
Regression Greybox Fuzzing
Xiaogang Zhu

xiaogangzhu@swin.edu.au
Swinburne University of Technology & CSIRO’s Data61

Australia

Marcel Böhme
marcel.boehme@acm.org

Monash University
Australia

ABSTRACT

What you change is what you fuzz! In an empirical study of all
fuzzer-generated bug reports in OSSFuzz, we found that four in
every five bugs have been introduced by recent code changes. That
is, 77% of 23k bugs are regressions. For a newly added project, there is
usually an initial burst of new reports at 2-3 bugs per day. However,
after that initial burst, and after weeding out most of the existing
bugs, we still get a constant rate of 3-4 bug reports per week. The
constant rate can only be explained by an increasing regression
rate. Indeed, the probability that a reported bug is a regression (i.e.,
we could identify the bug-introducing commit) increases from 20%
for the first bug to 92% after a few hundred bug reports.

In this paper, we introduce regression greybox fuzzing (RGF)
a fuzzing approach that focuses on code that has changed more

recently or more often. However, for any active software project, it
is impractical to fuzz sufficiently each code commit individually.
Instead, we propose to fuzz all commits simultaneously, but code
present in more (recent) commits with higher priority. We observe
that most code is never changed and relatively old. So, we identify
means to strengthen the signal from executed code-of-interest. We
also extend the concept of power schedules to the bytes of a seed and
introduce Ant Colony Optimization to assign more energy to those
bytes which promise to generate more interesting inputs.

Our large-scale fuzzing experiment demonstrates the validity
of our main hypothesis and the efficiency of regression greybox
fuzzing. We conducted our experiments in a reproducible manner
within Fuzzbench, an extensible fuzzer evaluation platform. Our
experiments involved 3+ CPU-years worth of fuzzing campaigns
and 20 bugs in 15 open-source C programs available on OSSFuzz.

1 INTRODUCTION

Greybox fuzzing has become one of the most successful methods
to discover security flaws in programs [3]. Well-known software
companies, such as Google [7] and Microsoft [2], are utilizing the
abundance of computational resources to amplify, by orders of mag-
nitude, the human resources that are available for vulnerability
discovery. For instance, within the OSSFuzz project, a small team
of Google employees is utilizing 100k machines and three grey-
box fuzzers (incl. AFL) to find bugs in more than 300 open-source
projects.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS’21, November 14–19, 2021, Seoul, South Korea

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

●●●
●●●●●●

●●●●●●●●●●●●
●●●
●●●●●●
●●●
●
●●

●
●
●●
●●
●
●●●
●
●●●
●●●●●●●●
●●●●●
●●●●●●
●●
●

●
●●
●
●●
●
●●
●●
●●●●●●●●●
●●
●

●●●

●●●●●●●
●

●
●
●
●

●

●
●●●
●
●

●●●●●●
●
●
●●●
●●
●

●
●
●
●
●●

●

●
●

●
●
●
●
●
●●
●
●

●●

●

●

●
●
●
●●●
●

●
●
●
●

●●

●

●

●

●
●

●

●

●

●
●
●
●
●

●
●

●●
●
●
●

●

●
●

●

●●●
●
●●
●
●
●
●
●●●

●

●●●

●
●●
●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●●

●

●●

●

●

●

●●●

●●

●●●

●

●●

●●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

●

●

●

●●

●

●

●●●●

●

●●●

●●

●

●●●●

●

●

●●

●

●●

●

●

●

●●●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●●

●

●

●

●

●●

●●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●●

●

●

●

●

●

●●

●

●●●●●●●

●

●●●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●●

●

●●●●

●●●●●●

●

●

●●●●

●

●●●

●

●

●●

●

●

●

●●●●●●●

●●●

●●

●●

●

●●

●●●

●

●

●●●

●●●

●●

●

●

●

●

●●

●●●●

●

●●

●●●●

●

●●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●●●

●●

●●●

●●

●

●

●●●

●

●●●

●

●●●

●

●●

●●●

●

●●●

●●●●●

●

●●●●

●

●

●

●

●

●●

●

●●●●●

●●

●●●●●●●

●

●●●

●

●●●●●

●

●●●●

●

●●●

●

●

●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●

●

●

●

●●●●●●●●●●

●

●●●●●●●

●

●●

●●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●

●●●

●

●●●●●●●●

●●

●●

●●

●●

●●●●

●

●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●●●●●

●

●●

●

●

●●

●●●

●●●●

●

●●

●

●●

●●●●

●●

●

●

●

●●●●

●

●

●

●

●●●●●

●

●●●●●

●

●●

●

●●

●●●

●

●●

●

●●●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●

●

●●●●●●●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●

●

●●●

●●●●●

●

●

●●

●●●●●●●●●●●

●●

●

●

●●●

●

●

●●

●●●●●●●●

●●

●●●●●●

●

●

●

●●●●

●

●●

●

●●

●

●●●

●

●●

●●

●

●

●

●●●●●

●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●●●●

●

●●●

●

●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●

●

●●●

●

●

●

●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●

●

●●●●●●

●

●●●

●

●●●●●

●

●●●●●●●●●●●●●

●●●

●●●●

●

●●

●

●●●●●●●●●

●

●●

●

●●●●

●

●

●

●

●

●●

●●●

●

●●●●●●●

●

●●●●●●

●

●

●

●●●

●

●●●●

●

●●●●●●

●

●●●●●●●●●

●

●●●

●

●

●

●●

●

●●●

●

●

●●●

●●●●●●●●●●●●

●

●●●●●

●

●●●●●

●

●

●

●

●●●

●

●

●

●

●●●

●

●●●●

●

●●●●●

●

●●●●●

●●

●

●

●●

●

●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●

●

●●●●

●

●

●●

●●

●●

●

●●●

●●●●

●

●

●●

●●

●●

●●

●

●

●

●●●●●●

●

●

●

●●

●●●

●●

●

●

●●●

●

●●●●●●●

●

●

●

●●●●

●●

●●●●●

●●

●●●

●

●

●

●

●●

●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●

●

●

●

●

●●

●●

●

●●●●

●

●●

●

●●●

●●●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●

●

●●●

●

●●

●

●●●●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●

0%

25%

50%

75%

100%

1 10 100 1000
The x−th reported bug (log−scale)

P
ro

ba
bi

lit
y

th
at

 th
e

x−
th

 b
ug

 is
 a

 r
eg

re
ss

io
n

#bugs
●

●

●

●

●

●

●
●

1

2

5

10

20

50

100

200

(a) Probability that the 𝑥-th reported bug is a regression.

0

500

1000

1500

0 500 1000 1500 2000
The x−th reported bug

N
o.

 d
ay

s
si

nc
e

th
e

fir
st

 b
ug

 w
as

 r
ep

or
te

d

0.7 0.8 0.9 1.0
%regression

#bugs
1

2

5

10

20

50

100

200

(b) Number of days between the first and 𝑥-th bug report.

Figure 1: Empirical investigation of bug reports in OSSFuzz.

We analyzed the 23k fuzzer-generated bug reports from OSSFuzz
to understand how we can automatic vulnerability discovery even
more efficient. We found that most of the reported bugs are actually
introduced by changes to code that was working perfectly fine.
For the average project, almost four in five bug reports (77%) were
marked as regressions, i.e., a bug-introducing commit could be
identified. The majority of regressions were introduced five days or
more prior to being reported (2 months on average). This motivates
the need for faster regression fuzzing approaches.

In OSSFuzz, the probability for a new bug report to be a regres-
sion increases from 20% for the first bug to 92% after a few hundred
bug reports. Why? Once onboarded, a project in OSSFuzz is con-
tinuously fuzzed. A few weeks after the onboarding, most of the
source code of the project remains unchanged. After many fuzzing
campaigns, most (non-regression) bugs in this code have now been
discovered. Only changes to the project’s source code can introduce
new bugs. In comparison, the code that has been changed since the
onboarding has also been fuzzed much less often.

So then, why should we continue to fuzz every piece of code
with equal priority? Can we somehow prioritize the fuzzing of
code that has changed more recently or more frequently to counter-
balance how often each piece of code has been fuzzed throughout
the project’s lifetime within OSSFuzz?

https://doi.org/10.1145/1122445.1122456

CCS’21, November 14–19, 2021, Seoul, South Korea Xiaogang Zhu and Marcel Böhme

commit history

program
 statem

ents

bug related commit 1

bug related commit 2

files of an XML parserall changes

DTD parsing changes
namespace related changes
allocating insufficient memory
reading out of bounds

Figure 2: Development of LibXML2. It is insufficient to focus

on each commit individually.

We could focus the fuzzer on a specific commit [5, 6, 17, 19, 34].
Figure 2 illustrates the challenges of this approach. Suppose, we
deploy the AFLGo directed fuzzer [6] to fuzz every commit during
the development of an XML parser library. In the past week, the
developer has been working on the proper handling of name spaces

and submitted several commits. In the week before, the developer
was working on the parser of Document Type Definitions (DTD).

With a strict focus on the given commit, bugs that are introduced
in untested commits or across several commits cannot be found.
Suppose, in an earlier commit, a new array was added but, due to
an integer overflow, insufficient memory was allocated. Because
the array is never accessed in this particular commit, AFLGo could
never find this bug. In one of the later commits, a memory access
is added. A fuzzer that also triggers the integer overflow and the
insufficient memory allocation in the earlier commit would also
discover a read-out-of-bounds. However, AFLGo—being directed
only to the changes in this commit—would exercise the memory-
access but may not discover the out-of-bounds read. In fact, it would
be impractical if the developer ran AFLGo on every commit, thus
missing the bug entirely. It is also common to terminate a CI action
that takes more than one hour,1 while the current recommendation
for a reasonable fuzzing campaign length is 24 hours [16].

In this paper, we develop regression greybox fuzzing (RGF) and
propose to fuzz all commits simultaneously, but code present inmore
(recent) commits with higher priority. An RGF focuses on code that
is under development (i.e., the recent name space changes get more
priority than on the older DTD parser changes). Specifically, a RGF’s
power schedule assigns more energy to seeds that execute code that
has changed more recently or more frequently. In vanilla greybox
fuzzing, the search process can be controlled using a power schedule,
which distributes energy across the seeds in the corpus. A seeds
with higher energy is also fuzzed more often.

Efficient fitness function. Like in directed greybox fuzzing,
we propose to conduct the heavy program analysis at compile
time to enable an efficient search at runtime. Unlike in directed
greybox fuzzing, every basic block (BB) becomes a target; only
the weight varies. Every BB is assigned a numerical weight that
measures how recently or how often it has been changed. This
information can be derived from a project’s versioning system. The
instrumentation also adds code to amplify and aggregate these
1https://docs.gitlab.com/ee/ci/pipelines/settings.html#timeout

weights during execution. In our experiments, the instrumentation
overhead is negligible. At run time, the RGF collects the aggregated
fitness value for each executed input and normalizes it between the
minimum and maximum values. Using a simulated annealing-based
power schedule, the RGF maximizes the probability to generate
inputs with a higher normalized fitness value.

Amplifying weak signals. During our investigation, we no-
ticed that most BBs have never been changed (foundational code
[27]), and only a tiny proportion of BBs have been changed recently
(in the last commit) or frequently (one hundred times or more). If
we computed the average across BBs in an input’s execution trace,
the signal from the interesting (low-age, high-churn) BBs would be
very weak. Hence, we develop a methodology to amplify the signal
which involves the logarithm and the inverse.

