
is to lead to new program behavior, the 
more likely that seed is selected for mu-
tation. The more likely new test inputs 
discover new program behavior, the 
more likely the fuzzer reveals new bugs.

How to calculate the probabilities, 
that is, the “power schedule” for differ-
ent seeds, is a tricky question, which 
this paper answers using information 
theory—the authors define entropy as 
the average information a generated 
test input reveals about the resulting 
coverage of program code. A low entro-
py for a seed input means mutations of 
that seed tend to produce similar cov-
erage behavior, while a high entropy 
signals that mutating the seed input 
leads to new coverage behavior. Thus, 
entropy provides not only a means 
to calculate power schedules, but a 
more general efficiency measurement 
for fuzzers.  In the tradition of fuzz-
ing research, this is all implemented 
into a robust fuzzer tool, providing the 
expected impressive numbers on sys-
tems tested and bugs found.

The paper is exciting in that it not 
only provides an effective algorithmic 
update to power schedules in grey-box 
fuzzers, but also a deeper intuitive un-
derstanding as to why this works, how 
it influences behavior during fuzzer 
campaigns, and a general framework 
on which to build for future work on 
fuzzing. Together, these contributions 
enhance our understanding of fuzzing 
and will help build more effective test 
generators, and to answer related ques-
tions such as how effective fuzzers are, 
or when to stop fuzzing campaigns. 
What makes this paper stand out is 
that it contributes to linking the view-
points of traditional test generation 
and the trendy and seemingly more 
pragmatic fuzzing approach. Progress 
on automated testing requires both 
theory as well as robust tools.	

Gordon Fraser is a professor of computer science at the 
University of Passau, Germany.

Copyright held by author(s)/owner(s).

TESTING PROGRAMS AUTOMATICALLY is 
usually done using one of three pos-
sible approaches: In the simplest case, 
we throw random inputs at the program 
and see what happens. Search-based ap-
proaches tend to observe what happens 
inside the program and use this infor-
mation to influence the choice of succes-
sive inputs. Symbolic approaches try to 
reason which specific inputs are needed 
to exercise certain program paths.

After decades of research on each of 
these approaches, fuzzing has emerged 
as an effective and successful alterna-
tive. Fuzzing consists of feeding ran-
dom, often invalid, test data to pro-
grams in the hope of revealing program 
crashes, and is usually conducted at 
scale, with fuzzing campaigns exercis-
ing individual programs often for hours. 
A common classification of fuzzing ap-
proaches is between black-box fuzzers 
that assume no information about the 
system under test; grey-box fuzzers that 
inform the generation of new inputs 
by considering information about past 
executions such as code coverage; and 
white-box fuzzers that use symbolic 
reasoning to generate inputs for spe-
cific program paths. At face value, these 
three approaches to fuzzing appear to 
be identical to the three established ap-
proaches to test generation listed above. 
So, what’s all the fuss about fuzzing?

The fuss about fuzzing becomes clear 
when picking up any recent fuzzing 
paper; inevitably, the paper will boast 
numbers showing how many bugs were 
found in how many different software 
systems. This is quite different to more 
classical test-generation papers, and 
it demonstrates a different mindset. 
Competing on such numbers can only 
be achieved by building robust and flex-
ible tools that work on real systems, and 
indeed, fuzzers must work well not only 
on individual systems, but on as many 
different systems as possible. This re-
quires replacing problematic and in-
hibiting assumptions, for example, that 
a test oracle will magically appear, with 

more pragmatic solutions, such as con-
sidering only program crashes as bugs. 
Clearly, fuzzing has emerged from a 
practical need and is driven by applica-
tions and practitioners.

Traditional test-generation pa-
pers appear to put much less focus 
on building great tools and collecting 
bugs. That is not to say there are not 
great test-generation prototypes and 
tools, but there is a stronger focus on 
theory and progress quantified us-
ing proxy measurements such as code 
coverage. For example, search-based 
test-generation approaches build upon 
evolutionary algorithms, for which we 
have decades of research, studying and 
proving various properties of these al-
gorithms on representative and under-
standable search problems, thus pro-
viding a clearer understanding of the 
complex processes involved while gen-
erating tests using search algorithms. 
Less of this appears to be available for 
fuzzing, where success is measured in 
terms of the number of bugs found, 
and the resulting competition around 
this. What has counted in fuzzing pa-
pers to date are results more than the-
ory explaining how these are achieved.

The following paper presents a novel 
twist to fuzzing that is shown to increase 
the central metric of the number of 
bugs found. A grey-box fuzzer tends to 
have a set of seed inputs, which are mu-
tated to generate new inputs. Whenever 
a mutated input covers new aspects of 
the code, it is added to the seeds.  Usu-
ally, fuzzers are implemented to prefer 
seeds added later during the fuzzing 
process, because intuitively there may 
be more previously undiscovered pro-
gram behavior reachable by mutating 
seeds that have been explored less. This 
paper introduces an alternative, where 
the probability of individual seeds be-
ing selected for mutation does not de-
pend on the time they were discovered, 
but rather on how much new program 
behavior has been discovered so far by 
mutating them. The more likely a seed 

Technical Perspective
What’s All the Fuss  
about Fuzzing? 
By Gordon Fraser

To view the accompanying paper,  
visit doi.acm.org/10.1145/3611019 rh

88    COMMUNICATIONS OF THE ACM   |   NOVEMBER 2023  |   VOL.  66  |   NO.  11

research highlights 

DOI:10.1145/3617381



NOVEMBER 2023  |   VOL.  66  |   NO.  11  |   COMMUNICATIONS OF THE ACM     89

Boosting Fuzzer 
Efficiency: An Information 
Theoretic Perspective
By Marcel Böhme, Valentin J.M. Manès, and Sang Kil Cha

