
is to lead to new program behavior, the
more likely that seed is selected for mu-
tation. The more likely new test inputs
discover new program behavior, the
more likely the fuzzer reveals new bugs.

How to calculate the probabilities,
that is, the “power schedule” for differ-
ent seeds, is a tricky question, which
this paper answers using information
theory—the authors define entropy as
the average information a generated
test input reveals about the resulting
coverage of program code. A low entro-
py for a seed input means mutations of
that seed tend to produce similar cov-
erage behavior, while a high entropy
signals that mutating the seed input
leads to new coverage behavior. Thus,
entropy provides not only a means
to calculate power schedules, but a
more general efficiency measurement
for fuzzers. In the tradition of fuzz-
ing research, this is all implemented
into a robust fuzzer tool, providing the
expected impressive numbers on sys-
tems tested and bugs found.

The paper is exciting in that it not
only provides an effective algorithmic
update to power schedules in grey-box
fuzzers, but also a deeper intuitive un-
derstanding as to why this works, how
it influences behavior during fuzzer
campaigns, and a general framework
on which to build for future work on
fuzzing. Together, these contributions
enhance our understanding of fuzzing
and will help build more effective test
generators, and to answer related ques-
tions such as how effective fuzzers are,
or when to stop fuzzing campaigns.
What makes this paper stand out is
that it contributes to linking the view-
points of traditional test generation
and the trendy and seemingly more
pragmatic fuzzing approach. Progress
on automated testing requires both
theory as well as robust tools.

Gordon Fraser is a professor of computer science at the
University of Passau, Germany.

Copyright held by author(s)/owner(s).

TESTING PROGRAMS AUTOMATICALLY is
usually done using one of three pos-
sible approaches: In the simplest case,
we throw random inputs at the program
and see what happens. Search-based ap-
proaches tend to observe what happens
inside the program and use this infor-
mation to influence the choice of succes-
sive inputs. Symbolic approaches try to
reason which specific inputs are needed
to exercise certain program paths.

After decades of research on each of
these approaches, fuzzing has emerged
as an effective and successful alterna-
tive. Fuzzing consists of feeding ran-
dom, often invalid, test data to pro-
grams in the hope of revealing program
crashes, and is usually conducted at
scale, with fuzzing campaigns exercis-
ing individual programs often for hours.
A common classification of fuzzing ap-
proaches is between black-box fuzzers
that assume no information about the
system under test; grey-box fuzzers that
inform the generation of new inputs
by considering information about past
executions such as code coverage; and
white-box fuzzers that use symbolic
reasoning to generate inputs for spe-
cific program paths. At face value, these
three approaches to fuzzing appear to
be identical to the three established ap-
proaches to test generation listed above.
So, what’s all the fuss about fuzzing?

The fuss about fuzzing becomes clear
when picking up any recent fuzzing
paper; inevitably, the paper will boast
numbers showing how many bugs were
found in how many different software
systems. This is quite different to more
classical test-generation papers, and
it demonstrates a different mindset.
Competing on such numbers can only
be achieved by building robust and flex-
ible tools that work on real systems, and
indeed, fuzzers must work well not only
on individual systems, but on as many
different systems as possible. This re-
quires replacing problematic and in-
hibiting assumptions, for example, that
a test oracle will magically appear, with

more pragmatic solutions, such as con-
sidering only program crashes as bugs.
Clearly, fuzzing has emerged from a
practical need and is driven by applica-
tions and practitioners.

Traditional test-generation pa-
pers appear to put much less focus
on building great tools and collecting
bugs. That is not to say there are not
great test-generation prototypes and
tools, but there is a stronger focus on
theory and progress quantified us-
ing proxy measurements such as code
coverage. For example, search-based
test-generation approaches build upon
evolutionary algorithms, for which we
have decades of research, studying and
proving various properties of these al-
gorithms on representative and under-
standable search problems, thus pro-
viding a clearer understanding of the
complex processes involved while gen-
erating tests using search algorithms.
Less of this appears to be available for
fuzzing, where success is measured in
terms of the number of bugs found,
and the resulting competition around
this. What has counted in fuzzing pa-
pers to date are results more than the-
ory explaining how these are achieved.

The following paper presents a novel
twist to fuzzing that is shown to increase
the central metric of the number of
bugs found. A grey-box fuzzer tends to
have a set of seed inputs, which are mu-
tated to generate new inputs. Whenever
a mutated input covers new aspects of
the code, it is added to the seeds. Usu-
ally, fuzzers are implemented to prefer
seeds added later during the fuzzing
process, because intuitively there may
be more previously undiscovered pro-
gram behavior reachable by mutating
seeds that have been explored less. This
paper introduces an alternative, where
the probability of individual seeds be-
ing selected for mutation does not de-
pend on the time they were discovered,
but rather on how much new program
behavior has been discovered so far by
mutating them. The more likely a seed

Technical Perspective
What’s All the Fuss
about Fuzzing?
By Gordon Fraser

To view the accompanying paper,
visit doi.acm.org/10.1145/3611019 rh

88 COMMUNICATIONS OF THE ACM | NOVEMBER 2023 | VOL. 66 | NO. 11

research highlights

DOI:10.1145/3617381

NOVEMBER 2023 | VOL. 66 | NO. 11 | COMMUNICATIONS OF THE ACM 89

Boosting Fuzzer
Efficiency: An Information
Theoretic Perspective
By Marcel Böhme, Valentin J.M. Manès, and Sang Kil Cha

DOI:10.1145/3611019

Abstract
In this paper, we take the fundamental perspective of fuzz-
ing as a learning process. Suppose before fuzzing, we know
nothing about the behaviors of a program : What does it
do? Executing the first test input, we learn how behaves
for this input. Executing the next input, we either observe
the same or discover a new behavior. As such, each execu-
tion reveals “some amount” of information about ’s
behaviors. A classic measure of information is Shannon’s
entropy. Measuring entropy allows us to quantify how much
is learned from each generated test input about the behav-
iors of the program. Within a probabilistic model of fuzz-
ing, we show how entropy also measures fuzzer efficiency.
Specifically, it measures the general rate at which the fuzzer
discovers new behaviors. Intuitively, efficient fuzzers maxi-
mize information. From this information theoretic perspec-
tive, we develop Entropic, an entropy-based power schedule
for greybox fuzzing that assigns more energy to seeds that
maximize information. We implemented Entropic into the
popular greybox fuzzer LibFuzzer. Our experiments with
more than 250 open-source programs (60 million LoC) dem-
onstrate a substantially improved efficiency and confirm our
hypothesis that an efficient fuzzer maximizes information.
Entropic has been independently evaluated and integrated
into the main-line LibFuzzer as the default power schedule.
Entropic now runs on more than 25,000 machines fuzzing
hundreds of security-critical software systems simultane-
ously and continuously.

