. The clickstream data was collected

on a single day. Thus, the data is merely a sample of the population

of visitors to msnbc.com. Sample statistics represent population

statistics only to some degree of accuracy.

To account for the sampling error, we perturbed each probabilis-

tic transition in the Markov model Dcl
. In total, we added 289

perturbation variables, ®x = 〈x1, . . . ,x289〉, one for each transition.

After perturbing the model, we are interested in analyzing which

state is a�ected most by the perturbation, i.e. which state is most

susceptible to compounding sampling errors. For this reason, for

each state si , we compute its corresponding condition number κsi
by using our approach.

We present experimental results for this case study in Table 2.

The �rst two columns depict the set of 17 web page categories,

which are ordered from the most-visited to least-visited. The next

column shows the probability πsi that a visitor, in the long-run,

visits page si , given the ideal scenario (δ = 0). The last column

depicts the corresponding condition number κsi .
As can be seen from Table 2, in an unperturbed model, the most-

visited page is the front-page (15.79%), followed by BBS (10.99%)

and news (10.19%). On the contrary, the least-visited pages are

msn-news (0.42%) and msn-sport (0.84%). In Figure 2 we compare

the long-run probabilities in the unperturbed model (x-axis) with

the condition numbers for each state si . The condition numbers

indicate the e�ect of perturbing vector ®x during the computation of

πsi , i.e. the impact of the unknown sampling error on the calculated

long-run probabilities.

Table 3: Accuracy of the Linear Perturbation Bounds

Categories π si κsi
δ ∗

π ∗si
∆π si ±κsi δ ∗

si Name δ = 0 ×10−3 ×10−4 ×10−3

s1 Front-page 0.1579 4.053

1.5 0.157869 -0.31 ±6.079
3.0 0.157864 -0.36 ±12.15

s16 Msn-news 0.0084 13.89

1.5 0.008434 0.34 ±20.83
3.0 0.008433 0.33 ±41.67

s8 Weather 0.0979 12.14

1.5 0.097950 0.50 ±18.21
3.0 0.097939 0.39 ±36.42

s5 Opinion 0.0504 8.774

1.5 0.050412 0.12 ±13.16
3.0 0.050409 0.09 ±26.32

Observations. Figure 2 allows us to make several insightful ob-

servations. First, it reveals that the msn-news page (denoted as s16)—

even though it is one of the least-visited pages with πs16 = 0.0084—

is very sensitive with respect to perturbations of the transitions

probabilities. We can draw this conclusion from the large condition

number, κs16 = 13.89. This �nding indicates that small changes in

the transition probabilities may have a severe impact on the num-

ber of visits to the msn-news page. Second, the sensitivity of the

front-page, which is the most-visited page, has a condition number

(κs1 = 4.053) that is close to the median of 4.272. Thus, the front-

page is not particularly susceptible to perturbation of transition

probabilities. Finally, inspecting Figure 2 we cannot �nd a clear

correlation between the long-run probability and the condition

number. This implies that the most- and least-visited web-pages

are only weakly sensitive to the e�ect of uncertainty.

Soundness. To evaluate whether our perturbation techniques

provides a sound estimate of the worst-case consequences of uncer-

tainty in the computation of long-run probabilities, we introduce

Table 3. As the table shows, we have restricted our evaluation to the

most-visited page in the unperturbed scenario and three of the most-

sensitivity pages. Table 3 depicts that for each page, we perturbed a

non-parametric DTMC with distances δ∗ = 1.5, 3.0×10−3. Then, we

calculate the long-run probability against a non-parametric DTMC

with distance δ∗. And, we compare the perturbed and unperturbed

long-run probability, denoted as ∆πsi , against our estimate ±κsi δ∗
of the worst-case e�ect of uncertainty in the computation of πsi .

Under the assumption that specifying individual probability per-

turbations is impossible or impractical, for this experiment, the

allocation of δ∗ to transition probabilities represents one of the pos-

sible allocations, not the worst-case distribution. Our experimental

results show that, for each table, the estimate ±κsi δ∗ provide a

safe prediction of the impact of perturbations. For example, the

di�erence between the probabilities for the perturbed and unper-

turbed models for the front-page is −0.000031, which lies within

our estimation of ±0.006079.