DOI:10.1145/3611019

Abstract
In this paper, we take the fundamental perspective of fuzz-
ing as a learning process. Suppose before fuzzing, we know 
nothing about the behaviors of a program : What does it 
do? Executing the first test input, we learn how  behaves 
for this input. Executing the next input, we either observe 
the same or discover a new behavior. As such, each execu-
tion reveals “some amount” of information about ’s 
behaviors. A classic measure of information is Shannon’s 
entropy. Measuring entropy allows us to quantify how much 
is learned from each generated test input about the behav-
iors of the program. Within a probabilistic model of fuzz-
ing, we show how entropy also measures fuzzer efficiency. 
Specifically, it measures the general rate at which the fuzzer 
discovers new behaviors. Intuitively, efficient fuzzers maxi-
mize information. From this information theoretic perspec-
tive, we develop Entropic, an entropy-based power schedule 
for greybox fuzzing that assigns more energy to seeds that 
maximize information. We implemented Entropic into the 
popular greybox fuzzer LibFuzzer. Our experiments with 
more than 250 open-source programs (60 million LoC) dem-
onstrate a substantially improved efficiency and confirm our 
hypothesis that an efficient fuzzer maximizes information. 
Entropic has been independently evaluated and integrated 
into the main-line LibFuzzer as the default power schedule. 
Entropic now runs on more than 25,000 machines fuzzing 
hundreds of security-critical software systems simultane-
ously and continuously.

1. INTRODUCTION
Fuzzing is an automatic software testing technique where
the test inputs are generated in a random manner. Due to
its efficiency, fuzzing has become one of the most success-
ful vulnerability discovery techniques. For instance, in the
three years since its launch, the ClusterFuzz project alone
has found about 16,000 bugs in the Chrome browser and
about 11,000 bugs in over 160 open-source projects—only by 
fuzzing.a A fuzzer typically generates random inputs for the
program and reports those inputs that crash the program.
But, what is fuzzer efficiency?

In this paper, we take an information-theoretic perspec-
tive and understand fuzzing as a learning process.b We 

a	 https://github.com/google/clusterfuzz#trophies.
b	 As in, learning about the colors in an urn full of colored balls by sampling 

from it.

The original version of this paper was published in the 
Proceedings of the 28th ACM Joint Meeting on European 
Software Engineering Conference and Symposium on the 
Foundations of Software Engineering (Sacramento, CA, 
USA, Nov. 2020).

argue that a fuzzer’s efficiency is determined by the aver-
age information that each generated input reveals about the 
program’s behaviors. A classic measure of information is 
Shannon’s entropy.22 If the fuzzer exercises mostly the same 
few program behaviors, then Shannon’s entropy is small, 
the information content for each input is low, and the fuzzer 
is not efficient at discovering new behaviors. If however, 
most fuzzer-generated inputs exercise previously unseen 
program behaviors, then Shannon’s entropy is high and the 
fuzzer performs much better at discovering new behaviors.

We leverage this insight to develop the first entropy-
based power schedule for greybox fuzzing. Entropic 
assigns more energy to seeds revealing more information 
about the program behaviors. The schedule’s objective 
is to maximize the efficiency of the fuzzer by maximizing 
entropy. A greybox fuzzer generates new inputs by slightly 
mutating so-called seed inputs. It adds those generated 
inputs to the corpus of seed inputs which increase code 
coverage. The energy of a seed determines the probability 
with which the seed is chosen. A seed with more energy is 
fuzzed more often. A power schedule implements a policy to 
assign energy to the seeds in the seed corpus. Ideally, we 
want to assign the most energy to those seeds that promise 
to increase coverage at a maximal rate.

We implemented our entropy-based power schedule into 
the popular greybox fuzzer LibFuzzer16 and call our exten-
sion Entropic. LibFuzzer is a widely-used greybox fuzzer 
that is responsible for the discovery of several thousand 
security-critical vulnerabilities in open-source programs. 
Our experiments with more than 250 open-source programs 
(60 million LoC) demonstrate a substantially improved effi-
ciency and confirm our hypothesis that an efficient fuzzer 
maximizes information.

Since the conference article6 was published, upon 
which this CACM research highlight is based, Entropic 
has become the default power schedule in LibFuzzer 
which powers the largest fuzzing platforms at Google and 
Microsoft and fuzzes hundreds of security-critical proj-
ects, including the Chrome browser, on 100k machines 
round the clock.

To view the accompanying Technical Perspective,  
visit doi.acm.org/10.1145/3617381 tp
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of Species (STADS) probabilistic model for non-deterministic 
blackbox fuzzing3: Each generated input can belong to one 
or more species. Beyond the probabilistic model, STADS 
provides biostatistical estimators, for example, to estimate, 
after several hours of fuzzing, the probability of discovering 
a new species or the total number of species.

2.1. Software testing as discovery of species
Let  be the program that we wish to fuzz. We call as ’s 
input space D the set of all inputs that  can take in.
The fuzzing of  is a stochastic process

	 � (1)

of sampling N inputs with replacement from the program’s 
input space. We call F as fuzzing campaign and a tool that 
performs F as a non-deterministic blackbox fuzzer.

Suppose, we can subdivide the search space D into S 
individual subdomains  called species.3 An input  
Xn Î F is said to discover species Di if Xn Î Di and there does 
not exist a previously sampled input Xm Î F such that m < n 
and Xm Î Di (that is, Di is sampled for the first time). An input’s 
species is defined based on the dynamic program properties 
of the input’s execution. For instance, each branch that is 
exercised by input Xn Î D can be identified as a species. The 
discovery of the new species then corresponds to an increase 
in branch coverage.