1. INTRODUCTION
Fuzzing is an automatic software testing technique where
the test inputs are generated in a random manner. Due to
its efficiency, fuzzing has become one of the most success-
ful vulnerability discovery techniques. For instance, in the
three years since its launch, the ClusterFuzz project alone
has found about 16,000 bugs in the Chrome browser and
about 11,000 bugs in over 160 open-source projects—only by
fuzzing.a A fuzzer typically generates random inputs for the
program and reports those inputs that crash the program.
But, what is fuzzer efficiency?

In this paper, we take an information-theoretic perspec-
tive and understand fuzzing as a learning process.b We

a https://github.com/google/clusterfuzz#trophies.
b As in, learning about the colors in an urn full of colored balls by sampling

from it.

The original version of this paper was published in the
Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Sacramento, CA,
USA, Nov. 2020).

argue that a fuzzer’s efficiency is determined by the aver-
age information that each generated input reveals about the
program’s behaviors. A classic measure of information is
Shannon’s entropy.22 If the fuzzer exercises mostly the same
few program behaviors, then Shannon’s entropy is small,
the information content for each input is low, and the fuzzer
is not efficient at discovering new behaviors. If however,
most fuzzer-generated inputs exercise previously unseen
program behaviors, then Shannon’s entropy is high and the
fuzzer performs much better at discovering new behaviors.

We leverage this insight to develop the first entropy-
based power schedule for greybox fuzzing. Entropic
assigns more energy to seeds revealing more information
about the program behaviors. The schedule’s objective
is to maximize the efficiency of the fuzzer by maximizing
entropy. A greybox fuzzer generates new inputs by slightly
mutating so-called seed inputs. It adds those generated
inputs to the corpus of seed inputs which increase code
coverage. The energy of a seed determines the probability
with which the seed is chosen. A seed with more energy is
fuzzed more often. A power schedule implements a policy to
assign energy to the seeds in the seed corpus. Ideally, we
want to assign the most energy to those seeds that promise
to increase coverage at a maximal rate.

We implemented our entropy-based power schedule into
the popular greybox fuzzer LibFuzzer16 and call our exten-
sion Entropic. LibFuzzer is a widely-used greybox fuzzer
that is responsible for the discovery of several thousand
security-critical vulnerabilities in open-source programs.
Our experiments with more than 250 open-source programs
(60 million LoC) demonstrate a substantially improved effi-
ciency and confirm our hypothesis that an efficient fuzzer
maximizes information.

Since the conference article6 was published, upon
which this CACM research highlight is based, Entropic
has become the default power schedule in LibFuzzer
which powers the largest fuzzing platforms at Google and
Microsoft and fuzzes hundreds of security-critical proj-
ects, including the Chrome browser, on 100k machines
round the clock.

To view the accompanying Technical Perspective,
visit doi.acm.org/10.1145/3617381 tp

https://dx.doi.org/10.1145/3611019
https://doi.acm.org/10.1145/3617381
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611019&domain=pdf&date_stamp=2023-10-20

research highlights

90 COMMUNICATIONS OF THE ACM | NOVEMBER 2023 | VOL. 66 | NO. 11

of Species (STADS) probabilistic model for non-deterministic
blackbox fuzzing3: Each generated input can belong to one
or more species. Beyond the probabilistic model, STADS
provides biostatistical estimators, for example, to estimate,
after several hours of fuzzing, the probability of discovering
a new species or the total number of species.

2.1. Software testing as discovery of species
Let be the program that we wish to fuzz. We call as ’s
input space D the set of all inputs that can take in.
The fuzzing of is a stochastic process

 (1)

of sampling N inputs with replacement from the program’s
input space. We call F as fuzzing campaign and a tool that
performs F as a non-deterministic blackbox fuzzer.

Suppose, we can subdivide the search space D into S
individual subdomains called species.3 An input
Xn Î F is said to discover species Di if Xn Î Di and there does
not exist a previously sampled input Xm Î F such that m < n
and Xm Î Di (that is, Di is sampled for the first time). An input’s
species is defined based on the dynamic program properties
of the input’s execution. For instance, each branch that is
exercised by input Xn Î D can be identified as a species. The
discovery of the new species then corresponds to an increase
in branch coverage.

Global species discovery. We let pi be the probability
that the n-th generated input Xn belongs to species Di, pi =
P[Xn Î Di] for i : 1 ≤ i ≤ S and n : 1 ≤ n ≤ N. We call the
fuzzer’s global species distribution. The expected number of
discovered species . The discovery rate
∆(n),5 that is, the expected number of species discovered
with the (n+1)-th generated test input is defined as ∆(n) =
S(n + 1) − S(n).

Mutation-based blackbox fuzzing. We extend the STADS
framework with a model for mutation-based fuzzing. Let
be a set of seed inputs, called the seed corpus and qt be the
probability that the fuzzer chooses the seed t Î .d For each
seed t, let Dt be the set of all inputs that can be generated
by applying the available mutation operators to t. The muta-
tional fuzzing of t is a stochastic process

 (2)

of sampling Nt inputs with replacement by random mutation
of the seed t. We call all species that can be found by fuzzing
a seed t as the species in t’s neighborhood.

Local species discovery. We let be the probability that
the n-th input which is generated by mutating the seed t Î
belongs to species Di, for i : 1 ≤ i ≤ S and
n : 1 ≤ n ≤ N. We call the local species distribution
in the neighborhood of the seed t. For a locally unreach-
able species Dj, we have . The discovery rate ∆(n),
that is, the expected number of species discovered with
the (n+1)-th generated test input is defined as ∆(n) =
S(n + 1) − S(n).

d This probability is also called the seed’s energy, weight, or perf_score (AFL).

In order to stand our information theoretic perspective
on solid foundations, we explore a probabilistic model of
the fuzzing process. We show how non-deterministic grey-
box fuzzing can be reduced to a series of non-deterministic
blackbox fuzzing campaigns, which allows us to derive the
local entropy for each seed and the current global entropy for
the fuzzer. To efficiently approximate entropy, we introduce
several statistical estimators.

Our information-theoretic model explains the perfor-
mance gains of our entropy-based power schedule for grey-
box fuzzing. Our schedule assigns more energy to seeds that
have a greater local entropy, that is, that promise to reveal
more information. However, we also note that this informa-
tion-theoretic model does not immediately apply to deter-
ministic fuzzers which systematically enumerate all inputs
they can generate or whitebox fuzzers which systematically
enumerate all (interesting) paths they can explore. For our
probabilistic model to apply, the fuzzer should generate
inputs in a random manner (with replacement). If a deter-
ministic phase is followed by a non-deterministic phase (for
example, in the default configuration of the AFL, American
Fuzzy Lop, greybox fuzzer), we can compute Shannon’s
entropy only for the non-deterministic phase.