Byte-level power schedule. During our experiments, we also
noticed that most bytes in any given seed have no or negligible
impact on the BBs of interest. We develop a lightweight technique
that learns a distribution over the bytes of a seed that describes
the degree of impact. We extend the concept of power schedules to
the assign energy to bytes of a seed. We develop a byte-level power
schedule based on Ant Colony Optimization [12] that assigns more
energy to bytes that generate more "interesting" inputs, and that
uses the alias method [38] for efficient weighted sampling.

Experiments. To investigate our hypothesis, we implemented
our technique into AFL [1] and conducted large-scale experiments
on the Fuzzbench fuzzer evaluation platform [21]. We call our tool
AFLChurn. For our experiments, we identified 20 regression bugs
in 15 open-source C programs using the OSSFuzz bug tracker. With
the kind and generous assistance of the Fuzzbench team, we con-
ducted 3+ CPU-years worth of fuzzing campaigns in an entirely
reproducible fashion.

Results. Our experiments demonstrate the validity of our main
hypothesis and the efficiency of RGF. AFLChurn discovers a re-
gression about 1.5x faster and in more campaigns than AFL. In one
case, AFLChurn reduces the time to produce the first crash from
17 to 9 hours. Investigating each heuristic individually, we found
that neither heuristic has a general edge over the other heuristic.
However, in particular cases one heuristic clearly outperforms the
other which motivates the combination of both heuristics. We also
found that the code that is part of a crash’s stack trace often lives
in code that has been change more recently or more often.

Contributions. The main contributions of this work are:

• Empirical Motivation. We analyse 23k fuzzer-generated bug
reports in OSSFuzz [7] and identify regressions as a major

class of bugs. Once a project is well-fuzzed, most bugs are
found in the code that is currently under development. We
find no evidence that OSS Security improves over time.

• Technique. We propose regression greybox fuzzing which
fuzzes with higher priority code that has changed more re-
cently/often. We extend the concept of power schedule to
individual bytes in a seed and propose ACO [12] as suitable
search heuristic and the alias method for weighted sampling.

• Implementation and experiments. We conduct an evaluation
involving 20 bugs in 15 open-source C programs that were
available at OSSFuzz. We make our experiment infrastruc-
ture, implementation, data, and scripts publicly available.

https://docs.gitlab.com/ee/ci/pipelines/settings.html#timeout

Regression Greybox Fuzzing CCS’21, November 14–19, 2021, Seoul, South Korea

2 EMPIRICAL STUDY: OSSFUZZ BUG REPORTS

We are interested in the prevalence and reporting rate of regres-
sion bugs among the fuzzer-generated bug reports in the OSSFuzz
continuous fuzzing platform [7]. In the past five years, OSSFuzz
has automatically discovered and reported 22,582 bugs in 376 open
source software (OSS) projects. OSS maintainers are welcome to
onboard their project at any time. Once onboarded, fully auto-
matically, bugs are reported, deduplicated, and the corresponding
bug-introducing commit (BIC) identified. To identify BIC, OSSFuzz
employs an efficient delta debugging approach [42]. We note that
we can only analyze bugs that are automatically discovered by the
available greybox fuzzers in the master branch of a OSS project.
We do not analyze project-specific bug reports for bugs that are
discovered by other means (e.g., by a manual security audit).

Methodology. We used the bug tracker’s publicly accessible in-
terface to collect the data from all bug reports available on 30.12.2020.2
Each bug report also lists the OSS project, the report date, and the
date of the bug-introducing commit (if any). If a regression date
was available, we marked the corresponding bug as regression.

Format of Figure 1 (two scatter plots). We grouped the bug
reports by project and ordered them by report date. The x-axis
shows the rank of the bug report across all projects. The size of
each point illustrates the number of projects that have bug reports
with this rank. For instance, only 50 of the 376 projects have 100 bug
reports (i.e., 𝑥 = 100). Note that the x-axis on top is on a log-scale
while that on the bottom is on a linear scale. The y-axis showsmean

values across all projects with a given report rank. For instance, in
Fig. 1.a for those 50 projects that have 100 bug reports, 77% of bug
reports are regressions.

2.1 Prevalence of Regression Bugs

Our analysis shows that 77.2% of the 23k bug reports in OSSFuzz are
regressions. That is, a bug-introducing commit (BIC) was identified
and the bug cannot be observed before the BIC. This means that
most bugs found by OSSFuzz are, in fact, introduced by recent code
changes. We also find, on average, it takes 68 days from the BIC
to discovery and automatic reporting (5 days on the median). This
means that regressions are difficult to find.

Figure 1.a shows the probability that a reported bug is a regres-
sion as the number of project-specific bug reports increases. We
can see that the first reported bug is a regression only for one in
five projects (20.2%). However, as more bugs are reported (and old
bugs are fixed), the regression probability increases. The empirical
probability that the 1000th bug is a regression, is greater than 99%.

Four in five reported bugs are introduced by recent code changes.
The probability for a bug report to be a regression increases
from 20% for the first bug report to over 99% for the 1000th
reported bug. This demonstrates the need for focusing later
fuzzing efforts on recently changed code. On average, it takes 2
months to discover a regression (5 days on the median).

2OSSFuzz bug tracker @ https://bugs.chromium.org/p/oss-fuzz/issues.

2.2 Bug Reporting Rate Across Projects

Figure 1.b shows the rate at which new bugs are reported across all
projects in OSSFuzz. The dashed lines show linear regressions, for
ranks in [1, 100] and [300,∞], resp.. The color represents the prob-
ability that the report with a given rank is marked as a regression.
We show the number of days that have passed since the first bug
report as the number of project-specific bug reports increases.

Once a project is onboarded at OSSFuzz, new bugs are reported at
a constant rate of 2.5 bugs per day. For many of the early reported
bugs of a project no bug-introducing commit can be identified.
After a while new bugs are reported at a much lower pace. This is
consistent with our own experience. Fuzzing is very successful in
finding bugs particularly in new targets that have not been fuzzed
before. Once the bugs are fixed, less new bugs are found. The code
has already been fuzzed and most bugs have been found.

However, after this initial burst of new bugs reported, we were
surprised to find that subsequent bugs continue to be reported at
a constant rate of about 3.5 bugs per week. Our only explanation
was that these bugs must have been introduced by recent changes.
Indeed, mapping the probability of a reported bug to be a regression
onto the curve, we can see that almost all of the newly reported
bugs in this second phase are regressions (green color).

Once a new project is onboarded at OSSFuzz, there is an initial
burst of new bug reports at a rate of 2.5 per day. After this burst,
the rate drops but remains constant at 3.5 reports per week.
This demonstrates how fuzzing unchanged code over and over
while another part of the project changes is a waste of compute.

2.3 OSS Security

Fifteen years ago, Ozment and Schechter examined the code base
of the OpenBSD operating system to determine how many of the
vulnerabilities existed since the initial version and whether its
security had increased over time [27]. They found that 62% of
reported vulnerabilities existed since the initial version 7.5 years
prior (i.e., 38% were regressions). They call these vulnerabilities as
foundational. The authors identified a downward trend in the rate
of vulnerability discovery, so that they described the security of
OpenBSD releases like wine (unlike milk), as improving over time.

In contrast, for the 350+ open source software (OSS) projects
we studied,3 new bugs are being discovered in the master branch
at a constant rate. In fact, we only measure the bugs found by the
three fuzzers that are continuously run within the OSSFuzz project.
There are also non-fuzzing bugs that are discovered downstream, or
during manual security auditing which we do not measure. We find
that only 23% of the fuzzer-reported bugs are foundational4 and
the probability that a fuzzer-reported bug is due to recent changes
increases over time.

2.4 Threats to Validity

As threat to external validity, we note that we only consider bugs
that were discovered by the greybox fuzzers and code sanitizers
available in OSSFuzz. As a threat to internal validity, we note that

3https://github.com/google/oss-fuzz/tree/master/projects
4To be precise, for 23% of bugs no bug-introducing commit could be found.

https://bugs.chromium.org/p/oss-fuzz/issues
https://github.com/google/oss-fuzz/tree/master/projects

CCS’21, November 14–19, 2021, Seoul, South Korea Xiaogang Zhu and Marcel Böhme

the OSSFuzz fuzzing campaigns may be started up to 24 hours after
the bug-introducing commit was submitted. OSSFuzz builds some
OSS projects at most once a day. Moreover, we cannot guarantee
there are no bugs in the algorithm used to determine the bug-
introducing commit.

3 REGRESSION GREYBOX FUZZING

3.1 Code History-based Instrumentation

Conceptually, we need to associate an input with a quantity that
measures how old the executed code is or how often it has been
changed. To compute this quantity during the execution of the
input, we instrument the program. The regression greybox fuzzer
(RGF) uses this quantity to steer the fuzzer towards more recently
and more frequently changed code.

Algorithm 1 Code History-based Instrumentation
Input: Program 𝑃

1: Inject 𝛼, count as global, shared variables into 𝑃 and set to 0
2: for each Basic Block 𝐵𝐵 ∈ 𝑃 do

3: age = lastChanged(𝐵𝐵) // in #days or #commits

4: churn = numberOfChanges(𝐵𝐵)
5: (age′, churn′) = amplify(age, churn)
6: Inject "𝛼 = 𝛼 + (age′ · churn′)" into 𝐵𝐵
7: Inject "count = count + 1" into 𝐵𝐵
8: end for

Output: Instrumented program 𝑃 ′

Algorithm 1 sketches our instrumentation procedure. First, our
instrumentation pass introduces two new global variables, 𝛼 and
count (Line 1). After the execution of the input on the instrumented
program, the RGF can read the values of these variables. For in-
stance, our RGF tool AFLChurn, implements an LLVM instrumenta-
tion pass that is loaded by the clang compiler. AFLChurn reserves
two times 32bit (or 64bit) at the end of a shared memory to store the
values of 𝛼 and count. The 64 kilobyte shared memory is already
shared between the program and vanilla AFL to capture coverage
information.

lastChanged (Line 3). For every basic block BB ∈ 𝑃 , RGF com-
putes the age value. Conceptually, the age of a basic block indicates
how recently it has been changed. AFLChurn uses git blame to
identify the commit 𝐶 for a given line 𝐿 and subtracts the date of
𝐶 from date of the (current) head commit to compute the number

of days since line 𝐿 ∈ BB was last changed. AFLChurn uses git
rev-list to count the number of commits since commit 𝐶 . The
average age of each line 𝐿 ∈ BB gives the age of the basic block BB.
The number of days and number of commits since 𝐶 are both used
as independent measures of the age of a basic block.

numberOfChanges (Line 4). For all basic blocks BB ∈ 𝑃 , RGF
computes the churn value. Conceptually, the churn of a basic block
indicates how frequently it has been changed. AFLChurn finds
all commits to the file containing BB. A commit 𝐶 ′ is the syntactic
difference between two successive revisions 𝐶 ′ = 𝑑𝑖 𝑓 𝑓 (𝑅, 𝑅). For
each commit 𝐶 ′ prior to the most recent revision 𝐻 (head), RGF
determines whether𝐶 ′ changed BB in 𝐻 as follows. Suppose, there
are three revisions, the most recent revision 𝐻 and the commit-
related revisions 𝑅 and 𝑅 such that 𝐶 ′ = 𝑑𝑖 𝑓 𝑓 (𝑅, 𝑅). By computing

the difference diff (𝑅,𝐻) between 𝑅 and the current revision, we
get two pieces of information: (a) whether BB has changed since 𝑅
and which lines in 𝑅 the given basic block BB corresponds to. Using
the commit 𝐶 ′ = diff (𝑅, 𝑅), we find whether those lines in 𝑅—that
BB corresponds to—have been changed in 𝐶 ′. By counting all such
commits 𝐶 ′, we can compute how often BB has been changed.

amplify (Line 5). After computing age and churn values for a ba-
sic block BB, we amplify these values. Our observation is that there
are a large number of “foundational” basic blocks that have never
been changed. If we just computed the average across basic blocks
in the execution trace of an input, the signal from the interesting
basic blocks would be very weak. Very recently or more frequently
changed basic blocks are relatively rare. So, how can we amplify

the signal from those interesting basic blocks?
We conducted preliminary experiments with several amplifier

functions (see Appendix B). We found that the inverse of the number
of days age’ = 1

age
and the logarithm of the number of changes

churn’ = log(churn) provides the most effective amplification. The
regression greybox fuzzer will multiply the aggregated, amplified
age and churn values and maximize the resulting quantity.

inject (Line 6–8). Finally, for all basic blocks BB ∈ 𝑃 , our in-
strumentation pass injects new instructions at the end of BB. The
added trampoline makes 𝑃 ′ aggregate that amplified values (𝛼 , 𝛽)
and count the number of executed basic blocks (count).