Global species discovery. We let pi be the probability 
that the n-th generated input Xn belongs to species Di, pi = 
P[Xn Î Di] for i : 1 ≤ i ≤ S and n : 1 ≤ n ≤ N. We call  the 
fuzzer’s global species distribution. The expected number of 
discovered species . The discovery rate 
∆(n),5 that is, the expected number of species discovered 
with the (n+1)-th generated test input is defined as ∆(n) =  
S(n + 1) − S(n).

Mutation-based blackbox fuzzing. We extend the STADS 
framework with a model for mutation-based fuzzing. Let  
be a set of seed inputs, called the seed corpus and qt be the 
probability that the fuzzer chooses the seed t Î .d For each 
seed t, let Dt be the set of all inputs that can be generated 
by applying the available mutation operators to t. The muta-
tional fuzzing of t is a stochastic process

	 � (2)

of sampling Nt inputs with replacement by random mutation 
of the seed t. We call all species that can be found by fuzzing 
a seed t as the species in t’s neighborhood.

Local species discovery. We let  be the probability that 
the n-th input  which is generated by mutating the seed t Î   
belongs to species Di,  for i : 1 ≤ i ≤ S and 
n : 1 ≤ n ≤ N. We call  the local species distribution 
in the neighborhood of the seed t. For a locally unreach-
able species Dj, we have . The discovery rate ∆(n), 
that is, the expected number of species discovered with 
the (n+1)-th generated test input is defined as ∆(n) =  
S(n + 1) − S(n).

d	 This probability is also called the seed’s energy, weight, or perf_score (AFL).

In order to stand our information theoretic perspective 
on solid foundations, we explore a probabilistic model of 
the fuzzing process. We show how non-deterministic grey-
box fuzzing can be reduced to a series of non-deterministic 
blackbox fuzzing campaigns, which allows us to derive the 
local entropy for each seed and the current global entropy for 
the fuzzer. To efficiently approximate entropy, we introduce 
several statistical estimators.

Our information-theoretic model explains the perfor-
mance gains of our entropy-based power schedule for grey-
box fuzzing. Our schedule assigns more energy to seeds that 
have a greater local entropy, that is, that promise to reveal 
more information. However, we also note that this informa-
tion-theoretic model does not immediately apply to deter-
ministic fuzzers which systematically enumerate all inputs 
they can generate or whitebox fuzzers which systematically 
enumerate all (interesting) paths they can explore. For our 
probabilistic model to apply, the fuzzer should generate 
inputs in a random manner (with replacement). If a deter-
ministic phase is followed by a non-deterministic phase (for 
example,  in the default configuration of the AFL, American 
Fuzzy Lop, greybox fuzzer), we can compute Shannon’s 
entropy only for the non-deterministic phase.

In summary, our work makes the following contributions:

•	 We develop an information-theoretic foundation for 
non-deterministic fuzzing which studies the average 
information each test reveals about a program’s behav-
iors. We formally link Shannon’s entropy to a fuzzer’s 
behavior discovery rate, that is, we establish efficiency 
as an information-theoretic quantity.

•	 We present the first entropy-based power schedule to 
boost the efficiency of greybox fuzzers. We provide an 
open-source implementation, called Entropic, and 
present a substantial empirical evaluation on over 250 
widely-used, open-source C/C++ programs producing 
over 2 CPU years worth of data (scripts and data avail-
able at https://doi.org/10.6084/m9.figshare.12415622.v2).

2. PROBABILISTIC BLACKBOX FUZZING
Fuzzing is an automatic software testing technique where 
the test inputs are generated in a random manner. Based on 
the granularity of the runtime information that is available 
to the fuzzer, we can distinguish three fuzzing approaches. 
A blackbox fuzzer does not observe or react to any runtime 
information. A greybox fuzzer leverages coverage or other 
feedback from the program’s execution to dynamically steer 
the fuzzer. A whitebox fuzzer has a perfect view of the execu-
tion of an input. For instance, symbolic execution enumer-
ates interesting program paths.

Non-deterministic blackbox fuzzing lends itself to prob-
abilistic modeling because of the small number of assump-
tions about the fuzzing process. Unlike greybox fuzzing, 
blackbox fuzzing is not subject to adaptive bias.c We adopt 
the recently proposed Software Testing As Species Discovery 

c	 Unlike for a blackbox fuzzer, for a greybox fuzzer the probability to ob-
serve certain program behaviors during fuzzing changes as new seeds are 
added to the corpus.
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3. INFORMATION THEORY OF FUZZING
We provide an information-theoretic foundation for non-
deterministic blackbox fuzzing. In the context of fuzz-
ing, Shannon’s entropy H has several interpretations. It 
quantifies the average information a generated test input 
reveals about the behaviors (that is, species) of the pro-
gram. Alternatively, we say, a generated test input reduces 
our uncertainty by H information units (for example, nats 
or bits), on average. Entropy also gives the minimum num-
ber of information units needed to reliably store the entire 
set of behaviors the fuzzer is capable of testing. Moreover, 
entropy is a measure of diversity. Low entropy means that 
the program does either not exhibit many behaviors or 
most generated inputs test the same behaviors (that is, 
belong to an abundant species).

3.1. Information theory in a nutshell
Shannon’s entropy H22 measures the average amount of 
information in each sample Xn Î F about the species that 
can be observed by executing the program . When there are 
S distinct species, the entropy H is:

	 � (3)

Figure 1 illustrates the concept informally. Each color 
represents a different species. We learn about the colors in 
each urn by sampling. Just how much we learn from each 
sampling differs from urn to urn. For instance, in Urn 1 it 
is three times more likely to draw a white ball than a black. 
It takes more attempts to learn about black balls in Urn 1 
compared to Urn 2. Hence, we expect less information about 
the urn’s colors in a draw from Urn 1. In fact, given the same 
number of colors S, the entropy is maximal when all col-
ors are equiprobable p1 = … = pS. Among the three urns, we 
expect to get the maximal amount of information about the 
urn’s colors by drawing from Urn 3. Even though there is still 
a dominating color (black), there is now an additional color 
(blue) that can be discovered.