In summary, using perturbation analysis we succeed in detecting

a web page category (msn-news) that is very sensitive to small

changes to the transition probabilities. Even minor changes to the

transition probabilities might signi�cantly impact the frequency

of visits to the msn-news pages. Perturbation analysis of DTMC

re�ects uncertainties in the model. These uncertainties include (but

are not limited to) uncertainties due to sampling error and changing

user behavior. The insights generated by our perturbation analysis

will be very helpful for capacity planning and related activities.
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5.2 Call Invocation Sequences
In this section we continue by investigating how the software engi-

neering community can bene�t from our approach, in particular

how the technique can help during software maintenance.

Model. To this end we model the invocation sequence graph

for wc, a program in the coreutils 8.25 tool set. wc parses the

standard input or alternatively a set of �les and counts various

attributes of the read data. By default it counts number of lines,

words, and bytes. We focus on wc for a multitude of reasons. First,

coreutils is widely distributed and used daily across a diverse

user population. Second, wc has a long development history dating

back to at least 1985 making it a very mature software artifact.

Third, since coreutils is very mature, we expect a mature test

suite which we utilize to collect transition probabilities to model

a DTMC and exemplify the strength of the proposed perturbation

technique. Finally, we picked the wc program from the coreutils
tool set due to prior exposure to its source code. Thus, we were

able to manually verify our results using existing prior knowledge.

Similar to the previous case study, we model wc as an irreducible
DTMCDwc

. The set of states S contains all unique functions called

during runtime of wc. Each called function fi is represented as a

state si ∈ S . Additionally, S contains two pseudo states, “start” and

“end”, that represent program start and program termination, re-

spectively. The set of initial states Sinit consists of the “start" state.

The transitions in Dwc
represent the sequences of calls observed

during runtime. We do not model function returns. In particular,

P(si , sj ) is calculated by counting the fraction of calls to the func-

tion fi represented by si that is directly followed by a call to the

function fj represented by state sj . A transition fi to fj indicates

that function fj might be called either by fi directly or by any caller
of fi . Thus, we model function call sequences not call graphs.

To gather runtime data we instrument wc with LLVM XRay

5.0.1 [1]. In particular, we use LLVM XRay’s capability to collect

all function enter and exit events that occurs during runtime. Next,

we execute the test suite of coreutils against the instrumented wc
binary. We obtain 42 trace �les that contain 55, 072 logged function

calls. We use these 55, 072 function calls to createDwc
as described

above. The resulting model contains 46 states representing func-

tions plus 2 pseudo states and 72 transitions.

Uncertainty. A common challenge in the context of software

maintenance is to judge about the impact of a prospective change.

Our technique can be used to analyze the sensitivity of a function

with respect to call frequency if transition probabilities are per-

turbed. This can be helpful in the context of software maintenance

to, for example, let us assume a change is pending. In order to judge

about the risk involved in applying the change to the software,

especially with regard to performance, we would like to know how

often the changed function fi is expected to be executed. That is,

we are interested in computing the long-run probability πsi . If

the function fi has a high probability of being executed, then any

change to this function might have a severe impact on availabil-

ity and performance of the software artifact. In contrast, if the

execution probability is low, then the risk involved is lower.