In summary, our work makes the following contributions:

• We develop an information-theoretic foundation for
non-deterministic fuzzing which studies the average
information each test reveals about a program’s behav-
iors. We formally link Shannon’s entropy to a fuzzer’s
behavior discovery rate, that is, we establish efficiency
as an information-theoretic quantity.

• We present the first entropy-based power schedule to
boost the efficiency of greybox fuzzers. We provide an
open-source implementation, called Entropic, and
present a substantial empirical evaluation on over 250
widely-used, open-source C/C++ programs producing
over 2 CPU years worth of data (scripts and data avail-
able at https://doi.org/10.6084/m9.figshare.12415622.v2).

2. PROBABILISTIC BLACKBOX FUZZING
Fuzzing is an automatic software testing technique where
the test inputs are generated in a random manner. Based on
the granularity of the runtime information that is available
to the fuzzer, we can distinguish three fuzzing approaches.
A blackbox fuzzer does not observe or react to any runtime
information. A greybox fuzzer leverages coverage or other
feedback from the program’s execution to dynamically steer
the fuzzer. A whitebox fuzzer has a perfect view of the execu-
tion of an input. For instance, symbolic execution enumer-
ates interesting program paths.

Non-deterministic blackbox fuzzing lends itself to prob-
abilistic modeling because of the small number of assump-
tions about the fuzzing process. Unlike greybox fuzzing,
blackbox fuzzing is not subject to adaptive bias.c We adopt
the recently proposed Software Testing As Species Discovery

c Unlike for a blackbox fuzzer, for a greybox fuzzer the probability to ob-
serve certain program behaviors during fuzzing changes as new seeds are
added to the corpus.

NOVEMBER 2023 | VOL. 66 | NO. 11 | COMMUNICATIONS OF THE ACM 91

3. INFORMATION THEORY OF FUZZING
We provide an information-theoretic foundation for non-
deterministic blackbox fuzzing. In the context of fuzz-
ing, Shannon’s entropy H has several interpretations. It
quantifies the average information a generated test input
reveals about the behaviors (that is, species) of the pro-
gram. Alternatively, we say, a generated test input reduces
our uncertainty by H information units (for example, nats
or bits), on average. Entropy also gives the minimum num-
ber of information units needed to reliably store the entire
set of behaviors the fuzzer is capable of testing. Moreover,
entropy is a measure of diversity. Low entropy means that
the program does either not exhibit many behaviors or
most generated inputs test the same behaviors (that is,
belong to an abundant species).

3.1. Information theory in a nutshell
Shannon’s entropy H22 measures the average amount of
information in each sample Xn Î F about the species that
can be observed by executing the program . When there are
S distinct species, the entropy H is:

 (3)

Figure 1 illustrates the concept informally. Each color
represents a different species. We learn about the colors in
each urn by sampling. Just how much we learn from each
sampling differs from urn to urn. For instance, in Urn 1 it
is three times more likely to draw a white ball than a black.
It takes more attempts to learn about black balls in Urn 1
compared to Urn 2. Hence, we expect less information about
the urn’s colors in a draw from Urn 1. In fact, given the same
number of colors S, the entropy is maximal when all col-
ors are equiprobable p1 = … = pS. Among the three urns, we
expect to get the maximal amount of information about the
urn’s colors by drawing from Urn 3. Even though there is still
a dominating color (black), there is now an additional color
(blue) that can be discovered.

3.2. If each input belongs to multiple species
Shannon’s entropy is defined for the multinomial distribu-
tion where each input belongs to exactly one species (for
example, exercise exactly one path). However, an input can
belong to several species so that . For instance,
considering a branch in as a species, each input exercises
multiple branches. The top-level branch is exercised with
probability one. When it is possible that , Chao et
al.11 and Yoo et al.25 suggest to normalize the probabilities

and compute , such that
. This normalization maintains the fundamental properties
of information based on which Shannon developed his for-
mula, that is, that information due to independent events is
additive, that information is a non-negative quantity, etcet-
era. The normalized entropy H is computed as

 (4)

We note that Equation (4) reduces to Equation (3) for the spe-
cial case where . We also note that the resulting
quantity is technically not the average information per input.

3.3. The Local Entropy of a Seed
Recall from Section 2.1, that we call the probabilities
that fuzzing a seed t Î generates an input that belongs to
species Di as the local species distribution of t. Moreover, we
call the set of species as the neighbor-
hood of the seed t. From the local species distribution of t,
we can compute the local entropy Ht of t as a straight-forward
application of Equation 4,

 (5)

The local entropy Ht of t quantifies the information that fuzz-
ing t reveals about the species in t’s neighborhood.

3.4. Information-theoretic efficiency measure
Intuitively, the rate at which we learn about program behav-
iors, that is, the species in the program, also quantifies a
blackbox fuzzer’s efficiency. We formally demonstrate how
Shannon’s entropy H characterizes the general discovery
rate D(n) as follows.

Theorem 1. Let Shannon’s entropy be defined as in
Equation (4). Let ∆(n) be the expected number of new species the
fuzzer discovers with the (n + 1)-th generated test input, then

 (6)

characterizes the rate at which species are discovered in an infi-
nitely long-running campaign, where is a normal-
izing constant.

Proof. We refer to the extended version.6

According to Theorem 1, entropy measures the spe-
cies discovery rate ∆(n) over an infinitely long-running fuzz-
ing campaign where discovery is gradually discounted as
the number of executed tests n goes to infinity. Notice
that ∆(n) ≥ 0 for all n ≥ 0. If we simply took the sum of ∆(n)
over all n, we would compute the total number of species

. However, S provides no insight into the effi-
ciency of the discovery process. Instead, the diminishing
factor 1/n in Equation (6) reduces the contribution of spe-
cies discovery as testing effort n increases. The number of

Urn 2. p1 = p1 =
1
2

H = 0.69
H = 0.56

Urn 3.
p1 =

1
4

1
2, p2 =

p3 =
1
4 , H = 1.04

Urn 1.
p1 =

3
4

1
4, p2 =

Figure 1. Learning colors by sampling with replacement.

research highlights

92 COMMUNICATIONS OF THE ACM | NOVEMBER 2023 | VOL. 66 | NO. 11

species discovered at the beginning of the campaign has a
higher contribution to H than the number of species discov-
ered later. In other words, a shorter “ramp up” time yields a
higher entropy.