3.2 Simulated Annealing-based Power Schedule

Regression greybox fuzzing (RGF) steers the input generation to-
ward code regions that have been changed more recently and more
frequently. To this end, RGF uses the instrumented program to
compute the age and churn values during the execution of an input.
RGF is an optimization problem which requires to carefully balance
exploration and exploitation. If RGF only explores and never uses
the age and churn value, then it cannot be any better than normal
greybox fuzzing. If RGF only exploits and only fuzzes the seed with
optimal age or churn values, then it will miss opportunities to dis-
cover bugs in other (slightly older) code. Global search techniques
allow us to manage this trade-off.

We propose to solve RGF’s optimization problem using simulated

annealing. It begins with an exploration phase and quickly moves to
an exploitation phase. In greybox fuzzing, we can adjust such search
parameters using the power schedule. A power schedule assigns
energy to all seeds in the seed corpus. A seed’s energy determines
the time spent fuzzing the seed.

Algorithm 2 Simulated Annealing-based Power Schedule

Input: Instrumented Program 𝑃 ′, Seed Corpus 𝐶 , Input 𝑡
1: (𝛼, count) = execute(𝑃 ′, 𝑡)
2: 𝛼 = 𝛼/count // compute BB average

3: 𝛼 = normalize(𝛼,𝐶)
4: 𝜔 = (1 −𝑇exp)𝛼 +𝑇exp // where 𝑇exp is the temperature

5: 𝑝 = 𝑝afl · 2𝑟 (2𝜔−1)
// such that 𝑝 ∈ [2−𝑟 , 2𝑟]

Output: Energy 𝑝 of 𝑡

Algorithm 2 shows the RGF power schedule. Given an input 𝑡
and the instrumented program 𝑃 ′, the execution of 𝑡 on 𝑃 ′ produces
the average amplified weight value 𝛼 ; Lines 1–2).

Regression Greybox Fuzzing CCS’21, November 14–19, 2021, Seoul, South Korea

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 2.5 5.0 7.5 10.0
Number of times the seed was selected

O
m

eg
a

ω

0.9 × (1 − 0.5selected) + 0.5 × 0.5selected

0.5 × (1 − 0.5selected) + 0.5 × 0.5selected

0.1 × (1 − 0.5selected) + 0.5 × 0.5selected

0

2

4

6

8

0.00 0.25 0.50 0.75 1.00
Omega ω

E
ne

rg
y

p

22 × (2ω−1) 23 × (2ω−1)

Figure 3: Functional behavior of Simulated Annealing (left)

and Power Schedule (right). On the left, we see omega 𝜔 for

three different values of the product 𝛼 ∈ {0, 1, 0.5, 0.9}. As
the seed is selected more often (thus, as 𝑇exp increases), 𝜔

approaches 𝛼 . On the right, we see the seed’s energy factor
𝑝/𝑝

afl
for two different values of 𝑟 ∈ {2, 3}. As the seed’s

weight 𝜔 goes towards 0, the factor tends towards 2−𝑟 . As
𝜔 goes towards 1, the factor tends towards 2𝑟 .

normalize (Line 3). In order to make the weight value subject to
simulated annealing, we need to normalize the value into the range
between zero and one. Given the seed corpus 𝐶 and the weight
value 𝛼 (𝑡) for input 𝑡 , we compute the normalized value 𝛼 ′ as

𝛼 =

𝛼 (𝑡) − min
𝑠∈𝐶

(𝛼 (𝑠))

max
𝑠∈𝐶

(𝛼 (𝑠)) − min
𝑠∈𝐶

(𝛼 (𝑠)) such that 𝛼 ∈ [0, 1] . (1)

Omega 𝜔 (Line 4) is computed to address the exploration versus
exploitation trade-off when RGF is searching for inputs that exe-
cute code that has changed more recently or more frequently. The
formula is (1 −𝑇exp)𝛼 + 0.5𝑇exp where 𝑇exp = 0.05𝑡 .𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 is the
temperature function for our simulated annealing. As the number
of times that the seed 𝑡 ∈ 𝐶 has been selected before increases,
𝜔 decreases (“cools”). The concrete behavior is shown in Figure 3
(left). During exploration (low temperature 𝑇exp), low- and high-
fitness seeds get the same weight 𝜔 . That is, when the seed has
never been chosen, 𝜔 = 0.5. As the seed input 𝑡 is chosen more
often (high-temperature), 𝜔 approaches the product 𝛼 .

Power schedule 𝑝 (𝑡) (Line 5). Based on the annealed product of
the normalized, average amplified age and churn value 𝜔 , RGF
computes the energy 𝑝 of seed 𝑡 as 𝑝 = 𝑝afl · 2𝑟 (2𝜔−1) where 𝑝afl
is the energy that the greybox fuzzer already assigns to the seed,
e.g., based on execution time and coverage information and where
𝑟 determines the range of 𝑝 as 𝑝 ∈ [2−𝑟 , 2𝑟]. The behavior of the
factor 𝑝RGF = 𝑝/𝑝afl (independent of the original power schedule
𝑝afl) is shown in Figure 3 (right). As the annealed product of the
normalized, average amplified age and churn value 𝜔 increases
from 0.5 to 1, the factor 𝑝RGF approaches 2𝑟 . As 𝜔 decreases from
0.5 to 0, the factor 𝑝RGF approaches 1

2𝑟 .

3.3 Ant Colony Optimisation (ACO)-based

Byte-Level Power Schedule

Instead of selecting all bytes with equal probability, we suggest to
learn the distribution of selection probabilities over the input bytes,
so as to increase the probability to yield inputs with better scores.

byte position

byte score

seed (p=0.36)

input (p=0.52)

10 2 3 4 5 6 7 8 9 11 12 13 14 15 1610 17
-128

127

0

Figure 4: Byte-level Energy Assignment. The distribution of

scores for each byte in the seed is shown on top. The bytes

of the seed and input are shown at the bottom. The input

was generated by changing the ninth byte of the seed. As

the fitness 𝑝 of the generated input is greater than that of

the seed (0.52 > 0.36), the scores of that byte and both of its

direct neighbors are incremented (shown as black rectangles

above bytes 8–10).

In our experiments, we observed that some bytes in the seed
are related more and others less to the execution of code that has
changed more often or more frequently. Suppose, we are fuzzing
ImageMagick which is widely used to process user-uploaded images
on web servers, and most recently the developers have worked on
the image transparency feature.

A common approach to trace input bytes to a given set of code
locations is called tainting [35]. Conceptually, different parts of the
input are assigned a color. In dynamic tainting, these colors are then
propagated along the execution through the source code, instruc-
tion by instruction. However, tainting comes with much analysis
overhead while performance is a key contributor to the success
of greybox fuzzing. Moreover, in our case there is no concrete set
of target code locations. There is only code that is more or less
“interesting”. Thus tainting is impractical for our use case.

Instead, we suggest that RGF adaptively learns a distribution
over the inputs bytes that are related to generating inputs that
exercise "more interesting" code. For our ImageMagic example,
RGF selects image bytes with higher probability which are related
to the more recently changed image transparency (e.g., the alpha
value). An illustration of such a byte selection distribution is shown
in Figure 4. We can see that the probability to select bytes 8–12
is substantially higher than the probability to select bytes 15–17.
For our ImageMagick example, bytes 8–12 might be related to the
recently changed image transparency feature while bytes 15–17
are unrelated.

A key challenge of learning a distribution over the input bytes
is that the selection of bytes in later fuzzing iterations depends on
the selection of bytes in the earlier iterations. For instance, if, in
the very first iteration, we happened to choose the first three bytes,
were successful, increased the score of the first three bytes, and
repeated this, we might reinforce a spurious distribution with most
of the probability weight on the first three bytes.

To overcome this challenge, we propose to use the general idea
of Ant Colony Optimization (ACO)[12] where the individually byte
scores, over time, gravitate to a neutral zero score. The metaphor
stems from ants finding trails to a target by randommovement. Ants

CCS’21, November 14–19, 2021, Seoul, South Korea Xiaogang Zhu and Marcel Böhme

leave pheromones on their trails which make other ants follow this
trail. Successful trails are travelled on by more ants which also leave
more pheromone. However, over time the pheromone evaporates
which re-opens the opportunity to find better trails. Similarly, RGF
assigns a score to the bytes of an input based on the input’s fitness
relative to the seed. However, at constant intervals the score of all
bytes is multiplied by 0.9 to slowly "evaporate" old scores.

The concrete procedure is as follows.
(1) When a new input 𝑡 is added to the seed corpus,

• RGF computes the fitness 𝛼 for seed 𝑡 , i.e., the product of
the normalized, average amplified age and churn values,
and

• RGF sets the score for all bytes in 𝑡 to the neutral score
of zero. At this point, all bytes have equal probability of
being selected.

(2) When a new input 𝑡 ′ is generated by fuzzing the seed 𝑡 ,
• RGF computes the fitness 𝛼 for input 𝑡 ′,
• RGF computes the fuzzed bytes in 𝑡 as the syntactic differ-
ence between 𝑡 and 𝑡 ′,

• If the fitness for 𝑡 ′ is higher than that of seed 𝑡 , RGF incre-
ments the byte score for all fuzzed bytes.

(3) When the seed 𝑡 is chosen for fuzzing, RGF selects byte 𝑖 for
fuzzing with probability 𝑠𝑐𝑜𝑟𝑒 (𝑖)/∑𝐵 (𝑡)

𝑗=1 𝑠𝑐𝑜𝑟𝑒 (𝑗) where 𝐵(𝑡)
is the number of bytes in 𝑡 .5 In order to efficiently sample
from a discrete distribution, RGF uses the alias method [38],
as explained below.

(4) In regular intervals, RGF multiplies all byte scores by a con-
stant smaller than one to slowly gravitate older byte scores
towards the neutral zero again.