We use the previously described model capturing call invocation

sequences to analyze the execution frequencies for wc. To account

for uncertainties, we perturb all 40 probabilistic transition, that

Table 4: Experimental Results of wc where κsi > 10

Function πD
wc

si (δ = 0) κsi Time (min)

s2 umaxtostr 0.32782 42.7632 2.18

s11 to_uchar 0.00136 14.5389 2.40

s3 argv_iter 0.10969 10.9580 2.36

s8 wc_�le 0.10931 10.7852 2.07

s7 wc 0.10930 10.6524 2.48

s6 fdadvise 0.10930 10.5196 2.19

s4 safe_read 0.10964 10.4175 2.15

s5 write_counts 0.10946 10.2672 2.04

is 0 < P(si , sj ) < 1, of the model where ®x = 〈x1, . . . ,x40〉. The

experimental results are shown in Table 4. The rightmost column in

Table 4 contains the condition numberκsi . Due to space constraints,

we present only a limited sub-set of functions of wc. We show all

functions for which the condition number κsi > 10. The functions

are ordered by decreasing condition number. We also show the

long-run probability πsi under no perturbation (δ = 0).

Observations. The �rst entry in Table 4 describes umaxtostr.

Of all the functions observed during runtime umaxtostr is most

sensitive to perturbations (κs2 = 42.7632). It is also the most of-

ten executed function (with a long-run execution probability of

32.789%). Thus, any changes to umaxtostr should be associated

with a higher risk. The next entry describes to_uchar. Looking at

the execution probability of to_uchar (0.136%) we would predict

that changes to this function are likely unproblematic as it is exe-

cuted very seldom. However, the condition number for to_uchar
is relatively high (κs11 = 14.5389). This indicates that small changes

to the transition probabilities can have a severe impact on the exe-

cution frequency of to_uchar.

We investigate the call sites of to_uchar. All recorded calls to

to_uchar originate from wc.c line 496 and 499. These lines are

executed only if wc was instructed to count characters or words,

or extract the maximum line length. Thus, how often to_uchar
is executed depends strongly on the requested operation. Even

though to_uchar is executed only seldom in our test environment

any changes to it should be marked as risky since the selection of

runtime options might severely increase its invocation rate. The

high condition number for to_uchar correctly identi�es this sensi-

tivity. Figure 3 shows the relationship between unperturbed long-

run probability (log-scale) and condition number for wc. Similar

to Figure 2 in the previous clickstream data scenario we cannot

�nd a clear correlation between the long-run probability and the

condition number.

Soundness. To evaluate the soundness of our perturbation esti-

mate generated by our technique, we conducted additional exper-

iments, shown in Table 5. We �rst built a non-parametric model

with small perturbation distances (δ = 1, 3, 5 × 10−3). Second, we

compute the long-run probability for a sub-set of functions of wc in

the perturbed model, denoted as π∗si . In particular, we perturbed

all probabilistic transitions in the strongly connected subgraph

that performs the actual work of counting the requested proper-

ties from the input �les. That is, we perturb all outgoing tran-

sitions from umaxtrostr, wc, safe_read, to_uchar, argv_iter,

arg_iter_n_args, and call_freefun. Then, we compare the

perturbed and unperturbed long-run probabilities, computed as
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Table 5: Additional Experimental Results for wc

Functions π si κsi
δ = 1 × 10−3 δ = 3 × 10−3 δ = 5 × 10−3

si Name (δ = 0, %) π ∗si (%) ∆π si (%) ±κsi δ (%) π ∗si (%) ∆π si (%) ±κsi δ (%) π ∗si (%) ∆π si (%) ±κsi δ (%)

s2 umaxtostr 32.79 42.7632 32.11 -0.680 ±4.276 31.63 -1.160 ±12.83 31.32 -1.470 ±21.38
s11 to_uchar 0.136 14.5389 0.138 0.002 ±1.454 0.090 -0.046 ±4.362 0.058 -0.078 ±7.269
s3 argv_iter 10.97 10.9580 10.82 -0.150 ±1.096 10.71 -0.260 ±3.287 10.63 -0.340 ±5.479
s8 wc_�le 10.93 10.7852 10.77 -0.160 ±1.078 10.66 -0.270 ±3.236 10.59 -0.340 ±5.393
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Figure 3: Relation between Functions and CNs for wc

∆πsi = π∗si − πsi . Lastly, we calculate the estimate ±κsi δ , which

provides the worst-case e�ect of uncertainty in πsi .