Estimation. We estimate Shannon’s entropy H based on
how often we have seen each observed species. The inci-
dence frequency Yi for species Di is the number of generated
test inputs that belong to Di. Undetected species yield Yi = 0.
An unbiased estimator of the local discovery probability pi
is , where n is the total number of generated test
inputs. By plugging into Equation (4), we can estimate
the entropy H using maximum likelihood estimation (MLE).
In our model, the estimated entropy of H is

 (7)

where we assume that .
Greybox. Now, non-deterministic blackbox fuzzing

satisfies the assumption that the global species distribu-
tion is invariant during the campaign. However, this
assumption does not hold for greybox fuzzing which lever-
ages program feedback. Generated inputs that have dis-
covered new species (that is, increased coverage) are added
to the corpus. The availability of added seeds changes the
global species distribution (but not the local distributions
for each seed) and thus the global entropy for a greybox
fuzzer. In other words, a greybox fuzzer becomes more effi-
cient over time. We refer to the longer conference version6
for a discussion of the required extension of the probabi-
listic model to estimate global entropy for greybox fuzzing.

Algorithm 1 Entropic Algorithm.

Input: Program , Initial Seed Corpus
 1: while ØTimeout() do
 2: for all t Î . AssignEnergy(t) // power schedule
 3: total = St Î t.energy // normalizing constant
 4: for all t Î . // normalized energy
 5: t = sample t from with probability t.energy
 6: t′ = Mutate(t) // fuzzing
 7: if (t′) crashes then return crashing seed t′
 8: else if (t′) increases coverage then add t′ to
 9: for all covered elements i Î exercised by t′ do
10: // local incidence freq.
11: end for
12: end while
return Augmented Seed Corpus

4. INFORMATION THEORETIC BOOSTING
We present an entropy-based boosting strategy for greybox
fuzzing that maximizes the information each generated
input reveals about the species (that is, behaviors) in a pro-
gram. Our technique Entropic is implemented into the
popular greybox fuzzer LibFuzzer,16 which is responsible
for at least 12,000 bugs reported in security-critical open-
source projects and more than 16,000 bugs reported in the
Chrome browser.20 After a successful independent evalu-
ation of Entropic by Google, our entropy-based power

schedule has been integrated into the main-line LibFuzzer
and made the default power schedule.

4.1. Overview of entropic
A greybox fuzzer starts with a corpus of seed inputs and
continuously fuzzes these by applying random mutations.
Generated inputs that increase coverage are added to the
corpus. The probability (that is, frequency) with which a
seed is chosen for fuzzing is called the seed’s energy. The
procedure that assigns energy to a seed is called the fuzzer’s
power schedule. For instance, LibFuzzer’s standard sched-
ule assigns more energy to seeds that were found later in the
fuzzing campaign. It is this power schedule that we modify.

Algorithm 1 shows how greybox fuzzing is implemented
in LibFuzzer; our changes for Entropic are shown as
green boxes. In a continuous loop, the fuzzer samples a
seed t Î from a distribution that is given by the seeds’ nor-
malized energy. This energy is computed using assignEn-
ergy which implements one of our information-theoretic
power schedules. The seed t is then mutated using ran-
dom bit flips and other mutation operators to generate an
input t′. If the execution crashes or terminates unexpect-
edly, for example, due to limits on execution time, mem-
ory usage, or sanitizers,21 t′ is returned as crashing input,
and LibFuzzer stops. If the execution increases coverage,
t′ is added to the corpus. We call the number of inputs gen-
erated by fuzzing a seed t Î and that belongs to species Di
as local incidence frequency .

4.2. Entropy-based power schedule
Our entropy-based schedule assigns more energy to seeds
that elicit more information about the program’s species.
In other words, the fuzzer spends more time fuzzing seeds
which lead to the more efficient discovery of new behav-
iors. The amount of information about the species in the
neighborhood of a seed t that we expect for each generated
test input is measured using the seed’s local entropy Ht.

The entropy-based power schedule is inspired by Active
Simultaneous Localization And Mapping (SLAM),10 a prob-
lem in robot mapping: An autonomous robot is placed in an
unknown terrain; the objective is to learn the map of the ter-
rain as quickly as possible. General approaches approximate
Shannon’s entropy of the map under hypothetical actions.8,10
The next move is chosen such that the reduction in uncer-
tainty is maximized. Similarly, our schedule chooses the
next seed such that the information about the program’s
species is maximized.

Improved estimator. During our experiments, we quickly
noticed that the maximum likelihood estimator in
Equation (7) cannot be used. A new seed t that has never
been fuzzed will always be assigned zero energy = 0.
Hence, it would never be chosen for fuzzing and forever
remain with zero energy. We experimented with a screen-
ing phase to compute a rough estimate. Each new seed
was first fuzzed for a fixed number of times. However, we
found that too much energy was wasted gaining statistical
power that could have otherwise been spent discovering
more species.

NOVEMBER 2023 | VOL. 66 | NO. 11 | COMMUNICATIONS OF THE ACM 93

evaluation of the sensitivity of the boosting technique on the
abundance threshold θ.

5. EXPERIMENTAL EVALUATION
5.1. Research questions
Our main hypothesis is that increasing information per
generated input increases fuzzer efficiency. To evaluate our
hypothesis, we ask the following research questions.
RQ.1 What is the coverage improvement over the baseline?
RQ.2 How much faster are bugs detected vs to the baseline?
RQ.3 What is the cost of maintaining incidence frequencies?

5.2. Setup and infrastructure
Implementation and baseline. We implemented our
entropy-based power schedule into LibFuzzer (363 lines of
change) and call our extension as Entropic. LibFuzzer is
a state-of-the-art vulnerability discovery tool developed at
[blinded] which has found almost 30k bugs in hundreds of
closed- and open-source projects.

As a coverage-based greybox fuzzer (see Alg. 1), Lib-
Fuzzer seeks to maximize code coverage. Hence, our species
is a coverage element, called a feature. A feature is a com-
bination of the branch covered and hit count. For instance,
two inputs (exercising the same branches) have a different
feature set if one exercises a branch more often. Hence,
feature coverage subsumes branch coverage. In contrast to
LibFuzzer, Entropic also maintains the local and global
incidence frequencies for each feature. We study the perfor-
mance hit in RQ3.

 Our extension Entropic has been independently evalu-
ated by the company that is developing LibFuzzer and was
found to improve on LibFuzzer with statistical significance.
Entropic was integrated into the main-line LibFuzzer and
is currently subject to public code review. Once integrated,
Entropic is poised to run on more than 25,000 machines fuzz-
ing hundreds of security-critical software systems simultane-
ously and continuously.

Benchmark subjects. We compare Entropic with
LibFuzzer on two benchmarks containing 250+ open-
source programs used in many different domains, includ-
ing browsers. We conducted almost 1000 one-hour
fuzzing campaigns and 2,000 six-hour campaigns to gener-
ate almost two CPU years’ worth of data.

