
Precise Data-Driven Approximation
for Program Analysis via Fuzzing

Nikhil Parasaram†

ucabnp1@ucl.ac.uk
UCL, UK

Earl T. Barr
e.barr@ucl.ac.uk

UCL, UK

Sergey Mechtaev
s.mechtaev@ucl.ac.uk

UCL, UK

Marcel Böhme
marcel.boehme@acm.org

MPI-SP, Germany

Abstract—Program analysis techniques such as abstract inter-
pretation and symbolic execution suffer from imprecision due
to over- and underapproximation, which results in false alarms
and missed violations. To alleviate this imprecision, we propose a
novel data structure, program state probability (PSP), that lever-
ages execution samples to probabilistically approximate reachable
program states. The core intuition of this approximation is that
the probability of reaching a given state varies greatly, and thus
we can considerably increase analysis precision at the cost of
a small probability of unsoundness or incompleteness, which is
acceptable when analysis targets bug-finding. Specifically, PSP
enhances existing analyses by disregarding low-probability states
deemed feasible by overapproximation and recognising high-
probability states deemed infeasible by underapproximation. We
apply PSP in three domains. First, we show that PSP enhances
the precision of the Clam abstract interpreter in terms of MCC
from 0.09 to 0.27 and F1 score from 0.22 to 0.34. Second, we
demonstrate that a symbolic execution search strategy based on
PSP that prioritises program states with a higher probability
increases the number of found bugs and reduces the number
of solver calls compared to state-of-the-art techniques. Third,
a program repair patch prioritisation strategy based on PSP
reduces the average patch rank by 26%.

I. INTRODUCTION

Program analysis checks if a given program satisfies certain
correctness properties. Due to the undecidability, program
analysers approximate program behaviour, which results in
imprecision. Techniques like abstract interpretation [1] over-
approximate program behaviour, causing false positives (false
alarms), and techniques like symbolic execution [2], [3] under-
approximate program behaviour, which leads to false negatives
(missed violations). Abstract interpretation resorts to coarse
abstractions of program states to make their analysis decidable,
at the cost of precision. On the other hand, symbolic execution
is imprecise because it explores a finite number of execution
paths and thus may miss important behaviours.

To improve the precision and recall of program analysis, we
propose an alternative to underapproximate and overapprox-
imate reasoning. Our approach leverages execution samples
to probabilistically approximate program states via a novel
data structure called program state probability (PSP). For
each state, PSP estimates the probability of the existence
of a program input that reaches that particular state during
execution. We realise PSP by training a model, such as random
forest, on data obtained from fuzzing.
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Our technique’s fundamental premise is that significant
variation exists in the likelihood of reaching various states.
Therefore, we can considerably enhance analysis precision at
the cost of a small probability of unsoundness or incomplete-
ness. First, PSP enables us to disregard low-probability states
deemed feasible by overapproximation, thus reducing false
positives. Second, PSP enables us to prioritise high-probability
states falling outside of an underapproximation, thus reducing
false negatives. The level at which low-probability states are
ignored and high-probability, yet unanalysed by an under-
approximation, states are prioritised is controlled by a user-
defined threshold, which functions as a control knob for this
trade-off. We demonstrate PSP’s utility by applying it to tackle
challenges faced by two widely-used analysis techniques —
abstract interpretation and symbolic execution. PSP reduces
abstract interpretation’s false positives and increases the num-
ber of violations detected by symbolic execution. Additionally,
we apply PSP to test-driven program repair to prioritise correct
patches, thereby alleviating test-overfitting.

Abstract interpretation [1] approximates program states us-
ing abstract domains to make analysis scalable, which often
leads to false positives, causing developers to ignore legit-
imate warnings [4]. Minimising false positives is crucial to
ensure the usefulness of abstract interpretation. To achieve
that, we propose augmenting abstract domains with program
state probabilities constructed using values from fuzzing. PSP
allows us to disregard low-probability states deemed reachable
by the abstraction. Although this creates a low probability
of unsoundness, we demonstrate that PSP effectively reduces
false positives, which is important for the practical use of
abstract interpretation as a bug-catching tool.

Symbolic execution executes a program with symbolic
inputs and creates path conditions for the explored paths,
which are solved using an SMT solver to identify feasible
paths and potential bugs [5]. However, it suffers from a
scalability bottleneck due to the high computational cost of
constraint solving. We applied PSP to reduce the solving
cost by identifying probable states and guessing which path
conditions are satisfiable. Specifically, we prioritise exploring
paths that are more likely to be feasible and skip solving path
conditions whose probability of being satisfiable is above a
user-defined threshold. As a result, PSP facilitates deeper code
exploration, enabling symbolic execution to find bugs faster.

Program repair tools face the challenge of searching for a



int N, off;
scanf("%d", &N);
if (N <= 0) return 1;
ll *a = malloc(sizeof(ll) * N);
ll *b = malloc(sizeof(ll) * N);
for (int i = 0; i < N; i++) {

scanf("%d", &off);
if (off < 0 || off > 6)

return 1;
int p = i - 1;
a[i] = (i == 0) ? 6 : a[p] + off;
b[i] = (i == 0) ? 0 : b[p] + a[p];
assert(b[i] <= 3*i*i + 3*i);

}
return 1;

(a) A program from SV-benchmarks for
which Clam produces a false positive (ll
denotes long long).

(b) A heatmap showing the probability of
reaching programs states w.r.t. the values of
b[i] and i (cooler means less likely).

(c) A heatmap computed when analysing
an assertion in OpenSSL, for which Clam
generates a false positive.

Fig. 1: An example program, a PSP heatmap computed for this program, and a heatmap for analysis of OpenSSL.

correct patch in a search space that contains many irrelevant
or incorrect patches. One way to address this challenge is to
prioritise patches in a way that increases the likelihood of
finding a correct patch. We formulate a new hypothesis that the
set of values most variables in a program can take is invariant
with respect to small edits to the program. Relying on this
hypothesis, we prioritise patches that make minimal changes
to the range of all values program variables can take during
execution. PSP enables us to efficiently implement this pri-
oritisation strategy by probabilistically quantifying unchanged
bindings of variables to values.

We implemented PSP using AFL fuzzer [6] for C programs,
and using Fuzzer Harvey [7] for smart contracts. For abstract
interpretation, we integrated PSP with Clam analyser [8] for
C programs. An evaluation on seven programs from Magma
benchmark [9] revealed that PSP enhances the precision of
Clam in terms of MCC from 0.09 to 0.27 and F1 score
from 0.22 to 0.34. For symbolic execution, we compared
our PSP-based search strategy with the state-of-the-art search
strategy using pending constraints [10] and abstract symbolic
execution (ASE) [11]. To compare with the pending con-
straints, we implemented our strategy in Mythril [12] symbolic
executor for smart contracts, and to compare with ASE,
we implemented PSP inside the ASE tool. Our experiments
demonstrated that PSP increases the number of bugs found
by 4.1% compared to the pending constraints, and reduces
the number of solver calls by 77 times compared to ASE.
For program repair, we integrated PSP with the state-of-the-
art patch prioritisation strategy of Rete [13]. For bugs from
ManyBugs benchmark [14], PSP decreased the average rank
of correct patches by 26%.
In this paper, we make the following contributions:

• Introduce program state probability (PSP), which proba-
bilistically approximates program states.