For Step 3, we need to efficiently choose a random byte 𝐵 𝑗 from
a seed 𝑡 of size 𝑁 according to the probability weights {𝑝𝑖 }𝑁1 , such
that 𝑗 : 1 ≤ 𝑗 ≤ 𝑁 . A simple and intuitive approach is to generate
a random number 𝑟 in range

[
1,
∑𝑆
𝑖=1 𝑝𝑖

]
and to find the first index

𝑗 , such that 𝑟 >=
∑𝑗

𝑖=1 𝑝𝑖 . However, the secret source of success of
greybox fuzzing is the swift generation of hundreds of thousands
of executions per second. The complexity of this simple method is
𝑂 (𝑁) which is too much overhead.

Instead, we propose to use the alias method which has a com-
plexity of 𝑂 (1). To capture the distribution of weights over the
bytes, an alias table is precomputed. Each element 𝐴[𝑖] in the alias
table corresponds to a byte 𝐵𝑖 in seed 𝑡 . The element 𝐴[𝑖] in the
alias table includes two values: the probability 𝑝𝑖 to choose 𝐵𝑖 and
the alias byte 𝐵 𝑗 . Suppose, 𝐴[𝑖] is selected uniformly at random.
We compare 𝑝𝑖 to a number that is sampled uniformly at random
from the interval [0, 1]. If 𝑝𝑖 is larger than that number, we select
𝐵𝑖 . Otherwise, we select 𝐵 𝑗 . This gives a complexity that is constant
in the number of bytes 𝑁 .

4 EXPERIMENTAL SETUP

Our main hypothesis is that a fuzzer that is guided towards code
that has changed more recently or more often is also more efficient
in finding regression bugs. In our experiments, we evaluate this
hypothesis and test each heuristic individually.

5Common mutation operators—that require the selection of random bytes—are bit
flipping, adding, deleting, substituting bytes or chunks of bytes.

4.1 Research Questions

RQ.1 Does the guidance towards code regions that have been
changed more recently or more frequently improve the effi-
ciency of greybox fuzzing? We compare AFL to AFLChurn
and measure (a) the average time to the first crash (overall
and per bug), (b) the number of crashing trials, and (c) the
number of unique bugs found.

RQ.2 What is the individual contribution of both heuristics, i.e.,
focusing on more recently changed code versus focusing
on frequently changed code? We compare the efficiency of
AFLChurn (a) guided only by age, (b) guided only by the
number of changes, and (c) guided by both.

RQ.3 Are crash locations typically changedmore recently than the
average basic block? Are crash locations typically changed
more often than the average basic block?

4.2 Benchmark Subjects

Fuzzbench [21]. We conduct our evaluation within the Fuzzbench
fuzzer evaluation framework and used subjects with known re-
gressions from OSSFuzz [7]. Fuzzbench provides the computational
resources and software infrastructure to conduct an empirical eval-
uation of fuzzer efficiency (in terms of code coverage). We extended
our fork of Fuzzbench in several ways:

• New fuzzers. We added AFLChurn and its variants.6

• New benchmarks. We added our own regression benchmarks
as per the selection criteria stated below. We use the pro-
vided script to import a specific version of that project from
OSSFuzz to our Fuzzbench fork. To mitigate another threat
to validity, we maximize the number of unrelated changes
after the bug was introduced and import the specific revision
right before the bug is fixed.

• Deduplication. We integrated a simple but automated dedu-
plication method based on the Top-3 methods of the stack
trace. In our experiments, this method was quite reliable. To
be sure, we manually checked the deduped bugs and linked
them to OSSFuzz bug reports.

• Regression Analysis. We integrated scripts to automatically
extract the relevant data and write them as CSV files. We
wrote R scripts to automatically generate, from those CSV
files, graphs and tables for this paper.

Selection Criteria. In order to select our regression benchmark
subjects from the OSSFuzz repository, we chose the most recent
reports of regression bugs on the OSSFuzz bug tracker (as of Oct’20).
The bug report should be marked as a regression (i.e., the bug-
introducing commit has been identified and linked) and as verified
(i.e., the bug-fixing commit is available and has been linked). For
diversity, we chose at most one bug per project.

We select security-critical regressions and select bug reports
that were marked as such (Bug-Security). All bugs are memory-
corruption bugs, such as buffer overflows or use-after-frees. This
also mitigates a threat to validity when determining the age and
churn values for the root cause of the bugs. For buffer overflows,
root cause and crash location are often co-located.
6We also added both iterations of AFLGo. One "fuzzer" derives the distance information.
The other actually instruments and fuzzes the program.

Regression Greybox Fuzzing CCS’21, November 14–19, 2021, Seoul, South Korea

Table 1: Regression Benchmark. Fifteen regression bugs in

fifteen open-source C programs.

Project O’flow OSSFuzz Regression Reported (days) Fixed (days)

libgit2 (read) 11382 07.Nov’18 14.Nov’18 (+7) 14.Nov’18 (+0)
file (read) 13222 19.Feb’19 20.Feb’19 (+1) 20.Feb’19 (+0)

picotls (read) 13837 14.Mar’19 21.Mar’19 (+6) 13.Apr’19 (+23)
zstd (read) 14368 18.Apr’19 20.Apr’19 (+1) 20.Apr’19 (+0)

systemd (write) 14708 10.May’19 12.May’19 (+2) 17.May’19 (+5)
libhtp (read) 17198 14.Sep’19 16.Sep’19 (+2) 17.Sep’19 (+1)

openssl (write) 17715 24.Sep’19 25.Sep’19 (+1) 04.Nov’19 (+40)
libxml2 (read) 17737 25.Sep’19 26.Sep’19 (+1) 28.Sep’19 (+2)
usrsctp (write) 18080 06.Oct’19 09.Oct’19 (+3) 12.Oct’19 (+3)
aspell (write) 18462 05.Aug’19 23.Oct’19 (+79) 20.Dec’19 (+58)
yara (read) 19591 07.Nov’18 20.Dec’19 (+408) 01.Dec’20 (+347)

openvswitch (read) 20003 05.Jan’20 11.Jan’20 (+6) 16.Nov’20 (+310)
unbound (read) 20308 13.Jan’20 24.Jan’20 (+11) 19.May’20 (+120)
neomutt (write) 21873 24.Apr’20 25.Apr’20 (+1) 03.Jun’20 (+39)

grok (read) 27386 17.Apr’20 11.Nov’20 (+208) 11.Nov’20 (+0)

We select the version (that can be built) right before the regres-
sion is fixed. In order to prevent AFLChurn from gaining an unfair
advantage, we seek to maximize the number of unrelated changes
since a bug was introduced. For each subject, instead of choos-
ing the version right after the bug was introduced, we choose the
version right before the bug was fixed.

We skip non-reproducible bugs as well as bugs that crash within
the first 10 seconds. For each bug report, OSSFuzz provides a wit-
ness of the bug, i.e., a crashing test input. It is straight-forward to
validate that this test input is still crashing. Very rarely, bugs were
not reproducible. Fuzzbench provides an option to test-run a sub-
ject compiled for a fuzzer (make test-run-[fuzzer]-[subject]).
This test-run takes about ten seconds. If this very short fuzzing
campaign produces at least one crashing input, we skip the subject.

We skip projects with submodules. A submodule is a specific
revision of another Git project that is imported into the current Git
project. For instance, we maintain pointers to the AFLChurn repos-
itory in our fork of Fuzzbench to consistently update all references
whenever needed. However, we cannot properly instrument such
code during compilation, which is a threat to construct validity. So,
we decided to skip projects that import other projects.

Subjects. Table 1 shows the selected subjects together with some
details. We have selected security critical-bugs in 15 different open
source C projects. Five of those allow to write to unallocated mem-
ory, which may facilitate arbitrary code execution attacks. The
majority of those regression bugs were found in less than three
days after they were introduced. For four of fifteen regressions,
it took more than a week (between 11 and 408 days) to discover
them. During deduplication, we found another eight regression
bugs in those 15 subjects all of which are known and associated
with OSSFuzz bug reports.

With our selection criteria, we identify 15 regression bugs in
15 programs (Table 1). In our experiments, after de-duplication,
we find that we have discovered 20 regression bugs (10 of the
15 identified bugs, plus 8 bugs we were not looking for, and 2
double-free and use-after-free bugs related to libxml2_17737
that are more likely exploitable. In total, we discovered 20 re-
gression bugs in 15 open-source C programs.

Concretely, we selected the following subjects. LibGit2 is a Git-
versioning library. File is tool and library to identify the file for-
mat for a file. Picotls is a TLS protocol implementation. Zstd is a
compression library written by Facebook developers. Systemd is
widely used across Linux operating systems to configure and ac-
cess OS components. Libhtp is an HTTP protocol implementation.
Libxml2 is a ubiquitous XML parser library. Usrsctp is a SCTP pro-
tocol implementation. Aspell is a spell checker. Yara is a Malware
pattern detector. Openvswitch is a switching stack for hardware
virtualization environments. Unbound is a DNS resolver. OpenSSL
is a well-known SSL / TLS protocol implementation. Neomutt is a
command-line email client. Grok is an image compression library.

4.3 Baseline

AFL [1]. We implemented regression greybox fuzzing into the grey-
box fuzzer AFL and call our tool AFLChurn. As all changes in
AFLChurn are related only to regression greybox fuzzing, using
AFL as a baseline allows us to conduct a fair evaluationwithminimal
risk to construct validity.

AFLGo [6]. In order to compare regression greybox fuzzing
to directed greybox fuzzing, we chose a state-of-the-art directed
greybox fuzzer, called AFLGo. While many papers have since been
published on the topic of directed greybox fuzzing, none of the im-
plementations are publicly available for our comparison. We spent
several weeks to set up AFLGo for all 15 subjects (and more), but
failed, except for three subjects (see Appendix A)—despite the kind
help of the AFLGo authors. We succeeded for libgit2, libhtp, and ht-
slib. However, for five of fifteen subjects we failed to compile them.
These subjects either require a newer compiler version,7 or their
build process does not allow additional compiler flags. We failed
for the remaining seven subjects to compute the distance informa-
tion for the given commits, e.g., because the compiler-generated
call graph or control flow graphs are incomplete [9]. We make our
integration of AFLGo into Fuzzbench publicly available.

4.4 Setup and Infrastructure

The experiments are fully reproducible and where conducted with
the kind and generous assistance of the Fuzzbench team. According
to the default setup, each fuzzing campaign runs for 20 trials of 23

hours. Repeating each experiment 20 times reduces the impact of
randomness [16]. There is one fuzzing campaign for each subject-
fuzzer-trial combination. We run 4 fuzzers on 15 subjects 20 times.

We conduct over 3 CPU-years worth of fuzzing campaigns.

Each fuzzing campaign runs on its own machine, called run-
ner. A runner instance is a Google Cloud Platform (GCP) instance
(e2-standard-2), which has 2 virtual CPUs, 8GB of memory, and
30GB of disk space. The dispatch of all runner machines, and col-
lection of various fuzzer performance metrics is conducted on a
separate machine, called dispatcher. A dispatcher instance is a much
bigger GCP instance (n1-highmem-96) with 96 virtual CPUs, 624
GB of main memory, and 4TB of fast SSD disk storage. This virtual
setup is fully specified in our fork of Fuzzbench, which facilitates
to apply the repository and versioning concept to our experiments.

7AFLGo supports up to Clang version 4.0.

CCS’21, November 14–19, 2021, Seoul, South Korea Xiaogang Zhu and Marcel Böhme

The entire network of dispatcher and runners is deployed and
teared down fully automatically. The generated corpus, the crash-
ing inputs, and the fuzzer logs are copied onto cloud storage (GCP
buckets). We collect all our performance metrics from there.