FTSf (12 programs, 1.2M LoC, 1 hour, 40 repetitions) is a
standard set of real-world programs to evaluate fuzzer per-
formance. The subjects are widely-used implementations
of file parsers, protocols, and databases (for example, lib-
png, openssl, and sqlite), amongst others. Each subject
contains at least one known vulnerability (CVE), some of
which require weeks to be found. The Fuzzer Test Suite
(FTS) allows to compare the coverage achieved as well as
the time to find the first crash on the provided subjects.
There are originally 25 subjects, but we removed those pro-
grams where more than 15% of runs crashed (leaving 12
programs with 1.2M LoC). As LibFuzzer aborts when the
first crash is found, the coverage results for those subjects

f https://github.com/google/fuzzer-test-suite.

To overcome this challenge we took a Bayesian approach.
We know that entropy is maximal when all probabilities are
equal. For a new seed t, we assume an uninformative prior
for the probabilities , that is, , where is the
probability that fuzzing t generates an input that belongs to
species Di. With each input that is generated by fuzzing t, the
probabilities are incrementally updated. The posterior is a
Beta distribution over . The estimate of is thus the
mean of this beta distribution which is also known as the
Laplace estimator (LAP) or add-one smoothing,

 (8)

where Sg = S(n) is the number of globally discovered species.
We define the improved entropy estimator (LAP) as

Figure 2 illustrates the main idea. Both estimators
are nearly unbiased from two hours onwards. In other
words, they are within 1% from the true value, that is,

.e In the beginning, the MLE is negatively
biased and approaches the true value from below while
the LAP is positively biased and approaches the true value
from above. Both estimators robustly estimate the same
quantity, but only LAP assigns high energy when seed t
has not been fuzzed enough for an accurate estimate of the
seed’s information Ht.

Measuring information only about rare species. During
our initial experiments, we also noticed that the entropy esti-
mates for different seeds were almost the same. We found
that the reason is a small number of very abundant species
which have a huge impact on the entropy estimate. There
are some abundant species to which each and every gener-
ated input belongs. Hence, we defined a global abundance
threshold θ and only maintain local incidence frequencies

 of globally rare species Di that have a global incidence
frequency Yi ≤ θ. Intuitively, rare species are the ones creat-
ing new behaviors. We refer to the extended version6 for an

e In contrast to global entropy H, local entropy Ht is not subject to any adap-
tive bias.

−10.0%

0.0%

10.0%

1 2 3 4 5 6
Time (in h)

E
st

im
at

or
 B

ia
s

estimator

Entropy (LAP)

Entropy (MLE)

Figure 2. Mean estimator bias over time. We monitored estimates
for the same seed t over 6h across 20 runs. Estimator bias is the
difference between the mean estimate and the true value Ht divided
by the true value Ht, where Ht is the average of both mean estimates
at 6 hours.

research highlights

94 COMMUNICATIONS OF THE ACM | NOVEMBER 2023 | VOL. 66 | NO. 11

(with our entropy-based schedule) covers about 700 fea-
tures in under 15 min while LibFuzzer (with the original
schedule) takes one hour.

Entropic substantially outperforms LibFuzzer within
the one-hour time budget for 9 of 12 subjects. For two out of
three cases where the effect size is considered medium, the
mean difference in feature coverage is substantial (30% and
80% increase for libpng and openssl-1.1.0c, resp.). In almost all
cases, Entropic is more than twice as fast (2x) as LibFuzzer.
The same coverage that LibFuzzer achieves in one hour,
Entropic can achieve in less than 30 min. All differences are
statistically significant. The coverage trajectories seem to indi-
cate that the benefit of our entropy schedule becomes even
more pronounced for longer campaigns. We increase the cam-
paign length to 6h for our experiments with OSS-Fuzz (RQ2).

RQ1.2. Large Scale Validation on OSS-Fuzz
 Results for 263 open-source C/C++ projects validate our
empirical findings. Entropic generally achieves more cov-
erage than LibFuzzer. The coverage increase is larger than
10% for a quarter of programs. Entropic is more than twice
as fast as LibFuzzer for half the programs. The efficiency
boost increases with the length of the campaign.

would be unreliable. We set an 8GB memory limit and ran
LibFuzzer for 1 hour. To gain statistical power, we repeated
each experiment 40 times. This required 40 CPU days.

OSS-Fuzzg (263 programs, 58.3M LoC, 6 hours, 4 rep-
etitions) is an open-source fuzzing platform developed by
Google for the large-scale continuous fuzzing of security-
critical software. At the time of writing, OSS-Fuzz featured
1326 executable programs in 176 open-source projects. We
selected 263 programs totaling 58.3 million lines of code
by choosing subjects that did not crash or reach the satu-
ration point in the first few minutes and that generated
more than 1000 executions per second. Even for the chosen
subjects, we noticed that the initial seed corpora provided
by the project are often for saturation: Feature discovery
has effectively stopped shortly after the beginning of the
campaign. It does not give much room for further discov-
ery. Hence, we removed all initial seed corporates. We ran
LibFuzzer for all programs for 6 hours and, given a large
number of subjects, repeated each experiment four times.
This required 526 CPU days.

Computational resources. All experiments for FTS were
conducted on a machine with Intel(R) Xeon(R) Platinum
8170 2.10GHz CPUs with 104 cores and 126GB of main
memory. All experiments for OSS-Fuzz were conducted on
a machine with Intel(R) Xeon(R) CPU E5–2699 v4 2.20GHz
with a total of 88 cores and 504GB of main memory. To
ensure a fair comparison, we always ran all schedules simul-
taneously (same workload), each schedule was bound to
one (hyperthread) core, and 20% of cores were left unused
to avoid interference. In total, our experiments took more
than 2 CPU years which amounts to more than two weeks of
wall clock time.

Setup for Figure 2. Throughout the paper, we reported
on the results of small experiments. In all cases when not
otherwise specified, we used LibFuzzer with the original
power schedule to fuzz the LibPNG project from the fuzzer-
test-suite (FTS) started with a single seed input. For Figure
2, we conducted 20 runs of 6 hours and monitored the sin-
gle seed input that we started LibFuzzer with. We printed
all four estimates in regular intervals.

RQ1.1. Code Coverage on FTS
 Empirical results confirm our hypothesis that increasing the
average information each generated input reveals about the
program’s species increases the rate at which new species are
discovered. By choosing the seed that reveals more information,
efficiency is improved.