3.2. If each input belongs to multiple species
Shannon’s entropy is defined for the multinomial distribu-
tion where each input belongs to exactly one species (for 
example, exercise exactly one path). However, an input can 
belong to several species so that . For instance, 
considering a branch in  as a species, each input exercises 
multiple branches. The top-level branch is exercised with 
probability one. When it is possible that , Chao et 
al.11 and Yoo et al.25 suggest to normalize the probabilities 

and compute , such that 
. This normalization maintains the fundamental properties 
of information based on which Shannon developed his for-
mula, that is, that information due to independent events is 
additive, that information is a non-negative quantity, etcet-
era. The normalized entropy H is computed as

	
� (4)

We note that Equation (4) reduces to Equation (3) for the spe-
cial case where . We also note that the resulting 
quantity is technically not the average information per input.

3.3. The Local Entropy of a Seed
Recall from Section 2.1, that we call the probabilities 
that fuzzing a seed t Î  generates an input that belongs to 
species Di as the local species distribution of t. Moreover, we 
call the set of species  as the neighbor-
hood of the seed t. From the local species distribution of t, 
we can compute the local entropy Ht of t as a straight-forward 
application of Equation 4,

	 � (5)

The local entropy Ht of t quantifies the information that fuzz-
ing t reveals about the species in t’s neighborhood.

3.4. Information-theoretic efficiency measure
Intuitively, the rate at which we learn about program behav-
iors, that is, the species in the program, also quantifies a 
blackbox fuzzer’s efficiency. We formally demonstrate how 
Shannon’s entropy H characterizes the general discovery 
rate D(n) as follows.

Theorem 1. Let Shannon’s entropy be defined as in 
Equation (4). Let ∆(n) be the expected number of new species the 
fuzzer discovers with the (n + 1)-th generated test input, then
	

� (6)

characterizes the rate at which species are discovered in an infi-
nitely long-running campaign, where  is a normal-
izing constant.

Proof. We refer to the extended version.6 � 

According to Theorem 1, entropy measures the spe-
cies discovery rate ∆(n) over an infinitely long-running fuzz-
ing campaign where discovery is gradually discounted as 
the number of executed tests n goes to infinity. Notice 
that ∆(n) ≥ 0 for all n ≥ 0. If we simply took the sum of ∆(n) 
over all n, we would compute the total number of species 

. However, S provides no insight into the effi-
ciency of the discovery process. Instead, the diminishing 
factor 1/n in Equation (6) reduces the contribution of spe-
cies discovery as testing effort n increases. The number of 
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Figure 1. Learning colors by sampling with replacement.
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species discovered at the beginning of the campaign has a 
higher contribution to H than the number of species discov-
ered later. In other words, a shorter “ramp up” time yields a 
higher entropy.

Estimation. We estimate Shannon’s entropy H based on 
how often we have seen each observed species. The inci-
dence frequency Yi for species Di is the number of generated 
test inputs that belong to Di. Undetected species yield Yi = 0.  
An unbiased estimator of the local discovery probability pi 
is  , where n is the total number of generated test 
inputs. By plugging  into Equation (4), we can estimate 
the entropy H using maximum likelihood estimation (MLE). 
In our model, the estimated entropy  of H is

	 � (7)

where we assume that .
Greybox. Now, non-deterministic blackbox fuzzing 

satisfies the assumption that the global species distribu-
tion  is invariant during the campaign. However, this 
assumption does not hold for greybox fuzzing which lever-
ages program feedback. Generated inputs that have dis-
covered new species (that is, increased coverage) are added 
to the corpus. The availability of added seeds changes the 
global species distribution (but not the local distributions 
for each seed) and thus the global entropy for a greybox 
fuzzer. In other words, a greybox fuzzer becomes more effi-
cient over time. We refer to the longer conference version6 
for a discussion of the required extension of the probabi-
listic model to estimate global entropy for greybox fuzzing.

Algorithm 1  Entropic Algorithm.

Input: Program , Initial Seed Corpus 
  1:  while ØTimeout() do
  2:    for all t Î . AssignEnergy(t)   // power schedule
  3:    total = St Î  t.energy            // normalizing constant
  4:    for all t Î .      // normalized energy
  5:    t = sample t from  with probability t.energy
  6:    t′ = Mutate(t)                 // fuzzing
  7:    if (t′) crashes then return crashing seed t′
  8:    else if (t′) increases coverage then add t′ to 
  9:    for all covered elements i Î  exercised by t′ do            
10:                          // local incidence freq.
11:    end for
12:  end while
return Augmented Seed Corpus C

4. INFORMATION THEORETIC BOOSTING
We present an entropy-based boosting strategy for greybox 
fuzzing that maximizes the information each generated 
input reveals about the species (that is, behaviors) in a pro-
gram. Our technique Entropic is implemented into the 
popular greybox fuzzer LibFuzzer,16 which is responsible 
for at least 12,000 bugs reported in security-critical open-
source projects and more than 16,000 bugs reported in the 
Chrome browser.20 After a successful independent evalu-
ation of Entropic by Google, our entropy-based power 

schedule has been integrated into the main-line LibFuzzer 
and made the default power schedule.

4.1. Overview of entropic
A greybox fuzzer starts with a corpus of seed inputs and 
continuously fuzzes these by applying random mutations. 
Generated inputs that increase coverage are added to the 
corpus. The probability (that is, frequency) with which a 
seed is chosen for fuzzing is called the seed’s energy. The 
procedure that assigns energy to a seed is called the fuzzer’s 
power schedule. For instance, LibFuzzer’s standard sched-
ule assigns more energy to seeds that were found later in the 
fuzzing campaign. It is this power schedule that we modify.