4.5 Reproducibility

We believe that reproducibility is a fundamental building block
of open science and hope that other researchers and practitioners
can reproduce and build on our work. For this reason, we make all
our tools, data, scripts, and even the experimental infrastructure
publicly available.

• https://github.com/aflchurn/aflchurnbench (infrastructure)
• https://github.com/aflchurn/aflchurn (tools)
• https://kaggle.com/marcelbhme/aflchurn-ccs21 (data+scripts)

4.6 Threats to Validity

Like for any empirical investigation there are threats to the validity
of the claims that we derive from these results. The first concern is
external validity and notably generality. First, our results may not
hold for subjects outside of this study. However, we conduct exper-
iments on a large variety of open-source C projects that are critical
enough that they were added to OSSFuzz. Our random sample of
subjects is representative of such open-source C projects. In order
to mitigate selection bias, we explicitly specify selection criteria
and follow a concrete protocol (Section 4.2). To further support
independent tests of generality, we make our entire experimental
infrastructure publicly available.

The second concern is internal validity, i.e., the degree to which
a study minimizes systematic error. Like for implementations of
other techniques, we cannot guarantee that our implementation
of regression greybox fuzzing into AFLChurn is without bugs.
However, we make the code publicly available for everyone to
scrutinize our code. To minimize errors during experimentation,
we use and extend an existing tool [1] and infrastructure [21]. In
order to account for the impact of randomness, we repeat each
experiment 20 times.

The third concern is construct validity, i.e., the degree to which an
evaluationmeasures what it claims, or purports, to bemeasuring. To
minimize the impact of irrelevant factors onto the evaluation of our
main hypothesis, we implement our technique into an existing tool
and use the existing tool as a baseline. Thus, the difference in results
can be attributed fully to these changes. To prevent AFLChurn
from gaining an unfair advantage, we maximize the number of
unrelated changes since the bug was introduced. For each subject,
instead of choosing the version right after the bug was introduced,
we choose the version right before the bug was fixed.

5 EXPERIMENT RESULTS

5.1 Presentation

For each of the first two research questions RQ.1 and RQ.2, we
summarize our main results in a table and a graph.

Tables 2 and 3 show the mean time-to-error, the number of crash-
ing trials, and the average number of unique crashes. The mean

time-to-error (Mean TTE) measures how long it took to find the first
crash in the given subject across all successful campaigns. However,

Table 2: Effectiveness of Regression Greybox Fuzzing

Mean TTE #Crashing Trials Mean #Crashes

Subject AFL AFLChurn Factor AFL AFLChurn Factor AFL AFLChurn Factor

libgit2 00h 00m 00h 00m 0.5 20 20 1.0 48.05 71.50 1.5

1○file 00h 05m 00h 10m 2.0 20 20 1.0 4.70 5.25 1.1
yara 00h 10m 00h 13m 1.3 20 20 1.0 25.70 20.45 0.8

libxml2 00h 43m 00h 44m 1.0 20 20 1.0 777.95 704.20 0.9
aspell 02h 03m 01h 44m 0.8 20 20 1.0 7.60 7.65 1.0

2○

libhtp 03h 38m 02h 01m 0.6 20 20 1.0 55.95 156.50 2.8
openssl 05h 29m 03h 01m 0.6 20 20 1.0 8.70 6.60 0.8

grok 01h 37m 01h 37m 1.0 18 19 1.1 9.85 4.20 0.4
unbound 10h 22m 06h 15m 0.6 17 18 1.1 5.90 9.25 1.6

zstd 16h 44m 09h 25m 0.6 2 4 2.0 0.10 0.25 2.5
systemd - 21h 18m ∞ 0 1 ∞ 0.00 0.05 -
usrsctp - 12h 46m ∞ 0 8 ∞ 0.00 2.05 -

neomutt - - - - - - 0 0 -
3○openvswitch - - - - - - 0 0 -

picotls - - - - - - 0 0 -

not all campaigns may be successful. Hence, the number of crash-

ing trials (#Crashing Trials) measures the number of successful
campaigns. In addition, in related work, we found it is common to
report the number of unique crashes. AFL clusters crashing inputs
according to the program branches they exercise. Themean number

of unique crashes (Mean #Crashes) reports this number.
Figures 5 and 6 show the results of our deduplication. For each

crashing input, we found the corresponding bug report in OSSFuzz.
For each deduplicated bug, fuzzer, and fuzzing campaign, we mea-
sure the time to discover the first crashing input that witnesses
the bug. The box plot summarizes the time-to-error across all cam-
paigns. For usrsctp, we were unable to reproduce the crashes during
deduplication (and it is not counted among the 20 regression bugs
we found). This is a well-known problem in OSSFuzz and relates
to the statefulness of a subject. In a stateful subject, the outcome
of the execution of an input depends on the current program state
which can be changed during the execution of previous inputs.

RQ1. Efficiency of Regression Greybox Fuzzing

Our main hypothesis is that a fuzzer that is guided towards code
that has changed more recently or more often is also more effi-
cient in finding regression bugs. We evaluated this hypothesis by
implementing AFLChurn and measuring various bug finding per-
formance variables on 15 different open-source C projects that are
available at OSSFuzz.

Table 2 shows the performance for AFL and AFLChurn. For
three subjects 3○, neither AFL nor AFLChurn produces a crash in
the allotted time. For four subjects 1○, both fuzzers produce the first
crash before the first full cycle is completed. AFL (and AFLChurn)
maintain the seed corpus in a circular queue. New seeds are added
to the end of the queue; once the fuzzer reaches the end of the
queue, it wraps around. Without even the first cycle completed,
there is not much guidance that AFLChurn can provide.

For the remaining eight subjects 2○, the results are as follows.

AFLChurn discovers a regression about 1.5x faster and in more

campaigns than AFL. In one case, AFLChurn reduces the time
to produce the first crash from 17 to 9 hours. AFLChurn also
typically discovers the bug in more campaigns than AFL. For
two of the eight subjects, only AFLChurn finds the bug within
the allotted time—no doubt due to better efficiency. For most
subjects, AFLChurn produces more unique crashes than AFL.

https://github.com/aflchurn/aflchurnbench
https://github.com/aflchurn/aflchurn
https://kaggle.com/marcelbhme/aflchurn-ccs21

Regression Greybox Fuzzing CCS’21, November 14–19, 2021, Seoul, South Korea

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●●

●

●

●●

●

● ●●●●●●●

●

●

●

●

●

●●●●

●

●●●

●

●

●●
●

●●
●

●
●

●
●●
●

●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●●
●●

●●

●
●
●●

●

●

●●

●●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

●

●●
●●

●

●

●●

● ●● ●

●

●

●

●●

●

●

●
●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●●

●

●

●
●●

●

●

●

●

●

● ●
●

●

●

●●

●

●
●●●

●

●●

●

●●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

●●
●

●
●

●

●●●

●

●

●
●

●

●

●●

●

●
●
●

●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●●●

●

●

●●●

●●

●

● ●
●

●
●●
●●

●

●

●●
●

●●●●●●

●●

●
●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●●
●●

●
●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●●

●

●

●

●

●
●●

●

●
●

●

●●
●

●

●

●●

●

●

●●

●

●

●●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

systemd_14708* unbound_20308* yara_11945 yara_19591* zstd_14368*

libgit2_11382* libhtp_17198* libxml2_17737* libxml2_dblfree libxml2_UaF openssl_17715* openssl_17722

aspell_17187 file_13222* grok_24427 grok_27386* grok_28227 libgit2_11007 libgit2_11194

0

5

10

15

0

5

10

15

0

5

10

15

20

0

5

10

15

20

0

3

6

9

12

0.0

2.5

5.0

7.5

10.0

0

5

10

15

20

0.0

2.5

5.0

7.5

10.0

0

3

6

9

12

0

5

10

15

0

5

10

15

0

5

10

15

20

0.0

0.5

1.0

1.5

2.0

0.0

0.1

0.2

0.3

0.4

0.5

0

5

10

15

20

0

5

10

15

20

0

2

4

0.000

0.003

0.006

0.009

0

5

10

15

20

T
im

e
to

 fi
rs

t c
ra

sh
 (

in
 h

ou
rs

)

Fuzzer

●

●

afl

aflchurn

Figure 5: Deduplication results (AFL versus AFLChurn). Effectiveness of Regression Greybox Fuzzing

Figure 5 shows the results of our deduplication. We wanted to
investigate whether the observed crashes are related to our selected
regression. We also wanted to determine whether other bugs have
been discovered, as well. To this end, we identified the bug report
in OSSFuzz that corresponds to each of the produced stack trace.
We found that all of the reported bugs are regressions, i.e., a bug-
introducing commit could be identified. We also found that our
fuzzers discovered up to four distinct bugs in a subject and that
shallow bugs mask deeper bugs in a subject.

After deduplication, we have 17+2 bugs, all of which are re-
gressions. There are two (+2) additional variants of bug 17737 in
libxml2, called UaF for use-after-free, and dblfree for double-free.
Bug 17737 is a heap use-after-free bug, which crashes at a particular
statement that reads from free’d (unallocated) memory. However,
only AFLChurn finds other locations in LibXML2 that read from
the free’d memory or free memory that has already been freed,
which yields different stack traces.

There are very few exceptions where AFLChurn does not out-
perform AFL. The lower performance in file is explained by the
short time-to-error. In under six minutes, neither fuzzer can com-
plete a full queue cycle, which removes the edge that AFLChurn
only gains over several queue cycles. We explain the lower per-
formance in grok by the randomness. Only four of twenty trials
of AFL actually discover 27386 and 28227 where AFL outperforms
AFLChurn. In all other cases, AFLChurn outperforms AFL.

AFLChurn detects almost all regression bugs significantly faster

than AFL for the majority of fuzzing campaigns (i.e., for 16 of 19

regressions there is a positive difference in medians). Our empiri-

cal results support our hypothesis that a fuzzer which is guided

towards code that has changed more recently ore more often is

also more efficient.

Such improved efficiency is particularly important when fuzzing
under a limited testing budget. For instance, during continuous
integration, a fuzzing campaign may be cut short after just a few

Table 3: Individual effectiveness of our heuristics.

Mean TTE #Crashing Trials Mean #Crashes

Subject NoAge NoChurn Factor NoAge NoChurn Factor NoAge NoChurn Factor

libgit2 00h 00m 00h 00m 1.1 20 20 1.0 70.80 68.55 1.0

1○file 00h 08m 00h 07m 0.8 20 20 1.0 5.90 4.80 0.8
yara 00h 14m 00h 12m 0.9 20 20 1.0 20.80 17.90 0.9

libxml2 00h 30m 01h 39m 3.3 20 20 1.0 754.85 712.70 0.9
aspell 02h 09m 02h 21m 1.1 20 20 1.0 6.40 6.75 1.1

2○
libhtp 01h 42m 03h 20m 2.0 20 19 1.0 164.45 98.85 0.6

openssl 04h 40m 04h 18m 0.9 20 20 1.0 7.20 6.45 0.9
grok 00h 47m 00h 43m 0.9 20 20 1.0 11.60 12.25 1.1

unbound 08h 57m 08h 42m 1.0 18 19 1.1 4.30 6.10 1.4
zstd 07h 03m 08h 22m 1.2 3 1 0.3 0.15 0.05 0.3

usrsctp 12h 20m 11h 50m 1.0 2 9 4.5 0.60 7.00 11.7
systemd - - - - - - 0 0 -

3○neomutt - - - - - - 0 0 -
openvswitch - - - - - - 0 0 -

picotls - - - - - - 0 0 -

hundred thousand generated test inputs, or after one or two hours.
If we focus the limited testing budget on the error-prone regions
in the source code, we also increase the likelihood of finding a bug
within the given constraints.