Figure 3 shows the mean coverage over time and the
Vargha-Delaney2 effect size . Values above 0.56, 0.63, and
0.71 indicate a small, medium, and large effect size, respec-
tively. More intuitively, the values indicate how much more
likely it is for an Entropic run to cover more features than
a LibFuzzer run (or less likely if under 0.5). Values in stars
() indicate statistical significance (Wilcoxon rank-sum
test; p < 0.05). For instance, for vorbis-2017-12-11 Entropic

g https://github.com/google/oss-fuzz

entropy *0.74*

entropy *0.64*

entropy *0.71*

entropy *0.68*

entropy *0.98*

entropy *0.98*

entropy *0.84*

entropy *0.82*

entropy *0.87*

entropy *0.63*

entropy *0.82*

entropy *0.86*

sqlite−2016−11−14 vorbis−2017−12−11 wpantund−2018−02−27

openssl−1.1.0c−x509 openthread−2018−02−27−ip6 openthread−2018−02−27−radio

lcms−2017−03−21 libjpeg−turbo−07−2017 libpng−1.2.56

freetype2−2017 guetzli−2017−3−30 harfbuzz−1.3.2

0 15 30 45 60 0 15 30 45 60 0 15 30 45 60

0

2500

5000

7500

0

100

200

300

400

0

500

1000

1500

2000

0

2500

5000

7500

10000

0

250

500

750

1000

1250

0

300

600

900

1200

0

500

1000

0

200

400

600

0

3000

6000

9000

0

200

400

600

0

500

1000

1500

0

300

600

900

Time (in minutes)

N
um

be
r

of
 F

ea
tu

re
s

schedule original entropy

Figure 3. Mean coverage in a 60-min fuzzing campaign
(12 subjects × 2 schedules × 40 runs × 1 hour ≈ 40 CPU days).
The dashed, vertical lines show when Entropic achieves the same
coverage as LibFuzzer in 1 hour. The values at the bottom right give
the Vargha-Delaney effect size Â12.

NOVEMBER 2023 | VOL. 66 | NO. 11 | COMMUNICATIONS OF THE ACM 95

for 25% of subjects. More specifically, Entropic achieves
the same coverage in 1.5h as LibFuzzer achieves in 6h for
66 subjects.

Figure 4(c) shows the proportion of subjects where
Entropic achieves more coverage than LibFuzzer (that
is, wins) over time. Both fuzzers break even at about 10
min. After 30 min, Entropic already wins for 64% of sub-
jects, until at 6 hours, Entropic wins for about 77% of
subjects. We interpret this result as Entropic becoming
more effective at boosting LibFuzzer as saturation is being
approached. At the beginning of the campaign, almost
every new input leads to species discovery. Later in the fuzz-
ing campaign, it becomes more important to choose high-
entropic seeds. Moreover, estimator bias is reduced when
more inputs have been generated.

RQ2. Crash Detection
 In the OSS-Fuzz benchmark, Entropic found most crashes
faster than LibFuzzer. Some crashes were found only by
Entropic. These crashes are potential zero-day vulnerabili-
ties in widely-used security-critical open-source libraries.

Figure 5 shows the time it takes to find each crash as
an aggregate statistic in ascending order overall crashes
that have been discovered in any of the four runs of all sub-
jects for both fuzzers. For instance, for 2.5% of 263 × 4 runs,
Entropic finds a crash in 1.5 hours or less while LibFuzzer
takes two hours or less. The crashes are real and potentially
exploitable. All subjects are security-critical and widely
used. Google maintains a responsible disclosure policy for
bugs found by OSS-Fuzz. This gives maintainers some time
to patch the crash before the bug report is made public.
Three bugs are discovered only by Entropic.

Figure 4(a) shows the mean coverage increase of Entropic
over LibFuzzer on a logarithmic scale over all 263 sub-
jects. The dashed line represents the coverage increase of
LibFuzzer over Entropic for the cases when LibFuzzer
achieves more coverage. We can see that Entropic achieves
more coverage than LibFuzzer after six hours of fuzzing for
about 77% of subjects. Entropic covers at least 10% more fea-
tures than LibFuzzer for about 25% of subjects. We investi-
gated more closely the 23% of the subjects where Entropic
achieves less coverage. First, for half of them, the coverage
difference was marginal (less than 2%). Second, these sub-
jects were much larger (twice the number of branches on
average). As we will see in RQ3 that the performance over-
head incurred by Entropic grows linearly with the num-
ber of branches.

Figure 4(b) shows how much faster Entropic is in
achieving the coverage that LibFuzzer achieves in six
hours. Again, the dashed line shows the inverse when
LibFuzzer achieves more coverage at the six-hour mark.
We can see that Entropic achieves the same coverage
twice as fast for about 50% of subjects and four times as fast

1%

10%

100%
200%

Subjects (in %)

100%90%80%70%60%50%40%30%20%10%0%

−1%

−10%

−100%

(a) Mean coverage increase. For X% of subjects, ENTROPIC achieves at
least Y% more coverage than LIBFUZZER

0 66 132 198 264

0

1

2

3

4

5

6

0% 25% 50% 75% 100%

Number of Subjects

Subjects (in %)

T
im

e
(in

 h
ou

rs
)

(b) Time to Coverage. For X% of subjects, ENTROPIC achieves the same
coverage in Y hours, that LIBFUZZER achieves in 6 hours (solid line).

40.0%

60.0%

80.0%

1 3 10 30 100 360

Time (in min)

P
ro

po
rt

io
n

of
 'W

in
s'

(c) Entropic gets better at achieving coverage. After X seconds of fuzzing,
ENTROPIC achieves more coverage than LIBFUZZER for Y% of the 263
subjects.

Figure 4. OSS-Fuzz coverage results (263 subjects × 2 schedules ×
4 runs × 6 hours ≈ 1.5 CPU years).

Figure 6. Entropic instrumentation overhead.

0.00

0.25

0.50

0.75

1.00

Subjects

P
ro

po
rt

io
n

of
 E

xe
cu

tio
n

Frequency Updates Fuzzer Maintenance Subject Execution

0

2

4

6

0.00% 1.00% 2.00% 3.00% 4.00%

Percentage of Runs

T
im

e
to

 E
rr

or
 (i

n
h)

Figure 5. OSS-Fuzz crash Time-To-Error results (≈ 1.5 CPU years).
X% of runs crashed in Y hours or less. Entropic (dashed) and LibFuzzer
(solid). Lower is better.

research highlights

96 COMMUNICATIONS OF THE ACM | NOVEMBER 2023 | VOL. 66 | NO. 11

probability of failure (that is, the observed not matching
the expected output). Hence, Yang’s model is practical
only in the context of test selection, but not in the context
of automated test generation. Similarly, Feldt et al.12 pro-
pose an information- theoretic approach to measure the
distance between test cases, based on Kolmogorov com-
plexity and uses it to maximize the diversity of selected
tests. Although their idea is complementary to ours, it
is computationally too expensive to be directly applied
to test generation. Finally, by considering fuzzing as a
random process in a multidimensional space, Ankou18
enables the detection of a different combination of spe-
cies in fuzzers’ fitness function.