Algorithm 1 shows how greybox fuzzing is implemented 
in LibFuzzer; our changes for Entropic are shown as 
green boxes. In a continuous loop, the fuzzer samples a 
seed t Î  from a distribution that is given by the seeds’ nor-
malized energy. This energy is computed using assignEn-
ergy which implements one of our information-theoretic 
power schedules. The seed t is then mutated using ran-
dom bit flips and other mutation operators to generate an 
input t′. If the execution crashes or terminates unexpect-
edly, for example, due to limits on execution time, mem-
ory usage, or sanitizers,21 t′ is returned as crashing input, 
and LibFuzzer stops. If the execution increases coverage, 
t′ is added to the corpus. We call the number of inputs gen-
erated by fuzzing a seed t Î  and that belongs to species Di 
as local incidence frequency .

4.2. Entropy-based power schedule
Our entropy-based schedule assigns more energy to seeds 
that elicit more information about the program’s species. 
In other words, the fuzzer spends more time fuzzing seeds 
which lead to the more efficient discovery of new behav-
iors. The amount of information about the species in the 
neighborhood of a seed t that we expect for each generated 
test input is measured using the seed’s local entropy Ht.

The entropy-based power schedule is inspired by Active 
Simultaneous Localization And Mapping (SLAM),10 a prob-
lem in robot mapping: An autonomous robot is placed in an 
unknown terrain; the objective is to learn the map of the ter-
rain as quickly as possible. General approaches approximate 
Shannon’s entropy of the map under hypothetical actions.8,10 
The next move is chosen such that the reduction in uncer-
tainty is maximized. Similarly, our schedule chooses the 
next seed such that the information about the program’s 
species is maximized.

Improved estimator. During our experiments, we quickly 
noticed that the maximum likelihood estimator  in 
Equation (7) cannot be used. A new seed t that has never 
been fuzzed will always be assigned zero energy  = 0. 
Hence, it would never be chosen for fuzzing and forever 
remain with zero energy. We experimented with a screen-
ing phase to compute a rough estimate. Each new seed 
was first fuzzed for a fixed number of times. However, we 
found that too much energy was wasted gaining statistical 
power that could have otherwise been spent discovering 
more species.
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evaluation of the sensitivity of the boosting technique on the 
abundance threshold θ.

5. EXPERIMENTAL EVALUATION
5.1. Research questions
Our main hypothesis is that increasing information per 
generated input increases fuzzer efficiency. To evaluate our 
hypothesis, we ask the following research questions.
RQ.1 What is the coverage improvement over the baseline?
RQ.2 How much faster are bugs detected vs to the baseline?
RQ.3 What is the cost of maintaining incidence frequencies?

5.2. Setup and infrastructure
Implementation and baseline. We implemented our 
entropy-based power schedule into LibFuzzer (363 lines of 
change) and call our extension as Entropic. LibFuzzer is 
a state-of-the-art vulnerability discovery tool developed at 
[blinded] which has found almost 30k bugs in hundreds of 
closed- and open-source projects.

As a coverage-based greybox fuzzer (see Alg. 1), Lib-
Fuzzer seeks to maximize code coverage. Hence, our species 
is a coverage element, called a feature. A feature is a com-
bination of the branch covered and hit count. For instance, 
two inputs (exercising the same branches) have a different 
feature set if one exercises a branch more often. Hence, 
feature coverage subsumes branch coverage. In contrast to 
LibFuzzer, Entropic also maintains the local and global 
incidence frequencies for each feature. We study the perfor-
mance hit in RQ3.

 Our extension Entropic has been independently evalu-
ated by the company that is developing LibFuzzer and was 
found to improve on LibFuzzer with statistical significance. 
Entropic was integrated into the main-line LibFuzzer and 
is currently subject to public code review. Once integrated, 
Entropic is poised to run on more than 25,000 machines fuzz-
ing hundreds of security-critical software systems simultane-
ously and continuously.

Benchmark subjects. We compare Entropic with 
LibFuzzer on two benchmarks containing 250+ open-
source programs used in many different domains, includ-
ing browsers. We conducted almost 1000 one-hour 
fuzzing campaigns and 2,000 six-hour campaigns to gener-
ate almost two CPU years’ worth of data.

FTSf (12 programs, 1.2M LoC, 1 hour, 40 repetitions) is a 
standard set of real-world programs to evaluate fuzzer per-
formance. The subjects are widely-used implementations 
of file parsers, protocols, and databases (for example, lib-
png, openssl, and sqlite), amongst others. Each subject 
contains at least one known vulnerability (CVE), some of 
which require weeks to be found. The Fuzzer Test Suite 
(FTS) allows to compare the coverage achieved as well as 
the time to find the first crash on the provided subjects. 
There are originally 25 subjects, but we removed those pro-
grams where more than 15% of runs crashed (leaving 12 
programs with 1.2M LoC). As LibFuzzer aborts when the 
first crash is found, the coverage results for those subjects 

f	 https://github.com/google/fuzzer-test-suite.

To overcome this challenge we took a Bayesian approach. 
We know that entropy is maximal when all probabilities are 
equal. For a new seed t, we assume an uninformative prior 
for the probabilities , that is, , where  is the 
probability that fuzzing t generates an input that belongs to 
species Di. With each input that is generated by fuzzing t, the 
probabilities are incrementally updated. The posterior is a 
Beta distribution over . The estimate  of  is thus the 
mean of this beta distribution which is also known as the 
Laplace estimator (LAP) or add-one smoothing,

	 � (8)

where Sg = S(n) is the number of globally discovered species.
We define the improved entropy estimator  (LAP) as

Figure 2 illustrates the main idea. Both estimators 
are nearly unbiased from two hours onwards. In other 
words, they are within 1% from the true value, that is, 

.e In the beginning, the MLE is negatively 
biased and approaches the true value from below while 
the LAP is positively biased and approaches the true value 
from above. Both estimators robustly estimate the same 
quantity, but only LAP assigns high energy when seed t 
has not been fuzzed enough for an accurate estimate of the 
seed’s information Ht.