RQ2. Contribution of Age and Churn

Individually

In order to understand the contribution of each heuristic individu-
ally, we investigated disabled either the age heuristic which priori-
tizes younger code (NoAge) or the churn heuristic which prioritizes
more frequently changed code (NoChurn).

Table 3 shows different performancemeasures for theAFLChurn
variants, NoAge and NoChurn. Again, we exclude from discussion
1○ the subjects where a crash is found before the first queue cycle
completes and 3○ the subjects that do not crash for any of the two
fuzzers. Notice that neither NoAge nor NoChurn find the regression
in systemd. For 2○, the remaining seven subjects, there is no clear
winner. In terms of time-to-error, we observe a notable difference
only for libhtp, where NoAge finds the regression in half the time.
Indeed, as we can see in Figure 8, CL2–CL6 are all among the one-
third of basic blocks that have been changed more than three or
four times. On the other hand, most of the stack trace lives in code

CCS’21, November 14–19, 2021, Seoul, South Korea Xiaogang Zhu and Marcel Böhme

●

●

●

●

●
● ●●●

●

●

●●

●

●●

●

●● ●

●

●●● ●

●

●● ●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●●●
● ●

●
●

●
●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●●

●● ●

●●

●

●●●●●

●

●●●●

●

●

●

●●●● ●●●

● ●

●

●

●●●●●

●

●●

●●

●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●●

●

●

●●

●

●

●
●● ●

●

●

●

●
●

●

●●●

●
●

●●●●

●

●
●

●

●

●

●●
●●●●

●

●●●
●

●

● ●

●

●
●

●

●●●●

●

●●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

● ●●●

●

●

●

●

●

●

●

●
●
●●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●
●●
●

●

●●
●

●●

●●● ●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●●●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●
●
●
●
●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●
● ●

●

●
●

●

●●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●●
●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●●

●

●●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

openssl_17722 unbound_20308* yara_11945 yara_19591* zstd_14368*

libgit2_11194 libgit2_11382* libhtp_17198* libxml2_17737* libxml2_dblfree libxml2_UaF openssl_17715*

aspell_17187 file_13222* grok_24427 grok_27386* grok_27428 grok_28227 libgit2_11007

0

5

10

15

0

5

10

15

20

0.0

0.5

1.0

1.5

0

5

10

15

0

2

4

6

0

4

8

12

0

5

10

15

0

5

10

0

5

10

15

20

0

5

10

15

20

0

5

10

15

0

5

10

15

20

0

1

2

0.0

0.1

0.2

0.000

0.001

0.002

0

5

10

15

20

0

5

10

15

0

5

10

15

20

0

5

10

15

20

T
im

e
to

 fi
rs

t c
ra

sh
 (

in
 h

ou
rs

)

Fuzzer

●

●

aflchurn_nochurn

aflchurn_noage

Figure 6: Deduplication Results (NoAge and NoChurn). Individual effectiveness of the two heuristics: NoAge is a variant of

AFLChurn that is guided only by how frequently the executed code has been changed. NoChurn is a variant that is guided

only by how recently the executed code has been changed.

15

2
1 1 1

0

5

10

15

In
te

rs
ec

tio
n

S
iz

e

●
●
●
●

●
● ●

●

●

●

●
●

nochurn
aflchurn
noage

afl

051015
Set Size

Figure 7: Intersecting Sets (UpsetR). Number of bugs found

jointly by different sets of fuzzers. Not showing empty inter-

sections. The two bugs in second position are the additional

UaF and double-free bugs in LibXML2.

that is between one and six years old. This might explain why the
churn and not the age heuristic is effective for libhtp. In terms of
crashing trials and the mean number of unique crashes, one notable
subject is usrsctp where NoChurn substantially outperforms NoAge.
However, in Figure 8, neither age nor churn stand particularly out
for usrsctp.8

Figure 6 shows the deduplication results for NoAge andNoChurn.
Only NoChurn finds the additional UaF and double-free bugs in
LibXML2. Otherwise, both variants find the same bugs. Across all
subjects, NoChurn has a higher median than NoAge for roughly
the same number of subjects as NoAge has a higher median than
NoChurn.

Between theAFLChurn variants NoChurn and NoAge, there is

no clear winner. However, there are certain cases where we
observed a substantial performance difference from either one
of them. This also motivates the combination of both heuristics.

8Recall from Section 5.1, that we were unable to reproduce the crashes in usrsctp
during deduplication. Hence, usrsctp is not shown in Figures 5 or 6.

Figure 7 summarizes the bug finding results for the deduplicated
bugs as a matrix of intersecting sets. 15 regression bugs are found
by each and every fuzzer. AFLChurn is the only fuzzer finding the
regression in systemd. NoAge and NoChurn together, but neither
AFL nor AFLChurn find one bug in Grok. Only AFLChurn and
NoChurn find the additional double-free and use-after-free bugs in
libxml2.

5.2 RQ3. Churn and Age of Crash Locations

Another way of evaluating our main hypothesis is by asking: Are
crash locations changed more recently or more often? In order to
answer this question, we generated the stack traces for all the bugs
in the OSSFuzz bug reports for our subjects. A stack trace is a chain
of function calls that starts with the main entry point (e.g., main)
and ends with the exact statement where the program crashes.

In addition to the regression bugs in Table 1, we generated the
stack traces for six more bugs in OSSFuzz that are not regressions.
This allows us to determine if there is a different answer for (preex-
isting) bugs that were not introduced by changes (non-regressions).

We used our AFLChurn LLVM compiler pass to compute age
and churn values for all basic blocks in a subject. We used OSSFuzz
to download the crashing input from the corresponding bug report
and FuzzBench to reproduce the bug. We implemented a simple
script to compute age and churn values for the resulting stack trace
(which is made available).

Figure 8 shows the distribution of age and churn values across
the basic blocks of each subject. On the top, we can see the propor-
tion of basic blocks that have been changed more than X times,
where X increases with the x-axis (log-scale).

Our first observation is that the majority of basic blocks is never
changed. On the other hand, for almost all subjects there is a very
small proportion of code that has been changed one hundred times
or more. This motivated our technique to amplify the signal of the
few basic blocks that have a high churn value (Section 3.1).

Regression Greybox Fuzzing CCS’21, November 14–19, 2021, Seoul, South Korea

systemd unbound usrsctp yara zstd

libhtp libxml2 openssl openvswitch picotls

aspell file grok htslib libgit2

1 10 100 1 10 100 1 10 100 1 10 100 1 10 100

1 10 100 1 10 100 1 10 100 1 10 100 1 10 100

1 1 10 100 1 10 1 10 100 1 10 100
0%

20%

40%

60%

0%

20%

40%

60%

0%

20%

40%

60%

How often a BB was changed (#changes)

P
ro

po
rt

io
n

of
 B

B
s

ch
an

ge
d

m
or

e
th

an
 X

 ti
m

es
Crash Location (CL0) Stack above CL0 (CL1) Stack above CL1 (CL2) CL3 CL4

systemd unbound usrsctp yara zstd

libhtp libxml2 openssl openvswitch picotls

aspell file grok htslib libgit2

0
10

00
20

00
30

00
40

00 0
10

00
20

00
30

00
40

00 0
10

00
20

00
30

00 0
10

00
20

00
30

00
40

00 0 50
0

10
00

15
00

0
10

00
20

00
30

00 0
20

00
40

00
60

00 0
20

00
40

00
60

00 0
10

00
20

00
30

00
40

00 0 40
0

80
0

12
00

0
10

00
20

00
30

00 0
30

00
60

00
90

00 0 50
0

10
00

15
00 0

10
00

20
00 0

10
00

20
00

30
00

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

How recently a BB was changed (#days)

P
ro

po
rt

io
n

of
 B

B
s

ch
an

ge
d

le
ss

 th
an

 X
 d

ay
s,

 a
go

(a) Regression Bugs

ndpi−2 unicorn

muparser ndpi−1

harfbuzz htslib

1 10 100 1 10

1 10 1 10 100

1 10 100 1 10 100
0%

20%

40%

60%

0%

20%

40%

60%

0%

20%

40%

60%

P
ro

po
rt

io
n

of
 B

B
s

ch
an

ge
d

m
or

e
th

an
 X

 ti
m

es

ndpi−2 unicorn

muparser ndpi−1

harfbuzz htslib

0 50
0

10
00

15
00 0 50

0
10

00
15

00

0 25
0

50
0

75
0

10
000 50

0
10

00
15

00

0
10

00
20

00
30

00
40

00
50

000
10

00
20

00

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

P
ro

po
rt

io
n

of
 B

B
s

ch
an

ge
d

le
ss

 th
an

 X
 d

ay
s,

 a
go

(b) Non-regressions Bugs

Figure 8: Cumulative distribution of age and churn values across the basic blocks of each program corresponding to a selected

regression or non-regression bug. For instance, 50% of BBs in libgit2 have been changed at least once and less than 4.6 years

(1700 days), ago. We also show the age and churn values of the crash location of the corresponding (non-) regression. Apart

from the crash location (CL0), the top five locations in the stack trace (CL1-4) appear in code that is less than a week old.

Many elements in the stack trace live in source code that has

changed more often than most other code. In many cases, one
or two elements in the stack trace live in code that has never
changed. However, while statistically speaking more unlikely,
apart from three subjects (aspell, systemd, unbound) for all
subjects at least one member of the stack trace lives in code
that has been changed at least once; in five cases more than ten
times. There is no obvious difference between (a) regressions
and (b) non-regressions.

On the bottom, we can see the proportion of basic blocks that
have been changed less than X days ago, where X increases with
the x-axis. Our first observation is that many projects are very old,
between eight and sixteen years. The distribution of age values is
quite irregular with identifiable productivity bursts. For instance,
for LibHTP about half of the basic blocks have been changed or
added six years prior, but have not been changed since.

The top elements in the stack trace live in source code that has

changed more recently than most other code.

CCS’21, November 14–19, 2021, Seoul, South Korea Xiaogang Zhu and Marcel Böhme

We find that particularly the crash location (where the program
execution aborts) lives in code that has changed less than a week
ago. There are only a few exceptions, like aspell, unbound, and
unicorn, where all members of the stack trace live in old code that
has changed many years back. There is no obvious difference in
the results for (a) regressions and (b) non-regressions.

6 RELATEDWORK

The general observation—that code which has changed more re-
cently or more frequently is more likely to be buggy—is well known
in the defect prediction community [22, 23, 33]. For instance, the
survey by Radjenovic et al. [33] concludes that, among many defect
predictors, the number of changes and the age of a module have
the strongest correlation with post-release faults. Nagappan et al.
[23] investigate “change bursts" as defect predictors and introduce
several other change-related measures of defectiveness.

However, defect prediction only provides a value that measures
how likely it is that a given component contains a fault. No actual
evidence of the defectiveness is generated. Moreover, to comple-
ment existing work on defect prediction, we also present empirical
results on the rate at which new bugs are reported throughout the
lifetime of a project across 300+ open-source projects. We also re-
port the proportion of bugs reported over time that are regressions,
i.e., introduced by previous commits. While we focus specifically
on the prevalence and discovery rate of regression bugs in OSSFuzz,
Ding and Le Goues [11] provide an extended, general discussion
of bugs in OSSFuzz. Ozment and Schechter [27] report that the
security of the OpenBSD operating system improved over the study
period of 7.5 years since the creation of the project. However, as
discussed in Section 2.3, in the context of 350+ projects in OSSFuzz,
we find no evidence the state of software security improves.