Information theory has also found application in soft-
ware fault localization. Given a failing test suite T, suppose
we want to localize the faulty statement as quickly as pos-
sible. Yoo, Harmann, and Clark25 discuss an approach
to execute test cases in the order of how much informa-
tion they reveal about the fault location. Specifically, test
cases—which most reduce the uncertainty that a statement
is the fault location—will be executed first. Campos et al.9
propose a search-based test generation technique with a
fitness function that maximizes the information about the
fault location. In contrast, our objective is to quantify and
maximize the efficiency of the test generation process in
learning about the program’s behaviors (incl. whether or
not it contains faults).

Bug finding efficiency and scalability are important
properties of a fuzzing campaign. Böhme and Paul7 con-
duct a probabilistic analysis of the efficiency of blackbox
versus whitebox fuzzing, and provide concrete bounds on
the time a whitebox fuzzer can take per test input in order
to remain more efficient than a blackbox fuzzer. Böhme
and Falk4 empirically investigate the scalability of non-
deterministic black- and greybox fuzzing and postulate
an exponential cost of vulnerability discovery. Specifically,
they make the following counter-intuitive observation:
Finding the same bugs linearly faster requires linearly
more machines. Yet, finding linearly more bugs at the
same time requires exponentially more machines. For
recent improvements to fuzzing, we refer to Manès et al.17

Alshahwan and Harman1 introduced the concept of “out-
put uniqueness” as (blackbox) coverage criterion, where
one test suite is considered as more effective than another
if it elicits a larger number of unique program outputs.
This blackbox criterion turns out to be similarly effective as
whitebox criteria (such as code coverage) in assessing test
suite effectiveness. In our conceptual framework, a unique
output might be considered as a species.

8. CONCLUSION
In this paper, we presented Entropic, the first greybox
fuzzer that leverages Shannon’s entropy for scheduling
seeds. The key intuition behind our approach is to pre-
fer seeds that reveal more information about the pro-
gram under test. Our extensive empirical study confirms
that our information-theoretic approach indeed helps in
boosting fuzzing performance in terms of both code cover-
age and bug-finding ability.

RQ3. Performance Overhead
 In the FTS benchmark, there is a 2% median overhead for
maintaining incidence frequencies compared to the entire fuzz-
ing process. There is a 12% median overhead compared to the
time spent only in the fuzzer (not in the subject).

Figure 6 shows the proportion of the time that Entropic
spends in the different phases of the fuzzing process. In all
cases, the most time is spent executing the subject (bright
gray). Entropic executes the subject between 10,000 and
100,000 times per second. The remainder of the time is spent
in the fuzzer, where the darker gray bars represent functions
that LibFuzzer normally performs while the black bars rep-
resent the overhead brought by Entropic.

The maintenance of incidence frequencies takes more
time away from the fuzzing process than we expected, given
the substantial performance gains discussed in RQ1 and
RQ2. Note that Entropic outperforms LibFuzzer despite
this additional overhead. Entropic is a prototype. We are
confident that there are plenty of opportunities to reduce
this overhead to further boost Entropic’s efficiency.

6. THREATS TO VALIDITY
Like for any empirical study, there are threats to the
validity of our results. We adopted several strategies to
increase internal validity. In order to put no fuzzer at a
disadvantage, we used default configurations, provided
the exact same starting condition, and executed each
technique several times and under the same workload.
The time when the fuzzer crashes identify unambigu-
ously when a bug is found. To define species in our
experiments, we use the natural measure of progress
for LibFuzzer and its extension Entropic. To mitigate
threats to construct validity such as bugs in Entropic
or observed performance differences that are not due to
our discussed improvements, we extended the baseline
LibFuzzer using a readily comprehensible 363 lines of
code. We adopted several strategies to increase exter-
nal validity. We repeated all experiments from which we
derive empirical statements (RQ1, RQ2, RQ3) at least 40
times. To increase the generality of our results, we con-
ducted experiments on OSS-Fuzz totaling 263 C/C++ pro-
grams and 58.3 million LoC.

For a sound statistical analysis, we followed the recom-
mendations of Arcuri et al.2 and Klees et al.15 to the extent to
which our computational resources permitted.

7. RELATED WORK
Information theory has previously found applica-
tion in software test selection. Given a test suite T and
the probability p(t) that test case t Î T fails, one may
seek to minimize the number of test cases t Î T to exe-
cute while maximizing the information that execut-
ing t would reveal about the program’s correctness.
Yang et al.23, 24 give several strategies to select a test
case t′ Î T (or a size-limited set of test cases T′ Í T)
such that—if we were to execute t′ (or T′)—the uncertainty
about test case failure (that is, entropy) is minimized.
Unlike our model, the model of Yang et al. requires speci-
fying for each input the expected output as well as the

NOVEMBER 2023 | VOL. 66 | NO. 11 | COMMUNICATIONS OF THE ACM 97

Marcel Böhme (marcel.boehme@acm.
org), MPI-SP, Germany; Monash University,
Australia.

Valentin J.M. Manès and Sang Kil Cha
(valentinmanes@outlook.fr, sangkilc@
kaist.ac.kr), CSRC, KAIST, Korea.

References
 1. Alshahwan, N., Harman, M. Coverage

and fault detection of the output-
uniqueness test selection criteria. In
Proceedings of the 2014 International
Symposium on Software Testing and
Analysis (ISSTA) (2014), 181–192.

 2. Arcuri, A., Briand, L. A practical guide
for using statistical tests to assess
randomized algorithms in software
engineering. In Proceedings of the 33rd
International Conference on Software
Engineering (ICSE) (2011), 1–10.

 3. Böhme, M. STADS: Software testing as
species discovery. ACM Trans. Software
Eng. Method. 27, 2 (2018), 1–7.

 4. Böhme, M., Falk, B. Fuzzing: On the
exponential cost of vulnerability
discovery. In Proceedings of the
14th Joint meeting of the European
Software Engineering Conference
and the ACM SIGSOFT Symposium
on the Foundations of Software
Engineering (ESEC/FSE)
(2020), 1–12.

 5. Böhme, M., Liyanage, D., Wüstholz, V.
Estimating residual risk in greybox
fuzzing. In Proceedings of the 29th
ACM Joint Meeting on European
Software Engineering Conference
and Symposium on the Foundations
of Software Engineering (ESEC/FSE)
(2021), ACM, NY, 230–241.

 6. Böhme, M., Manès, V., Cha, S.K.
Boosting fuzzer efficiency: An
information theoretic perspective. In
Proceedings of the 14th Joint meeting
of the European Software Engineering
Conference and the ACM SIGSOFT
Symposium on the Foundations of
Software Engineering (ESEC/FSE)
(2020), 970–981.

 7. Böhme, M. Paul, S. A probabilistic
analysis of the efficiency of automated
software testing. IEEE Trans. Software
Eng. 42, 4 (Apr. 2016), 345–360.