• Apply PSP to reduce false positives during static analysis.
• Propose a search strategy relying on PSP to guide sym-

bolic execution to find more bugs.
• Propose patch prioritisation strategy using PSP to effec-

tively prioritise correct patches for program repair.

PSP’s implementation, and the scripts and data used to
evaluate it can be found in the accompanying package https:
//zenodo.org/record/7902213.

II. OVERVIEW

In this section, we discuss the general intuition behind
program state probability, and illustrate one of its applications:
reducing false positives of static analysis.

Figure 1a depicts a simplified code fragment from SV-
benchmarks, which serves to evaluate the accuracy of
program analysis tools. The program comprises a se-
quence of memory allocations and assignments, and in-
cludes a loop and an assertion. The assertion checks whether
b[i] <= 3*i*i + 3*i holds for all possible inputs at
the end of the program. Clam [8], an LLVM-based abstract
interpreter for C programs, imprecisely analyses the code,
yielding intervals like [8,∞] for b, which is inaccurate and
leads to a false positive. Notably, the interval domain does not
capture b[i]’s dependency on i.

To overcome this issue, we augment Clam’s approximation
with a probability distribution constructed from fuzzing data.
Figure 1b visusalises PSP trained on fuzzing data as a heatmap
over program states, wrt the bindings of the variables b[i]
and i. Cooler colours represent a lower probability, under
the fuzzing campaign, that the program can generate such a
program state. The heatmap reveals a more precise range of
values for b than Clam, while still capturing the dependencies
between b[i] and i.

The upper curve in the heatmap corresponds to the func-
tion 3*i*i + 3*i, which satisfies the assertion. The lower
bound provided by the heatmap is close to the actual lower
bound, which is 6i. At large values of i, the lower bound
does not precisely match the lower bound generated by PSP
because we did not provide enough seed inputs for the fuzzer.
However, it is sufficient to conclude that the probability that
there exists an input that leads to an assertion violation is
0.1826, which is below our default threshold of 0.8. Hence,
PSP helps to eliminate Clam’s false positive.



The heatmap in Figure 1c is obtained by
analysing a larger program, OpenSSL, which contains
assert(ctx->buf_len >= ctx->buf_offset).

The heatmap shows the distribution of values for
two variables in this assertion. We can see that the
heatmap’s heat extends up to the assertion boundary (i.e.
ctx->buf_len = ctx->buf_offset), indicating that
the assertion holds with a high probability under PSP. In
contrast, Clam does not capture the relationship between
these variables, which leads to a false positive.

III. PROGRAM STATE PROBABILITY

This work rests on the idea of using the probability that a
program can reach a given program state to precisely approx-
imate program behaviour. Here, we formalise program state
probability, detail how to calculate it, and apply it to estimate
the likelihood of a program condition being satisfiable.

We use the following terminology. Let I be the set of all
possible inputs a program f can take. Let V be f ’s variables
and X be the disjoint union over the values that variables can
take. Let Σf be the set of all concrete states the program f
can potentially take. Each state σ :V →X∈Σ maps variables
to values. We assume that V contains the program counter,
which binds each state to the location in the program at which
it is computed. Consider the set of abstract states (sets of
concrete states) computed during an abstract interpretation of
the program f . Let Af be the union of all the abstract states
computed during the abstract interpretation of f , so Af ⊆ Σf .

A. Estimating Program State Probability

Let f be a program, let σ ∈ Σf be an arbitrary program state
of f , and let f(i) = σ0, σ1, . . . , σn = σ denote the execution
of f instrumented to output its entire state trajectory. This
indicator function defines the set of states f can generate:

IΣf (σ) =

{
1 if ∃i ∈ I, σ ∈ {σj | f(i) = σ ∧ j ∈ [0..|σ|]}
0 otherwise

(1)
This indicator function is not computable, so we define

program state probability to approximate it.
Definition 1 (Program State Probability (PSP)): For the

program f , the program state probability of the program state
σ ∈ Σf is the probability that f can generate σ. Formally, it
is P (IΣf (σ) = 1).

To estimate PSP, we use the information generated from
fuzzing. We represent the event of running a fuzzer as F
and the fuzzing data using the multiset Fuzz whose element
multiplicity represents the number of times the program state
σ was encountered n times during the fuzzing campaign.

We use the Fuzz produced by fuzzing campaign F to
estimate PSP as follows:

P (IΣf (σ) | F ) =


1 σ ∈ Fuzz

0 σ /∈ Af

r(σ,Fuzz ) otherwise
(2)

where r is a probability distribution, which defaults to uniform,
over the states unseen during the fuzzing campaign F .

When the fuzzing campaign encountered σ, we can say
with certainty that P (IΣf (σ) | F ) = 1. When σ /∈ Af , we
can say with certainty that P (IΣf (σ) | F ) = 0, as abstract
domain overapproximates the set of possible program states.
Otherwise, we use the function r to estimate, or “radiate”,
probability f can generate σ from the observations in Fuzz .
This function can be instantiated in various ways, as discussed
in Section III-B. Where clear from context, we use P (IΣf (σ))
to denote P (IΣf (σ) | F ).

B. Estimating Unseen States

Empirically, we observe that variable bindings often obey
rules and exhibit patterns, like monotonically increasing at
a fixed stride, only taking on odd (or even) numbers, or
oscillating among a few error codes. We leverage this insight
to estimate r(σ,Fuzz ). A program generates very few of its
possible program states. We first check whether σ’s neigh-
bourhood has enough data to contend with this sparsity. If it
does, we look for patterns in it. If we discern a pattern, we
increase the probability of unseen values that obey the pattern.
We use smoothing to reserve probability weight for the rest
of the values.

Let σ’s k-neighbors in Fuzz be

N(σ, k) = {σ′ ∈ Fuzz | d(σ, σ′) ≤ k}

where d is a distance function over program states. When
the population of a state’s neighbourhood exceeds the sample
threshold u, we train a supervised model Ms to estimate
r(σ,Fuzz ) and use it predict states in a given observed state’s
neighbourhood that were unseen during fuzzing. Otherwise,
we resort to the unsupervised statistical method Ms:

r(σ,Fuzz ) =

{
Ms

(
N(σ, ks), σ

)
|N(σ, ks)| ≥ u

Ms

(
N(σ, ks), σ

)
otherwise

(3)

where the distances ks and ks are distinct because they may
need to differ.

Various models can be used to realise Ms. In Section V,
we describe how we built a random forest to detect the simple
patterns that we observed in our data.