The stream of works that is most related to our regression grey-
box fuzzing develops fuzzing techniques to find bugs in a specific
code commit (see Figure 2). Given a set of changed statements as
targets, the objective is to generate inputs that reach these changes
and make the behavioral differences observable. Early work cast
the reachability of the changed code as a constraint satisfaction
problem. Several symbolic execution-based directed and regression
test generation techniques were proposed [4, 18, 20, 34, 41]. Recent
work cast the reachability of a given set of statements as an opti-
mization problem to alleviate the required program analysis during
test generation (e.g,. by moving it to compile time) [6, 9, 40, 43].
Others have combined symbolic execution-based and search-based
techniques [25, 31].

In contrast to existing work, (i) we generalize the binary distribu-
tion (a statement is either a target or not) to a numeric distribution
(every statement is a target, but to varying degrees), and (ii) we pro-
pose to test all commits simultaneously but recent commits with
higher priority. The benefits of our approach over the previous
work which focuses only on a specific commit are illustrated in Fig-
ure 2 and further discussed in Appendix A. In contrast to directed
greybox fuzzing [6] where the analyzed call graph and control flow
graphs, that are used to compute distance information, are often
incomplete [9], our regression greybox fuzzing only requires access
to the versioning system of the instrumented program. Regression
greybox fuzzing instruments all code. No distance computation is
required to steer the fuzzer towards code-of-interest.

To improve the bug finding ability of fuzzing, researchers have
proposed other targets for directed greybox fuzzing. For instance,
the fuzzer can be steered towards dangerous program locations,
such as potential memory-corruption locations [15, 39], resource-
consuming locations [30], race-condition locations [8], or exercise
sequences of targets [32], e.g., to expose use-after-free vulnerabili-
ties [24], or to construct an exploit from a given patch [28]. Some
researchers propose to focus on sanitizer locations [10, 26]. A sani-

tizer turns an unobservable bug into a crash that can be identified
and flagged by the fuzzer [14, 36, 37]. Others have proposed to
steer the fuzzer towards code that is predicted as potentially de-
fective [13, 29]. In contrast, a regression greybox fuzzer is directed
towards code that is changed more recently or more frequently.

7 DISCUSSION

Our findings in our empirical investigation are daunting (Section 2).

For the 350+ open source software (OSS) projects we studied,a in
the master branch new bugs are discovered at a constant rate. In
fact, we only measure bugs found by fuzzers continuously run
within the OSSFuzz project. There are also non-fuzzing bugs
that are discovered downstream, or during manual security
auditing which we do not measure. The constant rate of 3-4 new
bug reports per week in the master branch is a lower bound.

ahttps://github.com/google/oss-fuzz/tree/master/projects

Our only explanation for the constant bug discovery rate is that
recent changes introduced new bugs. Indeed, three in every four
fuzzer-reported bugs (77%) are regressions, and the probability
increases the longer a project is subjected to continuous fuzzing.

Regressions are a major class of bugs! Yet, our greybox fuzzers
stress all code with equal priority. Most of the code in a project has
never been touched. This code has been fuzzed since the onboarding
to OSSFuzz. Nevertheless, it is treated with equal priority as code
that is currently under development. We believe that the bit of code
which is currently under active development deserves a lot more
focus from the fuzzer—not a specific commit, mind you, but all the
code has recently been under development. Regression greybox
fuzzing is the first approach to exploit this observation.

In future work, we plan to investigate other change-based mea-
sures that have previously been associated with defectiveness. For
instance, code that has been changed in short but intensive bursts,
or code that was involved in larger commits might deserve more
focus. We could also direct the fuzzer focus towards code that was
involved in more patches of security vulnerabilities. Regression
greybox fuzzing is a first but substantial step in this direction.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd Jun Xu for
their valuable feedback. We are grateful to the Google Fuzzbench
team, particularly Jonathan Metzmann and Abhishek Arya, for the
kind and generous help with our experiments. We thank Christian
Holler for feedback on early versions of this paper. This work was
partly funded by the Australian Research Council (DE190100046)
and by a Google Faculty Research Award.We thank Prof Yang Xiang
and CSIRO Data61 for their financial support of the first author.

https://github.com/google/oss-fuzz/tree/master/projects

Regression Greybox Fuzzing CCS’21, November 14–19, 2021, Seoul, South Korea

REFERENCES

[1] [n.d.]. AFL. https://github.com/google/AFL accessed 21-January-2021.
[2] [n.d.]. OneFuzz: A self-hosted Fuzzing-As-A-Service platform. https://github.

com/microsoft/onefuzz accessed 21-January-2021.
[3] Marcel Böhme, Cristian Cadar, and Abhik Roychoudhury. 2021. Fuzzing: Chal-

lenges and Opportunities. IEEE Software (2021), 1–9. https://doi.org/10.1109/MS.
2020.3016773

[4] Marcel Böhme, Bruno C.d.S. Oliveira, and Abhik Roychoudhury. 2013. Partition-
based Regression Verification. In Proceedings of the 35th International Conference

on Software Engineering (San Francisco, California, USA) (ICSE 2013). 301–310.
https://doi.org/10.5555/2486788.2486829

[5] Marcel Böhme, BrunoC. d. S. Oliveira, andAbhik Roychoudhury. 2013. Regression
Tests to Expose Change Interaction Errors. In Proceedings of the 2013 9th Joint

Meeting on Foundations of Software Engineering (ESEC/FSE 2013). 334–344. https:
//doi.org/10.1145/2491411.2491430

[6] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSACConference

on Computer and Communications Security. ACM, 2329–2344.
[7] Oliver Chang, Jonathan Metzman, Max Moroz, Martin Barbella, and Abhishek

Arya. 2016. OSS-Fuzz: Continuous Fuzzing for Open Source Software. https:
//github.com/google/oss-fuzz [Online; accessed 19-January-2021].

[8] Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui, Cen Zhang, Yuekang
Li, Haijun Wang, and Yang Liu. 2020. MUZZ: Thread-aware Grey-box Fuzzing
for Effective Bug Hunting in Multithreaded Programs. In 29th USENIX Security

Symposium (USENIX Security 20). USENIX Association, 2325–2342.
[9] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu,

and Yang Liu. 2018. Hawkeye: Towards a Desired Directed Grey-box Fuzzer. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications

Security. ACM, 2095–2108.
[10] Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang,

Long Lu, et al. 2020. SAVIOR: Towards Bug-Driven Hybrid Testing. In IEEE

Symposium on Security and Privacy (SP). IEEE Computer Society.
[11] Zhen Yu Ding and Claire Le Goues. 2021. An Empirical Study of OSS-Fuzz Bugs.

In Proceedings of the 18th International Conference on Mining Software Repositories

(MSR). 1–12.
[12] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. 2006. Ant colony optimiza-

tion. IEEE computational intelligence magazine 1, 4 (2006), 28–39.
[13] Xiaoning Du, Bihuan Chen, Yuekang Li, Jianmin Guo, Yaqin Zhou, Yang Liu,

and Yu Jiang. 2019. Leopard: Identifying Vulnerable Code for Vulnerability
Assessment through Program Metrics. In Proceedings of the 41st International

Conference on Software Engineering (ICSE ’19). 60–71. https://doi.org/10.1109/
ICSE.2019.00024

[14] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano Giuffrida, Herbert
Bos, and Erik van der Kouwe. 2016. TypeSan: Practical Type Confusion Detection.
In CCS. 517–528.

[15] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos. 2013.
Dowsing for Overflows: A Guided Fuzzer to Find Buffer Boundary Violations. In
USENIX. 49–64.

[16] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security. ACM, 2123–2138.
[17] Tomasz Kuchta, Hristina Palikareva, and Cristian Cadar. 2018. Shadow symbolic

execution for testing software patches. ACM Transactions on Software Engineering

and Methodology (TOSEM) 27, 3 (2018), 1–32.
[18] Kin-Keung Ma, Khoo Yit Phang, Jeffrey S. Foster, and Michael Hicks. 2011. Di-

rected Symbolic Execution. In Proceedings of the 18th International Conference on

Static Analysis (SAS’11). 95–111.
[19] Paul Dan Marinescu and Cristian Cadar. 2013. KATCH: High-Coverage Testing

of Software Patches. In ESEC/FSE. 235–245.
[20] Paul Dan Marinescu and Cristian Cadar. 2013. KATCH: High-Coverage Testing

of Software Patches. In European Software Engineering Conference / ACM SIGSOFT

Symposium on the Foundations of Software Engineering (ESEC/FSE 2013) (Saint
Petersburg, Russia). 235–245.

[21] JonathanMetzman, Abhishek Arya, and Laszlo Szekeres. 2020. FuzzBench: Fuzzer
Benchmarking as a Service. https://security.googleblog.com/2020/03/fuzzbench-
fuzzer-benchmarking-as-service.html

[22] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. 2008. A Comparative
Analysis of the Efficiency of Change Metrics and Static Code Attributes for
Defect Prediction. In ICSE. 181–190.

[23] Nachiappan Nagappan, Andreas Zeller, Thomas Zimmermann, Kim Herzig, and
Brendan Murphy. 2010. Change bursts as defect predictors. In 2010 IEEE 21st

International Symposium on Software Reliability Engineering. 309–318.
[24] Manh-Dung Nguyen, Sébastien Bardin, Richard Bonichon, Roland Groz, and

Matthieu Lemerre. 2020. Binary-level Directed Fuzzing for Use-After-Free Vul-
nerabilities. In 23rd International Symposium on Research in Attacks, Intrusions

and Defenses (RAID). USENIX Association, 47–62.

[25] Yannic Noller, Corina Pasareanu, Marcel Böhme, Youcheng Sun, Hoang Lam
Nguyen, and Lars Grunske. 2020. HyDiff: Hybrid Differential Software Analy-
sis. In Proceedings of the 42nd ACM/IEEE International Conference on Software

Engineering (ICSE 2020). 1273–1285.
[26] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2020.

ParmeSan: Sanitizer-guided Greybox Fuzzing. In 29th USENIX Security Symposium

(USENIX Security 20). USENIX Association, Boston, MA.
[27] Andy Ozment and Stuart E Schechter. 2006. Milk or wine: does software security

improve with age?. In USENIX Security, Vol. 6.
[28] J. Peng, F. Li, B. Liu, L. Xu, B. Liu, K. Chen, and W. Huo. 2019. 1dVul: Discovering

1-Day Vulnerabilities through Binary Patches. In 2019 49th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN). 605–616.
https://doi.org/10.1109/DSN.2019.00066

[29] Anjana Perera, Aldeida Aleti, Marcel Böhme, and Burak Turhan. 2020. Defect
Prediction Guided Search-Based Software Testing. In Proceedings of the 35th

IEEE/ACM International Conference on Automated Software Engineering (ASE).
1–13. https://doi.org/10.1145/3324884.3416612

[30] Theofilos Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana. 2017.
Slowfuzz: Automated domain-independent detection of algorithmic complexity
vulnerabilities. In Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security. ACM, 2155–2168.
[31] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2016. Model-based

Whitebox Fuzzing for Program Binaries. In Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering (ASE). 552–562.
[32] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2020. AFLNet: A

Greybox Fuzzer for Network Protocols. In Proceedings of the 2020 IEEE Inter-

national Conference on Software Testing, Verification and Validation (ICST 2020).
460–465.