 8. Bryson, M., Sukkarieh, S. Observability
analysis and active control for airborne
slam. IEEE Trans. Aerosp. Electron.
Syst. 44, 1 (Jan. 2008), 261–280.

 9. Campos, J., Abreu, R., Fraser, G.,
d’Amorim, M. Entropy-based test
generation for improved fault
localization. In Proceedings of the 28th
IEEE/ACM International Conference
on Automated Software Engineering
(ASE) (2013), 257–267.

 10. Carrillo, H., Reid, I., Castellanos, J.A.
On the comparison of uncertainty
criteria for active slam. In Proceedings
of the IEEE International Conference
on Robotics and Automation (ICRA)
(2012), 2080–2087.

 11. Chao, A., Wang, Y.T., Jost, L. Entropy
and the species accumulation curve: a
novel entropy estimator via discovery
rates of new species. Methods Ecol.
Evol. 4, 11 (2013), 1091–1100.

12. Feldt, R., Poulding, S., Clark, D., Yoo, S.
Test set diameter: Quantifying the
diversity of sets of test cases. In
Proceedings of the IEEE International
Conference on Software Testing,
Verification and Validation (2016),
223–233.

13. Fioraldi, A., Maier, D., Eißfeldt, H.,
Heuse, M. A++: Combining incremental
steps of fuzzing research. In
Proceedings of the 14th USENIX
Workshop on Offensive Technologies
(WOOT) (2020), 1–12.

 14. Herrmann, B., Winter, S., Siegmund, J.
Community expectations for research
artifacts and evaluation processes.
In Proceedings of the ACM Joint
European Software Engineering
Conference and Symposium on the
Foundations of Software Engineering
(ESEC/FSE) (2020), 1–12.

 15. Klees, G., Ruef, A., Cooper, B., Wei, S.,
Hicks, M. Evaluating fuzz testing. In
Proceedings of the ACM Conference
on Computer and Communications
Security (CCS) (2018), ACM, NY,
2123–2138.

16. LibFuzzer. Libfuzzer: A library for
coverage-guided fuzz testing, 2019.
http://llvm.org/docs/LibFuzzer.html.
Accessed: February 20, 2019.

17. Manès, V.J.M., Han, H., Han, C., Cha, S.K.,
Egele, M., Schwartz, E.J., et al. The art,
science, and engineering of fuzzing: A
survey. IEEE Transa. Software Eng. 47
(2019), 2312–2331.

18. Manès, V.J.M., Kim, S., Cha, S.K.
Ankou: Guiding grey-box fuzzing
towards combinatorial difference.
In Proceedings of the International
Conference on Software Engineering
(2020), 1024–1036.

19. Metzman, J., Szekeres, L., Simon, L.M.R.,
Sprabery, R.T., Arya, A. Fuzzbench: An
open fuzzer benchmarking platform
and service. In Proceedings of the
29th ACM Joint Meeting on European
Software Engineering Conference and
Symposium on the Foundations of
Software Engineering (2021), ACM, NY.

20. Ruhstaller, M., Chang, O. A new
chapter for oss-fuzz, 2019. https://
security.googleblog.com/2018/11/a-
new-chapter-for-oss-fuzz.html.
Accessed: February 20, 2019.

21. Serebryany, K., Bruening, D.,
Potapenko, A., Vyukov, D.
Addresssanitizer: A fast address
sanity checker. In Proceedings of the
2012 USENIX Conference on Annual
Technical Conference (USENIX ATC)
(2012), 28–28.

22. Shannon, C.E. A mathematical theory
of communication. Bell Syst. Tech. J.
27 (1948), 379–423.

23. Yang, L. Entropy and software
systems: Towards an information-
theoretic foundation of software
testing. PhD thesis (2011).

24. Yang, L., Dang, Z., Fischer, T.R.
Information gain of black-box testing.
Form. Aspec. Comput. 23, 4 (Jul.
2011), 513–539.

25. Yoo, S., Harman, M., Clark, D. Fault
localization prioritization: Comparing
information-theoretic and coverage-
based approaches. ACM Trans.
Software Eng. Method. 22, 3 (Jul.
2013), 19.

Information theory. We formally link entropy (as a mea-
sure of information) to fuzzer efficiency, develop estima-
tors, and boosting techniques for greybox fuzzing that
maximize information, and empirically investigate the
resulting improvement of fuzzer efficiency. We extend the
STADS statistical framework3 to incorporate mutation-
based blackbox fuzzing where a new input is generated
by modifying a seed input. We hope that our information-
theoretic perspective provides a general framework to
think about efficiency in software testing irrespective of
the chosen measure of effectiveness (that is, independent
of the coverage criterion).

Practical impact. Our implementation of Entropic
has been incorporated into LibFuzzer, one of the most
popular industrial fuzzers. At the time of writing, Entropic
was enabled for 50% of fuzzing campaigns that are run on
more than 25,000 machines for finding bugs and security
vulnerabilities in over 350 open-source projects, including
Google Chrome. After several additional improvements,
Entropic now outperforms all other fuzzers available on
FuzzBench,19 Google’s fuzzer benchmarking platform. This
resulvt highlights the practical impact of our approach.

Open science and reproducibility. The practical impact
of Entropic is a testament to the effectiveness of open
science, open source, and open discourse. There is a
growing number of authors that publicly release their
tools and artifacts.13 Conferences are adopting artifact
evaluation committees to support reproducibility,14 but, as
always, more can be done to accommodate reproducibility
as first-class citizens in our peer-reviewing process. We
strongly believe that openness is a reasonable pathway to
foster rapid and sound advances in the field and to enable a
meaningful engagement between industry and academia.

• We make our scripts and experimental data publicly avail-
able at https://doi.org/10.6084/m9.figshare.12415622.v2

• We provide detailed instructions to reproduce our
results at https://github.com/Jiliac/fse20

• Our results for Entropic have been independently repro-
duced at https://www.fuzzbench.com/reports/2020-03-04.

Acknowledgments
We thank the anonymous nominator(s) and the ACM
SIGSOFT as well as the CACM Research Highlight selection
committees for allowing us to present our work to such a
broad and distinguished readership. This work was partly
funded by the Australian Research Council (ARC) through
a Discovery Early Career Researcher Award (DE190100046).
This research was supported by the use of the Nectar
Research Cloud, a collaborative Australian research plat-
form supported by the NCRIS-funded Australian Research
Data Commons (ARDC). This work was partly supported by
the Institute of Information & communications Technology
Planning & Evaluation (IITP) grant funded by the Korean
government (MSIT) (No. 2019-0-01697, Development of
Automated Vulnerability Discovery Technologies for Block-
chain Platform Security).

This work is licensed under a
https://creativecommons.org/licenses/by-nc/4.0/