Measuring information only about rare species. During 
our initial experiments, we also noticed that the entropy esti-
mates for different seeds were almost the same. We found 
that the reason is a small number of very abundant species 
which have a huge impact on the entropy estimate. There 
are some abundant species to which each and every gener-
ated input belongs. Hence, we defined a global abundance 
threshold θ and only maintain local incidence frequencies 

 of globally rare species Di that have a global incidence 
frequency Yi ≤ θ. Intuitively, rare species are the ones creat-
ing new behaviors. We refer to the extended version6 for an 

e	 In contrast to global entropy H, local entropy Ht is not subject to any adap-
tive bias.
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Figure 2. Mean estimator bias over time. We monitored estimates 
for the same seed t over 6h across 20 runs. Estimator bias is the 
difference between the mean estimate and the true value Ht divided 
by the true value Ht, where Ht is the average of both mean estimates 
at 6 hours.
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(with our entropy-based schedule) covers about 700 fea-
tures in under 15 min while LibFuzzer (with the original 
schedule) takes one hour.

Entropic substantially outperforms LibFuzzer within 
the one-hour time budget for 9 of 12 subjects. For two out of 
three cases where the  effect size is considered medium, the 
mean difference in feature coverage is substantial (30% and 
80% increase for libpng and openssl-1.1.0c, resp.). In almost all 
cases, Entropic is more than twice as fast (2x) as LibFuzzer. 
The same coverage that LibFuzzer achieves in one hour, 
Entropic can achieve in less than 30 min. All differences are 
statistically significant. The coverage trajectories seem to indi-
cate that the benefit of our entropy schedule becomes even 
more pronounced for longer campaigns. We increase the cam-
paign length to 6h for our experiments with OSS-Fuzz (RQ2).

RQ1.2. Large Scale Validation on OSS-Fuzz
 Results for 263 open-source C/C++ projects validate our 
empirical findings. Entropic generally achieves more cov-
erage than LibFuzzer. The coverage increase is larger than 
10% for a quarter of programs. Entropic is more than twice 
as fast as LibFuzzer for half the programs. The efficiency 
boost increases with the length of the campaign.

would be unreliable. We set an 8GB memory limit and ran 
LibFuzzer for 1 hour. To gain statistical power, we repeated 
each experiment 40 times. This required 40 CPU days.

OSS-Fuzzg (263 programs, 58.3M LoC, 6 hours, 4 rep-
etitions) is an open-source fuzzing platform developed by 
Google for the large-scale continuous fuzzing of security-
critical software. At the time of writing, OSS-Fuzz featured 
1326 executable programs in 176 open-source projects. We 
selected 263 programs totaling 58.3 million lines of code 
by choosing subjects that did not crash or reach the satu-
ration point in the first few minutes and that generated 
more than 1000 executions per second. Even for the chosen 
subjects, we noticed that the initial seed corpora provided 
by the project are often for saturation: Feature discovery 
has effectively stopped shortly after the beginning of the 
campaign. It does not give much room for further discov-
ery. Hence, we removed all initial seed corporates. We ran 
LibFuzzer for all programs for 6 hours and, given a large 
number of subjects, repeated each experiment four times. 
This required 526 CPU days.

Computational resources. All experiments for FTS were 
conducted on a machine with Intel(R) Xeon(R) Platinum 
8170 2.10GHz CPUs with 104 cores and 126GB of main 
memory. All experiments for OSS-Fuzz were conducted on 
a machine with Intel(R) Xeon(R) CPU E5–2699 v4 2.20GHz 
with a total of 88 cores and 504GB of main memory. To 
ensure a fair comparison, we always ran all schedules simul-
taneously (same workload), each schedule was bound to 
one (hyperthread) core, and 20% of cores were left unused 
to avoid interference. In total, our experiments took more 
than 2 CPU years which amounts to more than two weeks of 
wall clock time.

Setup for Figure 2. Throughout the paper, we reported 
on the results of small experiments. In all cases when not 
otherwise specified, we used LibFuzzer with the original 
power schedule to fuzz the LibPNG project from the fuzzer-
test-suite (FTS) started with a single seed input. For Figure 
2, we conducted 20 runs of 6 hours and monitored the sin-
gle seed input that we started LibFuzzer with. We printed 
all four estimates in regular intervals.

RQ1.1. Code Coverage on FTS
 Empirical results confirm our hypothesis that increasing the 
average information each generated input reveals about the 
program’s species increases the rate at which new species are 
discovered. By choosing the seed that reveals more information, 
efficiency is improved.

Figure 3 shows the mean coverage over time and the 
Vargha-Delaney2 effect size  . Values above 0.56, 0.63, and 
0.71 indicate a small, medium, and large effect size, respec-
tively. More intuitively, the values indicate how much more 
likely it is for an Entropic run to cover more features than 
a LibFuzzer run (or less likely if under 0.5). Values in stars  
( ) indicate statistical significance (Wilcoxon rank-sum 
test; p < 0.05). For instance, for vorbis-2017-12-11 Entropic 

g	 https://github.com/google/oss-fuzz
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Figure 3. Mean coverage in a 60-min fuzzing campaign  
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The dashed, vertical lines show when Entropic achieves the same 
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for 25% of subjects. More specifically, Entropic achieves 
the same coverage in 1.5h as LibFuzzer achieves in 6h for 
66 subjects.