[33] Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič. 2013.
Software fault prediction metrics: A systematic literature review. Information

and software technology 55, 8 (2013), 1397–1418.
[34] David A Ramos and Dawson Engler. 2015. Under-constrained symbolic execution:

Correctness checking for real code. In USENIX Security. 49–64.
[35] E. J. Schwartz, T. Avgerinos, and D. Brumley. 2010. All You Ever Wanted to Know

about Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have
Been Afraid to Ask). In 2010 IEEE Symposium on Security and Privacy. 317–331.

[36] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In USENIX

ATC. 28.
[37] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. 2017. DangSan:

Scalable Use-after-Free Detection. In EuroSys ’17. 405–419.
[38] Alastair J. Walker. 1977. An Efficient Method for Generating Discrete Random

Variables with General Distributions. ACM Trans. Math. Software 3, 3 (Sept. 1977),
253–256.

[39] Yanhao Wang, Xiangkun Jia, Yuwei Liu, Kyle Zeng, Tiffany Bao, Dinghao Wu,
and Purui Su. 2020. Not All Coverage Measurements Are Equal: Fuzzing by
Coverage Accounting for Input Prioritization. In NDSS.

[40] Valentin Wüstholz and Maria Christakis. 2020. Targeted greybox fuzzing with
static lookahead analysis. In ICSE. 789–800.

[41] Guowei Yang, Suzette Person, Neha Rungta, and Sarfraz Khurshid. 2014. Directed
Incremental Symbolic Execution. ACM Trans. Softw. Eng. Methodol. 24, 1, Article
3 (Oct. 2014), 42 pages. https://doi.org/10.1145/2629536

[42] Andreas Zeller. 1999. Yesterday, My Program Worked. Today, It Does Not. Why?.
In ESEC’FSE. 253–267.

[43] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang, and Kai
Chen. 2020. FuzzGuard: Filtering out Unreachable Inputs in Directed Grey-box
Fuzzing through Deep Learning. In USENIX 2020.

A EXPERIMENTAL COMPARISON OF AFLGO

VERSUS AFLCHURN

As we explain in Section 4.3, for technical results we could get
experimental results for AFLGo only for three subjects. While these
results do not facilitate an empirical evaluation, the produce the
results here as a case study. We run experiment locally and repeat
24 hour fuzzing campaign ten (10) times.

Figure 9 and Figure 10 show the results in terms of bug finding
efficiency. AFLChurn finds the three bugs in libgit2 faster than
AFLGo. For libhtp, only AFLChurn finds the bug in all ten trials.
On average, AFLChurn finds the libhtp bug one hour faster than
AFLGo.

https://github.com/google/AFL
https://github.com/microsoft/onefuzz
https://github.com/microsoft/onefuzz
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.5555/2486788.2486829
https://doi.org/10.1145/2491411.2491430
https://doi.org/10.1145/2491411.2491430
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://doi.org/10.1109/ICSE.2019.00024
https://doi.org/10.1109/ICSE.2019.00024
https://security.googleblog.com/2020/03/fuzzbench-fuzzer-benchmarking-as-service.html
https://security.googleblog.com/2020/03/fuzzbench-fuzzer-benchmarking-as-service.html
https://doi.org/10.1109/DSN.2019.00066
https://doi.org/10.1145/3324884.3416612
https://doi.org/10.1145/2629536

CCS’21, November 14–19, 2021, Seoul, South Korea Xiaogang Zhu and Marcel Böhme

Table 4: Comparison of amplifier functions for #changes (𝑥 = #𝑐ℎ𝑎𝑛𝑔𝑒𝑠). The numbers are factors whose baseline is 𝑙𝑜𝑔(𝑥).

Mean TTE #Crashing Trials Mean #Crashes

Subject 𝑙𝑜𝑔 (𝑥) 𝑥 𝑥𝑙𝑜𝑔 (𝑥) 𝑥2 𝑙𝑜𝑔 (𝑥) 𝑥 𝑥𝑙𝑜𝑔 (𝑥) 𝑥2 𝑙𝑜𝑔 (𝑥) 𝑥 𝑥𝑙𝑜𝑔 (𝑥) 𝑥2

libgit2 1.0 1.4 0.9 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9
ndpi 1.0 1.4 0.7 1.6 1.0 1.0 1.0 1.0 1.0 0.9 1.1 0.9
file 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1

libxml2 1.0 1.8 2.1 0.9 1.0 1.0 1.0 1.0 1.0 0.9 0.9 1.0
grok 1.0 1.7 2.1 1.7 1.0 1.0 1.1 1.1 1.0 0.6 3.6 1.5
aspell 1.0 1.1 1.0 1.7 1.0 1.1 1.0 0.9 1.0 0.6 1.2 0.6

openssl 1.0 0.8 1.4 0.9 1.0 1.0 1.0 1.2 1.0 1.0 1.1 1.5
libhtp 1.0 0.9 0.8 1.6 1.0 1.0 1.0 1.0 1.0 1.4 1.1 1.1

harfbuzz 1.0 1.2 1.2 0.8 1.0 1.0 1.2 0.8 1.0 1.3 4.9 0.4
unicorn 1.0 1.0 1.0 0.6 1.0 1.0 1.0 1.0 1.0 0.9 0.6 0.9
unbound 1.0 1.2 0.8 1.9 1.0 1.1 1.1 0.6 1.0 1.7 1.0 0.4
usrsctp 1.0 1.1 0.9 1.1 1.0 0.8 1.2 0.8 1.0 0.9 0.7 0.6

Table 5: Comparison of amplifier functions for ages (𝑥 = 𝑎𝑔𝑒𝑠). The numbers are factors whose baseline is 1/𝑥 .

Mean TTE #Crashing Trials Mean #Crashes

Subject 1/𝑥 𝑙𝑜𝑔 (𝑥) 1/𝑙𝑜𝑔 (𝑥) 1/𝑙𝑜𝑔2 (𝑥) 1/𝑥𝑙𝑜𝑔 (𝑥) 1/𝑙𝑜𝑔 (𝑥) 1/𝑙𝑜𝑔2 (𝑥) 1/𝑥𝑙𝑜𝑔 (𝑥) 1/𝑙𝑜𝑔 (𝑥) 1/𝑙𝑜𝑔2 (𝑥)
libgit2 1.0 1.2 1.0 1.3 1.0 1.0 1.0 1.0 1.0 0.9 0.9 0.9
ndpi 1.0 0.8 0.6 0.3 1.0 1.0 1.0 1.1 1.0 1.0 1.1 1.1

libhtp 1.0 2.5 3.5 1.0 1.0 1.0 1.0 1.0 1.0 1.1 0.9 0.8
grok 1.0 1.2 1.7 0.9 1.0 1.0 0.9 1.0 1.0 1.1 0.7 1.0

harfbuzz 1.0 1.0 0.5 0.7 1.0 1.8 1.5 0.5 1.0 5.5 2.2 1.3
unicorn 1.0 1.5 1.6 1.0 1.0 0.9 0.8 1.0 1.0 0.3 0.5 0.8
openssl 1.0 0.9 1.1 0.8 1.0 1.0 0.9 0.8 1.0 1.0 0.8 0.6

zstd 1.0 1.3 0.13 0.5 1.0 0.5 0.5 1.5 1.0 0.5 0.5 1.5

Mean TTE #Crashing Trials

Subject AFLGo AFLChurn Factor AFLGo AFLChurn Factor

libgit2 15s 10s 0.67 10 10 1.0
libhtp 3h 12m 2h 21m 0.72 9 10 1.1
htslib - - - - - -

Figure 9: Bug finding efficiency of AFLGo vs. AFLChurn

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●●

●

●●

● ●

●

●

●●● ●● ●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●●
● ●●

●

●

●

●

libgit2_11382* libhtp_17198*

libgit2_11007 libgit2_11194

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0.000

0.005

0.010

T
im

e
to

 fi
rs

t c
ra

sh
 (

in
 h

ou
rs

)

Fuzzer ● ●aflgo aflchurn

Figure 10: Deduplication results for AFLGo vs. AFLChurn.

B ANALYSIS OF AMPLIFIER FUNCTIONS

In Section 3.1, we discussed the utility of amplifier functions to am-
plify the signal of “interesting” basic blocks (BBs), i.e., BBs that have

been changed more recently or more often. We presented our deci-
sion to choose the inverse of the number of days and the logarithm
of the number of changes as amplifier functions. In the following,
we present a simple evaluation of various amplifier functions.

In order to determine the amplifier functions for calculating fit-
ness of ages and churns, some experiments are conducted. As for
#changes, we examine functions including 𝑙𝑜𝑔(𝑥), 𝑥, 𝑥𝑙𝑜𝑔(𝑥), and
𝑥2. As for ages, we examine functions including 1/𝑥, 𝑙𝑜𝑔(𝑥), 1/𝑙𝑜𝑔(𝑥),
and 1/𝑙𝑜𝑔2 (𝑥).

Tables 4 and 5 show the results for our experiments that were
repeated twenty times (20 trials). RGF steers computing resources
towards code regions that are changed more often. However, this
does not mean that the most frequent changed code regions must
contain bugs. Therefore, the amplifier function 𝑥2 for #changes
is too aggressive, and spends too much time for a small part of a
program. As shown in Table 4, the amplifier 𝑥2 spends more time
to expose the first crash (Mean TTE) than 𝑙𝑜𝑔(𝑥), and finds less
crashes (Mean #Crashes). For the amplifier 𝑥 , it also spends more
time to find TTE, and exposes less crashes than 𝑙𝑜𝑔(𝑥). Although
𝑙𝑜𝑔(𝑥) and 𝑥𝑙𝑜𝑔(𝑥) have a similar performance, we want to select
a simpler amplifier.

Similarly, RGF guides fuzzing towards code regions that are
changed more recently. For the Mean TTE in Table 5, 1/𝑥 performs
better than 𝑙𝑜𝑔(𝑥) and 1/𝑙𝑜𝑔(𝑥), but worse than 1/𝑙𝑜𝑔2 (𝑥). As to
#Crashing Trials, the performance of the four amplifiers are close
to each other. 1/𝑥 performs the best among all the four amplifiers
in terms of Mean #Crashes. Therefore, 1/𝑥 is considered as the
amplifier function used by AFLChurn. On the other hand, 1/𝑥 is
the most simplest function among the four amplifiers.

	Abstract
	1 Introduction
	2 Empirical Study: OSSFuzz Bug Reports
	2.1 Prevalence of Regression Bugs
	2.2 Bug Reporting Rate Across Projects
	2.3 OSS Security
	2.4 Threats to Validity

	3 Regression Greybox Fuzzing
	3.1 Code History-based Instrumentation
	3.2 Simulated Annealing-based Power Schedule
	3.3 Ant Colony Optimisation (ACO)-based Byte-Level Power Schedule

	4 Experimental Setup
	4.1 Research Questions
	4.2 Benchmark Subjects
	4.3 Baseline
	4.4 Setup and Infrastructure
	4.5 Reproducibility
	4.6 Threats to Validity

	5 Experiment Results
	5.1 Presentation
	5.2 RQ3. Churn and Age of Crash Locations

	6 Related Work
	7 Discussion
	References
	A Experimental Comparison of AFLGo versus AFLChurn
	B Analysis of Amplifier Functions