To estimate Ms

(
N(σ, ks), σ

)
, we can subject the empirical

distribution that the multiset Fuzz defines to various classical
smoothing techniques such as kernel density estimation. Alter-
nately, we could use heat diffusion to distribute probabilities
across neighbouring points:

∂P (I(σ))
∂t

= ∇2P (I(σ)) +Q(σ, t) (4)

The variable t represents the time during which the sys-
tem evolves. The function Q(σ, t) supplies or removes heat
from the system, ensuring that the heat sources and sinks
(i.e., states encountered during fuzzing and states not in
the abstract domain) maintain their probability. Specifically,
∀t ∈ [0,∞], σ ∈ Fuzz ⇒ P (I(σ | F )) = 1 and
σ ̸∈ A ⇒ P (I(σ | F )) = 0. We add additional constraints



which preserve the probability axioms (i.e. 0 ≤ P (I(σ)) ≤ 1).
We numerically solve Equation (4) using the Forward Time
Centered Space method [15]. We evaluated these different
approaches in Section VI-E; our implementation uses the heat
diffusion method because it worked best Section V.

C. Satisfiability Under PSP

Consider an arbitrary condition C in the program f contain-
ing variables v1 . . . vn. We denote the probability that there
exists an input that satisfies this condition as P (IfC) where:

IfC =

{
1 if ∃σ ∈ Σf , IΣf (σ) = 1 ∧ ⟨C, σ⟩ ⇓ 1

0 otherwise
(5)

where ⇓ evaluates C in the program state σ.
We compute the lower and upper bounds using the following

equations:
P (IfC) ≥ max

σ∈Σf
C

P (IΣf (σ)) (6)

P (IfC) ≤ min
(
1,

∑
σ∈Σf

C

P (IΣf (σ)
)

(7)

To weakly approximate P (IfC), we assume that the events
in Σf

C = {IfΣ(σi) | σi ∈ Σ, ⟨C, σi⟩ ⇓ 1} are mutually
independent:

P (IfC) ≈ 1−
∏

σi∈Σf
C

(
1− P

(
IΣf (σi))

))
(8)

The satisfiability conditions can be computationally expensive
when computing P (IΣf (σ)

)
for each state σ ∈ Σf

C using
Equation (3). However, under certain practical constraints, they
become inexpensive to compute. We show how we efficiently
and effectively approximate it in Section V.

IV. PSP APPLICATIONS

Here, we introduce three applications of PSP: enhancing the
precision of static analysis, optimising symbolic execution, and
improving the quality of automatically generated patches.

A. Abstract Interpretation

Abstract interpretation overapproximates program states to
make analysis tractable and scalable, which leads to false
positives, discouraging developers from examining analysis vi-
olations. Therefore, minimising false positives is crucial for the
usability of abstract interpretation. To achieve that, we use PSP
to construct P (I(σ)) by relying on fuzzing data as well as the
abstract states Af computed by an abstract interpretation tool.
Then, we calculate P (If¬C) for each assertion C, as explained
in Section III-C. We only report an assertion violation if the
resulting probability is greater than a user-defined threshold
θ. This enables us to disregard low-probability states deemed
reachable by overapproximation, thus reducing false positives.

We define the threshold θ such that θ = 0 =⇒ PSP is
a conservative overapproximation and θ = 1 =⇒ PSP is
a conservative underapproximation. Raw PSP can violate θ’s
definition, since it can predict P (If¬C) = 1 for an assertion C

which is always satisfied and P (If¬C) = 0 for an infeasible
assertion. To prevent these cases, we restrict PSP to estimate
probabilities in the interval (0, 1), not [0, 1]. To achieve this,
we post process PSP’s estimates: we rewrite its 0 estimates to
0+ϵ and its 1 estimates to 1−ϵ. This postprocessing enforces
soundness at θ = 1, ensuring we do not report false positives
due to imprecise estimates.

B. Symbolic Execution

Symbolic execution constructs a path condition, the con-
junction of conditionals it encounters along a path. It queries
an SMT solver to determine which paths are feasible by
checking the satisfiability of their path conditions, which
is computationally expensive. PSP can reduce this cost by
identifying probable states and guessing if path conditions are
satisfiable.

We utilise PSP to prioritise execution paths when symboli-
cally executing a subject program to find bugs. The algorithm
is shown in Algorithm 1. As usual, it takes the subject program
and a termination condition, which could bound steps, time,
memory, or computation. Algorithm 1’s key novelties are
two-fold: 1) it prioritises probable paths, line 10, and 2) it
skips, line 18, solving probable program states, only checking
whether improbable states are satisfiable (line 19). The solve
helper function extracts the path condition from the symbolic
state s and invokes an SMT solver. The bugs(s) function
checks whether the symbolic state s can possibly break certain
criteria drawn from the semi-universal implicit specification of
most programs, such as integer or buffer overflows.

Because of these two features, Algorithm 1 spends more
time exploring probable paths than solving constraints. Despite
not solving probable states, Algorithm 1 always explicitly
solves and stores the inputs for those bugs it finds, i.e.,
solve(s) ̸= SAT =⇒ bugs(s) = ∅. It may, of course,
deem some UNSAT state to be probable, thus treating it as
SAT and end up making redundant calls. To support its new
features, Algorithm 1 additionally takes, as input, a PSP model
trained on a fuzzing campaign F ’s fuzzing data and a threshold
value θ that determines which program states are sufficiently
improbable to ignore. Finally, it returns, as usual, the set of
bugs it finds during its run.

We cannot directly employ the bounds discussed in Sec-
tion III-C as it is not feasible to enumerate all possible program
states. Symbolic execution constructs a path condition PC
in conjunctive normal form that conjuncts all the conditions
it encounters along a path, which we leverage to reduce the
space of program states. Upon encountering the condition C,
a symbolic executor extends its current path condition via
PC ′ = PC ∧ C. To compute PC ’s probability, we need to
compute the probability of P (PC ∧C) = P (C |PC )P (PC).
We already know P (PC ), since we computed it the last time
we extended it. Some of the clauses, or conjuncts, in PC are
independent of the clauses in C. Since PC = c1∧c2∧. . .∧cn,
we can rewrite P (C |PC ) as P (C | c1, c2, . . . , cn). By the def-
inition of independence, P (X |Y ) = P (X). We leverage this



Algorithm 1: Symbolic execution using PSP.

1 Input:
2 f : The subject program
3 PSP : The PSP model built from fuzzing data
4 θ: Threshold for ignoring improbable states
5 κ: Termination criteria
6 Output:
7 B: The set of bugs discovered
8

9 S0 := initState(f)
10 workList := PriorityQueue(PSP)
11 workList .put(S0)
12 B := {}
13 while workList ̸= ∅ ∧ κ do
14 s := workList .next()
15 B := B ∪ bugs(s)
16 newStates := execute(s)
17 for s ∈ newStates do
18 if PSP(Ifs.pc) < θ then
19 if solve(s) ̸= SAT then
20 continue

21 workList .put(s)

22 return B

fact to simplify estimating P (C | c1, c2, . . . , cn) by dropping
all the ci clauses that are independent of C.