Figure 4(c) shows the proportion of subjects where 
Entropic achieves more coverage than LibFuzzer (that 
is, wins) over time. Both fuzzers break even at about 10 
min. After 30 min, Entropic already wins for 64% of sub-
jects, until at 6 hours, Entropic wins for about 77% of 
subjects. We interpret this result as Entropic becoming 
more effective at boosting LibFuzzer as saturation is being 
approached. At the beginning of the campaign, almost 
every new input leads to species discovery. Later in the fuzz-
ing campaign, it becomes more important to choose high-
entropic seeds. Moreover, estimator bias is reduced when 
more inputs have been generated.

RQ2. Crash Detection
 In the OSS-Fuzz benchmark, Entropic found most crashes 
faster than LibFuzzer. Some crashes were found only by 
Entropic. These crashes are potential zero-day vulnerabili-
ties in widely-used security-critical open-source libraries.

Figure 5 shows the time it takes to find each crash as 
an aggregate statistic in ascending order overall crashes 
that have been discovered in any of the four runs of all sub-
jects for both fuzzers. For instance, for 2.5% of 263 × 4 runs, 
Entropic finds a crash in 1.5 hours or less while LibFuzzer 
takes two hours or less. The crashes are real and potentially 
exploitable. All subjects are security-critical and widely 
used. Google maintains a responsible disclosure policy for 
bugs found by OSS-Fuzz. This gives maintainers some time 
to patch the crash before the bug report is made public. 
Three bugs are discovered only by Entropic.

Figure 4(a) shows the mean coverage increase of Entropic 
over LibFuzzer on a logarithmic scale over all 263 sub-
jects. The dashed line represents the coverage increase of 
LibFuzzer over Entropic for the cases when LibFuzzer 
achieves more coverage. We can see that Entropic achieves 
more coverage than LibFuzzer after six hours of fuzzing for 
about 77% of subjects. Entropic covers at least 10% more fea-
tures than LibFuzzer for about 25% of subjects. We investi-
gated more closely the 23% of the subjects where Entropic 
achieves less coverage. First, for half of them, the coverage 
difference was marginal (less than 2%). Second, these sub-
jects were much larger (twice the number of branches on 
average). As we will see in RQ3 that the performance over-
head incurred by Entropic grows linearly with the num-
ber of branches.

Figure 4(b) shows how much faster Entropic is in 
achieving the coverage that LibFuzzer achieves in six 
hours. Again, the dashed line shows the inverse when 
LibFuzzer achieves more coverage at the six-hour mark. 
We can see that Entropic achieves the same coverage 
twice as fast for about 50% of subjects and four times as fast 
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Figure 6. Entropic instrumentation overhead.

0.00

0.25

0.50

0.75

1.00

Subjects

P
ro

po
rt

io
n 

of
 E

xe
cu

tio
n

Frequency Updates Fuzzer Maintenance Subject Execution

0

2

4

6

0.00% 1.00% 2.00% 3.00% 4.00%

Percentage of Runs

T
im

e 
to

 E
rr

or
 (i

n 
h)

Figure 5. OSS-Fuzz crash Time-To-Error results (≈ 1.5 CPU years). 
X% of runs crashed in Y hours or less. Entropic (dashed) and LibFuzzer 
(solid). Lower is better.



research highlights 

 

96    COMMUNICATIONS OF THE ACM   |   NOVEMBER 2023  |   VOL.  66  |   NO.  11

probability of failure (that is, the observed not matching 
the expected output). Hence, Yang’s model is practical 
only in the context of test selection, but not in the context 
of automated test generation. Similarly, Feldt et al.12 pro-
pose an information-theoretic approach to measure the 
distance between test cases, based on Kolmogorov com-
plexity and uses it to maximize the diversity of selected 
tests. Although their idea is complementary to ours, it 
is computationally too expensive to be directly applied 
to test generation. Finally, by considering fuzzing as a 
random process in a multidimensional space, Ankou18 
enables the detection of a different combination of spe-
cies in fuzzers’ fitness function.

Information theory has also found application in soft-
ware fault localization. Given a failing test suite T, suppose 
we want to localize the faulty statement as quickly as pos-
sible. Yoo, Harmann, and Clark25 discuss an approach 
to execute test cases in the order of how much informa-
tion they reveal about the fault location. Specifically, test 
cases—which most reduce the uncertainty that a statement 
is the fault location—will be executed first. Campos et al.9 
propose a search-based test generation technique with a 
fitness function that maximizes the information about the 
fault location. In contrast, our objective is to quantify and 
maximize the efficiency of the test generation process in 
learning about the program’s behaviors (incl. whether or 
not it contains faults).

Bug finding efficiency and scalability are important 
properties of a fuzzing campaign. Böhme and Paul7 con-
duct a probabilistic analysis of the efficiency of blackbox 
versus whitebox fuzzing, and provide concrete bounds on 
the time a whitebox fuzzer can take per test input in order 
to remain more efficient than a blackbox fuzzer. Böhme 
and Falk4 empirically investigate the scalability of non-
deterministic black- and greybox fuzzing and postulate 
an exponential cost of vulnerability discovery. Specifically, 
they make the following counter-intuitive observation: 
Finding the same bugs linearly faster requires linearly 
more machines. Yet, finding linearly more bugs at the 
same time requires exponentially more machines. For 
recent improvements to fuzzing, we refer to Manès et al.17

Alshahwan and Harman1 introduced the concept of “out-
put uniqueness” as (blackbox) coverage criterion, where 
one test suite is considered as more effective than another 
if it elicits a larger number of unique program outputs. 
This blackbox criterion turns out to be similarly effective as 
whitebox criteria (such as code coverage) in assessing test 
suite effectiveness. In our conceptual framework, a unique 
output might be considered as a species.