For each function the estimate ±κsi δ in Table 5 represents a safe

prediction of the worst-case consequences caused by the perturba-

tion. For example, given that δ = 1 × 10−3, the di�erence between

the actual long-run probabilities of function to_uchar for the per-

turbed and unperturbed models is 0.138 − 0.136 = 0.002 with lies

within the estimation of ±1.454. The accuracy of this prediction is

replicated where δ = 3, 5 × 10−3. We obtained similar results for

all functions presented in Table 5. Finally, note that to_uchar is

a�ected substantially by the perturbations from a relative perspec-

tive. In contrast, the long-run probabilities of the other functions

are quite stable across the di�erent perturbation distances.

6 RELATEDWORK
There is a rich body of literature that investigates �nite irreducible

Markov chains under perturbation. Many of those works focus on

the e�ect of the perturbed transition matrix of a Markov chain on

its steady-state distribution. Similar analysis has also been applied

to queueing models [6]. One common technique is the derivation

of norm-based bounds for irreducible Markov chains. Speci�cally,

they computed a condition number κ for measuring the sensitivity

of the Markov chain. Let E = (E ji ) ∈ R
n×n

denote the perturbation.

Let P and P′ = P+E be probability transition matrices of irreducible

Markov chains with respective stationary probability vectors π and

π ′
satisfying πP = π , π ′P′ = π ′

, and

∑
i π i = 1 =

∑
i π

′
i . Then,

‖π − π ′‖ ≤ κ · ‖E‖ for suitable vector and matrix norms.

In those approach, the condition number κ has been calculated

by using the fundamental matrix of a Markov chain as introduced

by Kemeny et al. [11] and Schweitzer [12], the group inverse of

A ≡ I − P as presented in [9, 13], the ergodicity coe�cients [7]

and the mean �rst passage times [3]. All these approaches for

computing the condition number were collected and compared by

Cho and Meyer [4]. Based on their review, the smallest condition

number is computed by using relevant information of the group

inverse of A. This approach was proposed by Haviv et al. [9] and

Kirkland et al. [13].

However, Cho and Meyer also revealed that the computation of

the fundamental matrix and the group inverse are usually expensive.

For this reason, the condition number in terms of the mean �rst

passage is more feasible to be computed. Likewise, it provides an

equivalent condition number to Haviv’s de�nition based on the

underlying structure of the Markov chain.

Together these studies provide valuable insights into the investi-

gation of the sensitivity of the stationary distribution of Markov

chains under perturbation. However, these previous studies com-

pute the condition number κ based on the perturbation E, which is

a matrix of prior de�ned values. Even though we are interested in

analyzing the e�ect of the perturbation in the long-run behavior

of DTMCs, our proposal is di�erent from these previous studies

in two points. First, we ignore the de�ned values that the pertur-

bation might take. Thus, we propose to capture the perturbation

as symbolic variables. And, to provide an estimation of the worst-

case consequences of the uncertain phenomena. Second, previous

studies have not been applied in probabilistic model checking. To

the best of our knowledge, no previous publication in the literature

has addressed this problem using perturbation analysis.

7 CONCLUSION
The main goal of this paper is to estimate the worst-case conse-

quences of uncertainty on veri�cation of long-run properties in

DTMCs. Our main contribution is a mathematical framework for

asymptotic analysis in the presence of small perturbations to model

probabilities on veri�cation of long-run properties against DTMCs.

To evaluate our perturbation approach, we implemented a pro-

totype in Python. We ran our experiments on clickstream data and

call invocation sequences. These case studies have been modeled

as a DTMC and a�ected by small perturbations for our evalua-

tion purposes. For each case study, we evaluated several long-run

properties under the presence of perturbations. Our experimental

results reveal the importance of our approach at estimating the

e�ect to these perturbations and they provide crucial information

for identifying the sensitivity of the long-run properties under un-

certainty. This work is the �rst study on dealing the uncertain

phenomena in the veri�cation of long-run properties in DTMCs by

using perturbation analysis. There are several directions for further

study, including backward analysis that provides the maximum

permitted perturbations based on a range of veri�cation results.
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