To this end, we employ the χ2 test of independence to
identify and prune irrelevant clauses. We compute the inde-
pendence of variables from the fuzzing data offline, then use
it to infer the independence of clauses. We then eliminate
conjuncts from PC that are transitively independent of the
clauses in C. Let C ′ be the conjunction of remaining clauses.
The next step is to filter the Fuzz data to include only program
states generated by code guarded by C ′. This is accomplished
by recording the path travelled by the fuzzer to discover a
program state. The result is Fuzz ′ ⊆ Fuzz . We then use Fuzz ′

to evaluate P (C |C ′) using Equation (6), which provides the
most conservative bound and prioritizes precision. This choice
reduces the chance that PSP gives an unfeasible path a high
probability of SAT.

C. Patch Prioritisation

Program repair tools search for a patch in a search space
that includes many irrelevant or incorrect patches. Due to the
sparsity of useful patches, brute force enumeration is usually
infeasible. So, patch prioritisation seeks to order the patches
so that the correct ones appear earlier during enumeration.

Since program repair tools typically generate patches, whose
size is insignificant w.r.t. the size of the program, we formulate
the following hypothesis:

Hypothesis 1: The set of values that most variables in a
program can take is invariant w.r.t. the edits δ iff δ changes a
sufficiently small portion of the program.

We acknowledge that counterexamples for this hypothesis
exist. Nonetheless, we observe that it often holds in practice.
Relying on this hypothesis, we prioritise patches that make
minimal changes to the range of values program variables take
during execution. We speculate this prioritisation strategy can
be combined with other strategies to increase the quality of
automatically generated patches.

In practice, a patch δ usually replaces one variable with
another with an indistinguishable distribution over its values.
Thus, our focus here is on probabilistically quantifying prob-
abilistically unchanged bindings. To probabilistically check
Hypothesis 1, we first define the subset of a program’s state
on which an arbitrary predicate holds:

IΣf (α) =

{
1 if {σ | σ ∈ Σf , α(σ)} ≠ ∅
0 otherwise

(9)

We are interested in computing the probability that the pro-
gram patch δ does not change some binding when δ(f) is
executed. For the fixed binding v = x, we leverage this
indicator function over predicates to define

D(v, x) =
∣∣P (IΣf (σ(v) = x))− P (IΣδ(f)(σ(v) = x))

∣∣
This difference captures the probability that the two program
variants disagree on whether a program state exists with the
binding v = x; when they are in perfect agreement, this
difference is zero. In general, δ can add or remove variables
from f , so that V may not equal Vδ(f), the variables in the
patched version of f . We define the probability that the patch
δ changes variable bindings as:

IP(f, δ) =
∏

v∈V ∩Vδ(f)

∏
x∈X

(
1−D(v, x)

)
(10)

where v ranges over V ∩ Vδ(f) to restrict this computation
to shared variables as required by the definition of D.

We cannot directly compute Equation (10), because X is
often infinite. Hence, we approximate X with the values
observed during the execution of a test suite T on f and δ(f).
We denote these constrained sets as X|T (f) and X|T (δ(f)) and
constrain x to their union.

Constraining X alone is not enough to efficiently compute
Equation (10). To achieve practical efficiency, we also need to
constrain V ∩Vδ(f) in Equation (10)’s outer product. Hence, we
constrain v only to variables appearing in the patch δ, which
we denote as Vδ . This greatly reduces the number of variables
PSP considers. Its use comes at a cost, however: it introduces
imprecision because it blinds the computation of Equation (10)
to patches that do not directly change an assignment, such as
those that modify only a condition that causes an assignment
that falls outside of δ to execute and change a binding.

We now show how to leverage these restrictions to speed
Equation (10)’s computation. Below, we use b to denote
the binding “σ(v) = x”. First, we speed D’s computation
by precomputing P (IΣf (b)), using Equation (9). Next, we
approximate D’s P (IΣδ(f)(b)) with

P (IΣδ(f)(b)) ≈

{
1 x ∈ X|T (δ(p))

P (IΣf (b)) otherwise
(11)



because if x ∈ X|T (δ(p)), we have observed it in a trace and
therefore its probability to occur is 1; otherwise, we assume
that its probability is same as P (IΣf (b)), under Hypothesis 1.

We use a case analysis and Equation (11) to transform
Equation (10) to

IP(f, δ) =
∏
v∈Vδ

∏
x∈X|T (δ(f))

(
1− |1− P (IΣf (b)|

)
. (12)

Equation (12) can be used alongside other probabilistic
prioritisation techniques, such as Rete, via the total theorem
of probability [16].

V. IMPLEMENTATION

We now detail the interesting design decisions we made
to order to realise an analysis framework resting on PSP.
First, we discuss the fuzzing tools we used for C and Solidity.
We then discuss the exact models and techniques we used to
realise Equation (3) and estimate unseen program states. We
close by describing how we integrated PSP into the Mythril
symbolic execution engine and adapted the Trident patch
synthesiser to use PSP to prioritise patches.

Logging Fuzzing Information: To realise PSP, we must
effectively estimate P (IΣf (σ)). For C programs, we use
AFL [6] to generate values bound to program variables, then
use these values to define an empirical probability distribution,
which we use as our estimate. To log the bindings that the
fuzzer observes along with the line numbers, we instrument
each variable with a function that records the variable to a
global dictionary flushed to stdout at every return/exit point.
For smart contracts, we use the proprietary Fuzzer: Harvey [7]
to log variable information. We use the solidity events that a
program emits. These events trigger the LOG opcode and cause
the EVM to add entries to the transaction receipt. Although
we do not use LOG’s transaction receipt, we do use Harvey to
capture logs that satisfy the event signature corresponding to
capturing the variable’s state and write them to a dictionary
that we periodically flush to a file. We can recognise this
instrumented event corresponding to capturing the variable’s
state through its event signature, which is available as input
to the LOG opcode.

Estimating Unseen States: We use two methods to assign
probabilities to unseen program states: a supervised model and
an unsupervised statistical method. Since all atomic variable
types are bitstrings, which can be interpreted as integers,
we estimate unseen states as integers. First, we instantiate
the supervised model with Random Forest under the default
parameters of scikit-learn. We employ the classic Euclidean
distance as the distance function. Our distance function ignores
variables that are not shared across the program states. We in-
stantiate u with 100 and k with 20 for computing Equation (3).
We use these numbers as they gave good results in small scale
experimentation. We train the model on simple patterns (file
descriptors, error codes, odd, even, modulo, and other periodic
patterns). Since the model is meant to estimate simple patterns,
we do not train it to estimate the dependencies across variables
and the model considers each variable independently. This

makes the model independent of the repository that it is being
run on, as the goal is to identify simple patterns, we make use
of the same model for all our applications.