8. CONCLUSION
In this paper, we presented Entropic, the first greybox 
fuzzer that leverages Shannon’s entropy for scheduling 
seeds. The key intuition behind our approach is to pre-
fer seeds that reveal more information about the pro-
gram under test. Our extensive empirical study confirms 
that our information-theoretic approach indeed helps in 
boosting fuzzing performance in terms of both code cover-
age and bug-finding ability.

RQ3. Performance Overhead
 In the FTS benchmark, there is a 2% median overhead for 
maintaining incidence frequencies compared to the entire fuzz-
ing process. There is a 12% median overhead compared to the 
time spent only in the fuzzer (not in the subject).

Figure 6 shows the proportion of the time that Entropic 
spends in the different phases of the fuzzing process. In all 
cases, the most time is spent executing the subject (bright 
gray). Entropic executes the subject between 10,000 and 
100,000 times per second. The remainder of the time is spent 
in the fuzzer, where the darker gray bars represent functions 
that LibFuzzer normally performs while the black bars rep-
resent the overhead brought by Entropic.

The maintenance of incidence frequencies takes more 
time away from the fuzzing process than we expected, given 
the substantial performance gains discussed in RQ1 and 
RQ2. Note that Entropic outperforms LibFuzzer despite 
this additional overhead. Entropic is a prototype. We are 
confident that there are plenty of opportunities to reduce 
this overhead to further boost Entropic’s efficiency.

6. THREATS TO VALIDITY
Like for any empirical study, there are threats to the 
validity of our results. We adopted several strategies to 
increase internal validity. In order to put no fuzzer at a 
disadvantage, we used default configurations, provided 
the exact same starting condition, and executed each 
technique several times and under the same workload. 
The time when the fuzzer crashes identify unambigu-
ously when a bug is found. To define species in our 
experiments, we use the natural measure of progress 
for LibFuzzer and its extension Entropic. To mitigate 
threats to construct validity such as bugs in Entropic 
or observed performance differences that are not due to 
our discussed improvements, we extended the baseline 
LibFuzzer using a readily comprehensible 363 lines of 
code. We adopted several strategies to increase exter-
nal validity. We repeated all experiments from which we 
derive empirical statements (RQ1, RQ2, RQ3) at least 40 
times. To increase the generality of our results, we con-
ducted experiments on OSS-Fuzz totaling 263 C/C++ pro-
grams and 58.3 million LoC.

For a sound statistical analysis, we followed the recom-
mendations of Arcuri et al.2 and Klees et al.15 to the extent to 
which our computational resources permitted.

7. RELATED WORK
Information theory has previously found applica-
tion in software test selection. Given a test suite T and 
the probability p(t) that test case t Î T fails, one may 
seek to minimize the number of test cases t Î T to exe-
cute while maximizing the information that execut-
ing t would reveal about the program’s correctness. 
Yang et al.23, 24 give several strategies to select a test 
case t′ Î T (or a size-limited set of test cases T′ Í T)  
such that—if we were to execute t′ (or T′)—the uncertainty 
about test case failure (that is, entropy) is minimized. 
Unlike our model, the model of Yang et al. requires speci-
fying for each input the expected output as well as the 
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Information theory. We formally link entropy (as a mea-
sure of information) to fuzzer efficiency, develop estima-
tors, and boosting techniques for greybox fuzzing that 
maximize information, and empirically investigate the 
resulting improvement of fuzzer efficiency. We extend the 
STADS statistical framework3 to incorporate mutation-
based blackbox fuzzing where a new input is generated 
by modifying a seed input. We hope that our information-
theoretic perspective provides a general framework to 
think about efficiency in software testing irrespective of 
the chosen measure of effectiveness (that is, independent 
of the coverage criterion).

Practical impact. Our implementation of Entropic 
has been incorporated into LibFuzzer, one of the most 
popular industrial fuzzers. At the time of writing, Entropic 
was enabled for 50% of fuzzing campaigns that are run on 
more than 25,000 machines for finding bugs and security 
vulnerabilities in over 350 open-source projects, including 
Google Chrome. After several additional improvements, 
Entropic now outperforms all other fuzzers available on 
FuzzBench,19 Google’s fuzzer benchmarking platform. This 
resulvt highlights the practical impact of our approach.

Open science and reproducibility. The practical impact 
of Entropic is a testament to the effectiveness of open 
science, open source, and open discourse. There is a 
growing number of authors that publicly release their 
tools and artifacts.13 Conferences are adopting artifact 
evaluation committees to support reproducibility,14 but, as 
always, more can be done to accommodate reproducibility 
as first-class citizens in our peer-reviewing process. We 
strongly believe that openness is a reasonable pathway to 
foster rapid and sound advances in the field and to enable a 
meaningful engagement between industry and academia.

•	 We make our scripts and experimental data publicly avail-
able at https://doi.org/10.6084/m9.figshare.12415622.v2

•	 We provide detailed instructions to reproduce our 
results at https://github.com/Jiliac/fse20

•	 Our results for Entropic have been independently repro-
duced at https://www.fuzzbench.com/reports/2020-03-04.

Acknowledgments
We thank the anonymous nominator(s) and the ACM 
SIGSOFT as well as the CACM Research Highlight selection 
committees for allowing us to present our work to such a 
broad and distinguished readership. This work was partly 
funded by the Australian Research Council (ARC) through 
a Discovery Early Career Researcher Award (DE190100046). 
This research was supported by the use of the Nectar 
Research Cloud, a collaborative Australian research plat-
form supported by the NCRIS-funded Australian Research 
Data Commons (ARDC). This work was partly supported by 
the Institute of Information & communications Technology 
Planning & Evaluation (IITP) grant funded by the Korean 
government (MSIT) (No. 2019-0-01697, Development of 
Automated Vulnerability Discovery Technologies for Block
chain Platform Security).�

This work is licensed under a  
https://creativecommons.org/licenses/by-nc/4.0/