To construct the feature vector for a given variable v,
we consider the values encountered during fuzzing, in the
neighbourhood k as S = {n1, n2, n3, . . . nr}. Recall that
σ(v) /∈ S, because its current value was not observed during
fuzzing. We construct a zero indexed ternary feature vector of
size 2k+1 centered around σ(v), denoted as F = [(σ(v)−k) ∈
S, (σ(v)− k + 1) ∈ S, . . . (σ(v) + k) ∈ S]. Since σ(v) is not
in F , we set its value to −1 i.e. F [k] = −1 to make it easier
for the model to differentiate the index of the value it needs
to infer. A sample input for requesting to predict the existence
of the value 5 for a variable with S = {2, 4, 6, 8}, k = 3 will
be F = {1, 0, 1,−1, 1, 0, 1}.

For the unsupervised statistical method, we employ two
methods: kernel density estimation (with scikit-learn’s de-
faults) and the numerical diffusion method. For numerical heat
diffusion, we employ a diffusion factor of 6 and numerically
compute it for t=10 seconds. We have observed that it works
well on ten assertion samples taken from OpenSSL.

Satisfiability Under PSP: The satisfiability conditions
can be computationally expensive when computing P (IΣf (σ)

)
for each state σ ∈ Σf

C using Equation (3). A query can take
one of two paths: Ms

(
N(σ, ks), σ

)
, when the neighbourhood’s

density is high, and Ms

(
N(σ, ks), σ

)
otherwise. A high den-

sity neighbourhood, i.e. N(σ, k) ≥ u, usually only happens
for variables with a small domain (error codes, flags etc.) or
repeating patterns. As a result, despite being per variable, the
computation of Ms

(
N(σ, ks), σ

)
is not frequently invoked.

Fuzzers explore a finite range of values, typically around
[−109, 109], although, we have usually observed values less
than 104. We radiate our probability across the states encoun-
tered during fuzzing before any queries. Hence, any queries to
Ms

(
N(σ, ks), σ

)
are cheap and instant. The techniques used

to radiate the probability, such as kernel smoothing and heat
equation, are also inexpensive to compute on this scale.

Symbolic Execution: For symbolic execution, we im-
plement PSP’s strategy on Mythril [12], a well-maintained
symbolic execution engine for smart contracts. We implement
this on Mythril’s v0.23.22 version, since earlier versions do not
strictly adhere to execution timeout due to Z3 not adhering
to its prescribed timeout, which will end up tainting the
results. We employ a solver timeout of 25 seconds for all
the configurations.

Mythril has two classes of search strategies: ordinary and
super. Ordinary strategies have the lowest priority. Super
strategies can be stacked on top of them, but not vice versa.
The top strategies in the stack, i.e. super strategies, have the
highest priority. When a strategy makes no choice, the decision
is passed down to the next strategy.

We implemented PSP as an ordinary search strat-
egy. The only super strategy on top of PSP is the
BoundedLoopsStrategy, which, by default, bounds
loops to three iterations. We stack CoverageStrategy
and BoundedLoopsStrategy when running the other



TABLE I: The number of bugs/false positives each tool finds.
A30 denotes running the AFL fuzzer for 30 minutes. P(F, θ)
denotes running the fuzzer F with threshold θ.

Program Clam A30 P (A30, 0.5) P (A30, 0.7)

Bugs TP FP TP FP TP FP TP FP

libtiff 14 14 73 1 0 5 8 3 5
libpng 7 7 91 1 0 5 9 5 8
openssl 20 20 173 2 0 8 14 8 11
php 16 16 76 2 0 5 4 5 2
libxml 17 17 83 2 0 7 7 6 4
SQLite 20 20 167 0 0 1 8 0 6
Poppler 22 22 159 1 0 7 16 6 12

Total 116 116 822 9 0 38 67 31 48

TABLE II: Tool performance using IR measures. A30 denotes
running the AFL fuzzer for 30 minutes. P(F, θ) denotes
running the fuzzer F with threshold θ.

Tools Precision Recall F1 Score MCC

Clam 0.12 1.00 0.22 0.09
A30 1.00 0.08 0.14 0.26
P (A30, 0.1) 0.19 0.42 0.26 0.13
P (A30, 0.5) 0.36 0.33 0.34 0.26
P (A30, 0.7) 0.41 0.28 0.34 0.27

baselines on Mythril, such as the pending constraints
search strategy [10] and the default BFS . We use the
MythrilCoveragePlugin, a custom Mythril plugin, to
record instruction and branch discovery along with their
discovery times. For the threshold θ, we employ θ = 0.9,
as that provided the best performance out of all thresholds
θ ∈ { x

10 | x ∈ Z, 0 ≤ x ≤ 10} on a sample of 10 smart
contracts taken from SmartBugs-Wild [17] dataset.

A. Patch Prioritisation

To implement patch prioritisation, we extend Trident’s [18]
patch synthesiser to use PSP to prioritise patches. Trident
enumerates every patch to the depth d = 4, checking if each
patch matches the specification. We modified Trident to use
a priority queue instead, ordered by state probability under
PSP’s IP, defined by Equation (12).

VI. EVALUATION

We aim to answer the following questions in our evaluation:
RQ1 How does PSP improve the bug-finding capability of

abstract interpretation?
RQ2 How does PSP improve the bug-finding capability of

symbolic execution?
RQ3 How does PSP improve patch prioritisation?

We also report on PSP’s sensitivity to its two critical hyper-
parameters, and perform an ablation of its value estimators.

We trained PSP on fuzzing data from coreutils and openssl,
split into 90% for training and 10% for testing. We conducted
runs on a 16 core, 3.2 GHz machine running Ubuntu 22.10
with 32GB of memory.

To compare PSP with the baselines, we focus on key
performance metrics relevant to bug finding tools. First, we
present the true positive counts, highlighting the primary

objective of bug finding tools — discovering bugs. Second,
we report precision, since excessive false positives have a
detrimental effect on the usability of bug finding tools [19].
Third, we report the Matthews Correlation Coefficient (MCC),
which encapsulates our approach’s defect classification capac-
ity, considering the full confusion matrix [20]. We also include
the F1 Score to facilitate comparison with related work.

A. RQ1: PSP for Abstract Interpretation

We use the Clam static analyser [8] to overapproximate
whether an assertion can be violated and the AFL fuzzer [6]
for 30 minutes to under-approximate it. We compare the bugs
reported by these tools to the bugs reported by PSP and count
the number of false positives or negatives. We sample 7 out of
9 projects from Magma benchmark [9], namely, libtiff, libpng,
openssl, php, libxml, Poppler, SQLite. The projects have some
explicit assertions that always hold and other assertions that
violate to indicate a bug’s presence.

Table I shows the number of false positives and false
negatives for various tools; Table II shows precision, recall, F1
score, and MCC. As an overapproximate analysis, Clam has
the highest recall among all tools. Clam also has the lowest
precision: it reports 938 bugs, but only 12% of the reported
bugs are actually bugs. In contrast, AFL is under-approximate;
it has the highest precision but the lowest recall. After running
for 30 minutes, AFL reports only 8% of the 116 bugs.

PSP achieves the highest F1-score, balancing precision and
recall. If the threshold value θ is set to 0.5, then PSP finds 38
of the 116 bugs, but it also reports 67 bugs that do not exist.
PSP for θ = 0.5 reports substantially more true positives than
AFL and substantially fewer false positives than Clam. If we
adjust θ to 0.7, the total number of bug reports decreases from
105 to 79, increasing precision from 36 to 41% at the cost of
decreasing recall from 33 to 28%.

From Equation (2), we observe that PSP only constructs
non-zero probabilities for at least one program state w.r.t.
a statement iff the statement is covered by the fuzzer. For
the statements covered by the fuzzer, PSP at θ = 0.7 has
correctly identified, by violating an assertion, 77.5% of the
buggy statements as bugs. In contrast, the fuzzer has only
identified 18.4% of the buggy statements, which it has covered
in the span of 30 minutes as bugs.

RQ1: For the threshold θ = 0.7, PSP finds 31 out of 116
bugs and produces 48 false alarms; it finds 22 more bugs
than AFL running for 30m (A30) and does so with 774
fewer false positives than Clam.

In summary, PSP outperforms Clam in terms of precision,
and outperforms AFL in terms of the number of found bugs,
while outperforming the fuzzer on F1 and effectively matching
it on MCC. In practice, analyses like PSP are important for
software developers who wish to trade finding more bugs
against contending with more false positives.



Fig. 2: Bugs Discovered vs Time.

Fig. 3: Instruction Coverage vs Time.

B. RQ2: PSP for Symbolic Execution

To evaluate PSP’s symbolic execution strategy on smart
contracts, we compare our strategy (PSP) against two baseline
strategies: Mythril’s default search strategy (Default), which
is a combination of breadth-first, coverage-directed, and loop
bound strategies.1, and a recent search strategy based on
pending constraints [10] (Pending), which is implemented on
top of Mythril’s default search strategy.

We evaluate the symbolic execution strategy of PSP for
smart contracts using three sets of 52 random samples ex-
tracted from the SmartBugs-Wild [17] dataset, which consists
of 47,398 smart contracts from Ethereum mainnet. Smart
contracts tend to be smaller than traditional programs due
to the limited storage capacity and high cost of running on
the blockchain. The bytecode of a smart contract on EVM
has a size limit of 24KB [21]. However, smart contracts
operate differently from standard programs because they are
state machines, where users can modify the state by triggering
one of the smart contract’s functions. This potentially leads to
infinite execution paths if a user repeatedly triggers a function
that modifies the state, which results in complex control flow
and an increased number of possible execution paths, even
for small programs. The average number of lines of a smart
contract in our samples is 379.8.

Figure 2 shows the number of bugs found in smart contracts
over time by our technique (PSP) and the baseline techniques.
Figure 3 shows the number of instructions symbolically ex-

1The strategies are called BFS, CoverageStrategy, and
BoundedLoopsStrategy.

TABLE III: The execution time and the number of solver
queries for PSP, ASE and default symbolic execution.

Program PSP ASE baseline

time(s) queries time(s) queries time(s) queries

bubble_sort_1 8.70 0 8.39 0 38.8 67350
bubble_sort_3 21.70 4644 152.80 637821 266.7 1135634
bubble_sort_all 9.30 0 58.75 40320 59.0 234958
dijkstra 17.40 572 156.60 88726 184.7 99564
dirname 0.06 0 0.05 0 74.7 815764
gcd 1.50 0 125.60 3192 123.6 3192
half 0.01 0 0.01 0 16.4 8010
heap_sort_1 0.78 0 0.81 0 1.6 2340
heap_sort_3 0.74 0 22.50 104524 111.3 518822
heap_sort_all 25.30 9674 288.30 960034 111.1 964444
insert_sort_1 7.50 0 7.40 0 38.6 67350
insert_sort_3 24.90 18268 330.00 1420769 650.8 2860000
insert_sort_all 2.30 3244 15.20 80057 18.5 80638
merge_sort_1 0.20 0 0.20 0 0.4 896.0
merge_sort_3 0.30 0 9.40 29460 34.9 147400
merge_sort_all 0.30 0 18.00 78750 18.9 80638
quick_sort_1 4.70 0 4.80 0 4.9 598.0
quick_sort_3 5.90 0 61.40 205666 128.3 446606
quick_sort_all 5.30 0 25.80 78800 26.7 80638
selection_sort_1 4.10 0 4.10 0 559.7 1192300
selection_sort_3 21.50 70831 771.40 2913602 1048.4 3828538
selection_sort_all 2.30 3244 153.20 521344 153.3 526350
kruskal 12.30 1255 179.90 711343 195.4 789714
bellman-ford 18.50 6632 131.70 91752 150.3 102876
binary_search_all 0.03 0 0.03 0 345.0 8000
linear_find_all 0.01 0 0.01 0 32.5 2000
is_permutation 8.20 6055 383.10 1622733 418.0 1716634
loop_invgen 0.10 0 124.80 22859 246.8 34440
min_max_all 0.50 0 30.20 72067 32.8 77706
fibonacci 0.05 0 0.05 0 6.9 206554
outerproduct 0.08 0 0.08 0 45.0 140616

ecuted over time. PSP outperforms the baseline (Default)
and improved strategy (Pending) in terms of number of bugs
found. In 30 minutes, PSP can find 9% and 4.1% more bugs
than Default and Pending, respectively. In terms of symbolic
coverage of program instructions, PSP performs substantially
better than Default and Pending from 10 minutes onwards. For
the first 600 seconds, the coverage-guided Default and Pending
strategies perform better. However, the coverage-guided strate-
gies quickly exhaust the easy-to-discover instructions and start
underperforming. PSP’s search strategy does not explicitly
prioritise coverage. Even though it lags initially due to not
focusing on coverage, PSP eventually outperforms the other
two strategies due to its superior performance once the easy-
to-discover instructions are exhausted.

RQ2 (1/2): PSP’s search strategy finds 4.1% more bugs
in smart contracts than the state-of-the-art pending con-
strains search strategy.

Abstract symbolic execution (ASE) [11] represents the
amenable portion of the symbolic state using value sets and
delegates constraint solving partially to cheaper membership
tests in these value sets. For an objective comparison with
ASE, we implemented the PSP search strategy in the ASE
tool for C programs. Since the programs supported by ASE
are smaller, the fuzzer thoroughly covers various paths in
that programs, enabling a precise estimation for PSP. Thus,
our ASE variant does not implement value sets, as they are
superfluous on small programs. We employ two thresholds,
0.1 and 0.9, and only solve path constraints if their estimated
probability of satisfiability falls into (0.1, 0.9). We simply



TABLE IV: Expanded names of the functions used in Table V

Abbreviation Expansion

RF Random Forest
DIF Diffusing the probability
RFDIF Random Forest on dense data and DIF on sparse data
RFKS Random Forest on dense data and KDE on sparse data
DIF Diffusing the probability using Equation (4)
KDE Kernel Density Estimation

assume the query is UNSAT for a low threshold (< 0.1) and
SAT for a high threshold (> 0.9). We construct data by running
fuzzing for 3 seconds. For this result, we use the dataset of
small programs employed in the original ASE work [11]. The
average program size in this dataset is ca. 79 lines of code.

Table III shows the results for the comparison of the
execution time and the number of solver queries against the
ASE tool and the default (baseline) symbolic execution on the
benchmark set of C programs provided by the ASE authors.
Out of 31 samples tested, PSP required solver intervention
in only 10 cases, whereas ASE required intervention in 19
cases. In these 10 cases, we observed that the number of
queries sent to the solver was at least an order of magnitude
lower than the number of queries sent by ASE. Overall, the
total number of queries was reduced by 77 fold when using
PSP compared to ASE. These results demonstrate that PSP
is a promising approach for optimising symbolic execution,
reducing the reliance on solver intervention and improving
the efficiency of the technique.

RQ2 (2/2): Compared to ASE, PSP’s search strategy
reduces the number of solver calls by 77 and the average
time of a symbolic execution run by a factor of 15.

C. RQ3: PSP for Patch Prioritisation

We use the C implementation of Rete [13] as the baseline
for patch prioritisation. We extend Rete with PSP, using
the techniques described in Section IV-C. We chose the
C implementation of Rete because the fuzzing framework
for C is more robust when compared to Python. We use
MB35 dataset [18], consisting of 35 bugs sampled from
ManyBugs [14]. Our evaluation of patch prioritisation involves
determining the rank of the correct patch in the ordered
sequence of generated candidate patches. We restricted our
analysis to 8 bugs, excluding those for which Rete does not
generate correct patches within 2 hours, as computing precise
ranking for such bugs would be impractical. The average patch
ranking for Rete and PSP-Rete (Rete augmented with PSP) are
3999 and 2959, respectively, as shown in Table VI.

RQ3: PSP integrated with the state-of-the-art patch pri-
oritisation of Rete helps to decrease the average rank of
correct patches by 26% from bugs from ManyBugs.

D. PSP’s Hyperparameters

PSP has two critical parameters: The precision threshold θ
and the fuzzer configuration Atime . Here, we explore PSP’s

Fig. 4: This graph shows how PSP’s performance varies with
θ. Recall that, when θ = 0, PSP conservatively considers all
states deemed feasible under an abstract interpretation and,
when θ = 1, PSP is equivalent to the fuzzer it is using, and
ignores all states the fuzzer did not produce. We see here that
performance on F1 score peaks at just shy of θ = 0.5, whereas
MCC peaks at around 0.7.

Fig. 5: This Receiver Operating Characteristic (ROC) curve
shows how True Positive Rate and False Positive Rate vary
with the threshold. We observe that PSP is strictly above a
random classifier in terms of performance.

sensitivity to these two parameters on our subset of the Magma
benchmark (Section VI-A). The precision threshold of PSP is
used for classifying whether a given sample has a bug. Based
on how PSP computes probabilities Section III-A, at θ = 1,
we have a precision of 1 and at θ = 0, we have a recall of
1. Figure 4 presents the F1 score and MCC as a function of
θ. The F1 score increases rapidly until θ = 0.5, after which
it starts to decrease. This drop in F1 score from 0.9 to 1 is
due to the restriction on estimations of probability discussed
in Section IV-A. Examining Figure 4 shows that PSP has the
best with MCC at θ = 0.7, and after that, the score decreases.

In Figure 5, we plot the Receiver Operating Characteristic
(ROC) curve for PSP(A30, θ) by considering only assertions
visited by the fuzzer, as our PSP implementation cannot
estimate assertions unvisited during fuzzing. A ROC curve
shows the trade-off between the true positive rate and the false
positive rate for different classification thresholds. The dotted



Fig. 6: This plot illustrates the average Hellinger distance
between normalised PSPs across fuzzer iterations with a stride
of 5000. The vertical dotted line indicates the number of fuzzer
iterations corresponding to a 30 minute fuzzing campaign. We
observe that the probabilities indeed converge when using PSP.

x = y line represents the performance of a random classifier.
The area between a classifier’s ROC curve and the dotted
line indicates how much the classifier outperforms random
guessing. The fact that PSP’s ROC curve is well above this
line demonstrates that PSP is a decent bug classifier.

The fuzzing configuration Atime influences the quality of
PSP. Atime depends on the fuzzer, which, in our case, is AFL.
It also depends on how long the fuzzer runs to generate fuzzing
data, which we measure in terms of time and the number
of fuzzer iterations. In practice, a user of PSP may wish to
identify what fuzzing budget is needed to construct a PSP of
sufficient quality. We suggest doing it simply by observing the
convergence of PSP as the budget increases.

To evaluate PSP’s convergence, we computed the difference
between PSPs across fuzzer iterations with the stride of 5000.
To quantify the distance between the sets of state probabilities
of two iterations, we normalise them, and then compute
the average Hellinger distance [22] between the normalised
probabilities as follows:

H(pi, pi−5000) =
1√
2

√√√√ n∑
i=1

(√
pi −

√
pi−5000

)2
where pi denotes the probability at the ith iteration.

Figure 6 shows how the distance between adjacent PSPs
converges with the increase of the number of fuzzer iterations.
The vertical dotted line indicates the number corresponding to
a 30 minutes fuzzing campaign. The fact that PSP converges
implies that we can stop the fuzzer after a certain number of
iterations without a significant loss of precision.

E. Ablation: Estimating Unseen States

Table IV shows various estimating techniques for the un-
seen program state. We conducted fuzzing on Coreutils by
randomly selecting lines for instrumentation, which we divided
into two categories: dense and sparse. For the sparse category,
we chose samples that did not satisfy the criteria for choosing
the supervised model shown in Equation (3). We selected vari-
ables with a large range of values or samples from states that

TABLE V: The performance of estimating techniques from
Table IV. Coreutils-S denotes the sparse version of Coreutils,
and Coreutils-D denotes its dense version.

Dataset Samples RFDIF RFKDE RF DIF KDE

Coreutils-S 100k 99.8% 99.5% - 99.8% 99.5%
Coreutils-D 100k 99.3% 99.0% 98.4% 62.3% 56.4%

TABLE VI: Average patch ranking for MB35.

Bug Rete PSP-Rete

gmp-a1d3d-f17cb 843 840
libtiff-09e82-f2d98 513 496
libtiff-764db-2e42d 7 6
libtiff-a72cf-0a36d 15842 12039
libtiff-37133-865f7 8566 5711
php-70075-5a8c9 782 725
php-e65d3-1d984 5439 3954
php-63673-2adf5 3 3

Average 3999 2959

did not have enough fuzzing samples. For the dense category,
we chose variables that satisfied the criteria for running the
supervised model, such as error codes, file descriptors, enums,
etc. This process resulted in 100k samples for sparse and
dense data. Additionally, we generated discrete samples (DS)
with specific patterns, such as even, odd, modulo, and other
randomly generated periodic patterns. For string samples (SS),
we extracted them by instrumenting strings from coreutils.

To evaluate the techniques, we considered any probability
above 0.5 as indicating the existence of a state and any
probability below 0.5 as indicating the non-existence of a state.
Table V reports each technique’s performance at estimating
unseen states. RF is effective in recognising patterns present
when the data is dense. However, for sparse data, both DIF
and KDE are effective in estimating the unseen states, although
DIF has slightly better results. For techniques such as symbolic
execution on smart contracts, RF was rarely triggered (with a
trigger rate of < 1%) due to data sparsity. In shot, random
forest (RF) outperforms the other methods on dense data;
diffusing the probability (DIF) outperforms the other methods
on sparse data.

F. Threats to Validity

We evaluated PSP against CLAM on a subset of Magma [9].
We used a uniformly sampled subset, of 7 out of 9, of the
Magma benchmarks for computational reasons. The size of
this sample set threatens the generalizability of our findings to
other subjects. Further, PSP uses fuzzing to infer probabilities.
A fuzzer, like AFL, may not cover certain variables or observe
only a biased subset of a variable’s bindings; this introduces
another external validity threat. Our evaluation consists of
running various tools (Mythril, AFL, Clam, Harvey). These
tools are configurable; other than varying timeouts, we used
their defaults. Here too, it is possible that our results do not
generalise beyond these configurations.



VII. RELATED WORK

PSP is relevant to data-driven program analysis, combi-
nations of testing and verification, patch prioritisation for
program repair, and symbolic execution.

Statistical Reasoning about Programs: This paper is
most closely related with recent work on the development
of empirical methods for program analysis, and specifically
of statistical methods [23], [24], [25]. Empirical methods are
particularly suitable for the analysis of large and complex
systems where analytical (or formal) methods fail. Statistical
methods allow to quantify the error and uncertainty in the
analysis result. In this work, we explored advanced methods
from machine learning, such as random forest and kernel
density estimation, to estimate the probability that there exists
an execution for which a given property is observed and
discussed the integration with static analysis to tackle the
problem of imprecision.

Data-Driven Program Analysis: Data-driven automatic
tuning has been shown to improve static analysis perfor-
mance [26], [27]. In contrast, we focus on the precision of
program analysis. Heo et al. [28] use machine learning to
balance the trade-off between precision and scalability of static
analysis by selectively enabling unsoundness when analysing
loops and library functions. Our technique, by relying on
data obtained through fuzzing, directly approximates program
states that enable a wider range of applications, including
symbolic execution and program repair.

Combining Testing and Verification: Testing and ver-
ification have been combined in various ways [29]. Com-
bining them to reduce the over-approximation of abstraction
has been explored [30]. Tools such as SMASH [31] com-
bine may and must analysis (over-approximation and under-
approximation). UFO [32] uses interpolation to unify over
and under-approximate techniques in model checking. PSP
differs from these techniques by combining fuzzing data and
abstract interpretation to construct probabilities for program
states. This combination provides a trade-off between under-
and over- approximation and reduces false positives.

Patch Prioritisation: DirectFix [33] uses weighted SAT
to prioritise smaller changes. Prophet [34] learns a proba-
bilistic model to rank patches based on maximum likelihood
estimation. CapGen [35] estimates the likelihood of concrete
patches using information from AST nodes. GetaFix [36] clus-
ters mined fix patterns using a hierarchical clustering algorithm
into general and specific fix patterns and uses code context
to select an appropriate fix pattern. Trident [18] prioritises
patches to reduce side effects and overfitting. Recent tech-
niques such as L2S [37], ODS [38], and Rete [13] prioritise
variables to reduce the number of candidate variables in the
search space. Most techniques rank patches with scores that
fall outside [0, 1]. We normalise their scores into [0, 1] so we
can use Equation 11 to effectively combine them with PSP.

Symbolic Execution: Symbolic execution [39], [40] is
one of the most expensive testing methodologies [41]. Much
research seeks to reduce its cost [2]. Variants of symbolic
execution have been proposed to reduce its cost, such as

concolic execution [42], [43] and execution-based testing [44],
[45]. Researchers studied ways to accelerate path exploration
in symbolic execution. One such approach is distributing
path exploration among different workers [46], [47]. Several
techniques leverage compositionality to speed up symbolic
execution [48], [31]. Researchers also investigated methods
for pruning the search space [49], [50], and transforming the
underlying code for symbolic execution [51], [52], [53].

One way to tackle symbolic execution’s scalability chal-
lenge is to side-step it via search: rather than directly speed
symbolic execution or solving, use search to maximise your
computational budget. Kapus et al.’s Pending Constraints ap-
proach prioritises execution paths that are already known to
be feasible and defers the rest [10]. Thus, like PSP, it avoids
wasting resources on solving constraints. Pending Constraints
is more conservative: it uses caching to identify known-to-
be-feasible paths; PSP, in contrast, prioritises paths that it
predicts will produce a likely state. Both approaches exemplify
the "rich get richer" proverb: Pending Constraints will tend to
explore feasible paths and their easy extensions more deeply,
while PSP focuses on probable paths. For bug finding, we have
shown PSP’s prioritisation works better (Section VI-B).

Abstract symbolic execution (ASE) defines a value set
decision procedure based on strided value interval sets for
efficiently determining precise, or under-approximating value
sets for variables, which helps to reduce the number of
SMT queries. Furthermore, PSP approximates even further by
reducing the number of queries as shown in Section VI-B.

Neuro-symbolic execution [54] trains a neural network
to approximate hard-to-analyse program constructs such as
loops and external function calls. In contrast, we directly
approximate program states, which enables us to create an
efficient search strategy reducing the number of SMT queries.

VIII. CONCLUSION

We present program state probability (PSP) to enhance
program analyses such as abstract interpretation and symbolic
execution, which suffer from imprecision due to over- and
under-approximation. PSP uses execution samples to proba-
bilistically approximate reachable program states and lever-
ages these probabilities to increase analysis precision. We
applied PSP to three domains: static analysis, symbolic execu-
tion, and program repair. Results show that using PSP reduces
the number of false positives under abstract interpretation,
increases the number of bugs that symbolic execution finds,
and prioritises correct patches for program repair.
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